| { | |
| "architecture_plans": { | |
| "arch_class_name": "PrimusM", | |
| "arch_kwargs": null, | |
| "arch_kwargs_requiring_import": null | |
| }, | |
| "pretrain_plan": { | |
| "dataset_name": "Dataset745_OpenNeuro_v2", | |
| "plans_name": "nnsslPlans", | |
| "original_median_spacing_after_transp": [ | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| "image_reader_writer": "SimpleITKIO", | |
| "transpose_forward": [ | |
| 0, | |
| 1, | |
| 2 | |
| ], | |
| "transpose_backward": [ | |
| 0, | |
| 1, | |
| 2 | |
| ], | |
| "configurations": { | |
| "onemmiso": { | |
| "data_identifier": "nnsslPlans_3d_fullres", | |
| "preprocessor_name": "DefaultPreprocessor", | |
| "spacing_style": "onemmiso", | |
| "normalization_schemes": [ | |
| "ZScoreNormalization" | |
| ], | |
| "use_mask_for_norm": [ | |
| false | |
| ], | |
| "resampling_fn_data": "resample_data_or_seg_to_shape", | |
| "resampling_fn_data_kwargs": { | |
| "is_seg": false, | |
| "order": 3, | |
| "order_z": 0, | |
| "force_separate_z": null | |
| }, | |
| "resampling_fn_mask": "resample_data_or_seg_to_shape", | |
| "resampling_fn_mask_kwargs": { | |
| "is_seg": true, | |
| "order": 1, | |
| "order_z": 0, | |
| "force_separate_z": null | |
| }, | |
| "spacing": [ | |
| 1, | |
| 1, | |
| 1 | |
| ], | |
| "patch_size": [ | |
| 160, | |
| 160, | |
| 160 | |
| ] | |
| } | |
| }, | |
| "experiment_planner_used": "FixedResEncUNetPlanner" | |
| }, | |
| "pretrain_num_input_channels": 1, | |
| "recommended_downstream_patchsize": [ | |
| 160, | |
| 160, | |
| 160 | |
| ], | |
| "key_to_encoder": "eva", | |
| "key_to_stem": "down_projection", | |
| "keys_to_in_proj": [ | |
| "down_projection.proj" | |
| ], | |
| "key_to_lpe": "eva.pos_embed", | |
| "citations": [ | |
| { | |
| "type": "Architecture", | |
| "name": "PrimusM", | |
| "apa_citations": [ | |
| "Wald, T., Roy, S., Isensee, F., Ulrich, C., Ziegler, S., Trofimova, D., ... & Maier-Hein, K. (2025). Primus: Enforcing attention usage for 3d medical image segmentation. arXiv preprint arXiv:2503.01835." | |
| ] | |
| }, | |
| { | |
| "type": "Pretraining Method", | |
| "name": "Masked Image Modeling", | |
| "apa_citations": [ | |
| "Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., ... & Hu, H. (2022). Simmim: A simple framework for masked image modeling. CVPR." | |
| ] | |
| }, | |
| { | |
| "type": "Pre-Training Dataset", | |
| "name": "OpenMind", | |
| "apa_citations": [ | |
| "Wald, T., Ulrich, C., Suprijadi, J., Ziegler, S., Nohel, M., Peretzke, R., ... & Maier-Hein, K. H. (2024). An OpenMind for 3D medical vision self-supervised learning. arXiv preprint arXiv:2412.17041." | |
| ] | |
| }, | |
| { | |
| "type": "Framework", | |
| "name": "nnssl", | |
| "apa_citations": [ | |
| "Wald, T., Ulrich, C., Lukyanenko, S., Goncharov, A., Paderno, A., Maerkisch, L., ... & Maier-Hein, K. (2024). Revisiting MAE pre-training for 3D medical image segmentation. CVPR." | |
| ] | |
| } | |
| ], | |
| "trainer_name": "SimMIMEvaTrainer_BS8" | |
| } |