nielsr HF Staff commited on
Commit
e09e26f
·
verified ·
1 Parent(s): d39ca20

Improve model card: Add metadata and links

Browse files

This PR enhances the model card for the VLN-PE benchmark and models.

Key improvements include:
- **Metadata**: Added `pipeline_tag: robotics`, `library_name: transformers`, and `license: mit` for better discoverability and standardized information.
- **Links**: Added explicit links to the associated research paper, project page, and the main GitHub repository within the model card content. This provides users with direct access to more detailed information.
- **Content**: The existing benchmark results table remains unchanged, ensuring no disruption to current information. A citation section has also been added based on the GitHub README.

Please review and merge if these improvements are satisfactory.

Files changed (1) hide show
  1. README.md +32 -2
README.md CHANGED
@@ -1,4 +1,16 @@
1
- **VLN-PE Benchmark**
 
 
 
 
 
 
 
 
 
 
 
 
2
  <style type="text/css">
3
  .tg {border-collapse:collapse;border-spacing:0;}
4
  .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
@@ -173,4 +185,22 @@
173
  <td class="tg-0pky">18.65</td>
174
  <td class="tg-0pky"><a href="https://huggingface.co/InternRobotics/VLN-PE/tree/main/r2r/fine_tuned/cma_plus" target="_blank" rel="noopener noreferrer">model</a></td>
175
  </tr>
176
- </tbody></table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: robotics
3
+ library_name: transformers
4
+ license: mit
5
+ ---
6
+
7
+ This repository contains models for the **VLN-PE Benchmark**, as presented in the paper [Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities](https://huggingface.co/papers/2507.13019).
8
+
9
+ VLN-PE introduces a physically realistic Vision-and-Language Navigation platform supporting humanoid, quadruped, and wheeled robots, and systematically evaluates several ego-centric VLN methods in physical robotic settings.
10
+
11
+ For more details, visit the [project page](https://crystalsixone.github.io/vln_pe.github.io/) or the main [GitHub repository](https://github.com/InternRobotics/InternNav).
12
+
13
+ ## VLN-PE Benchmark
14
  <style type="text/css">
15
  .tg {border-collapse:collapse;border-spacing:0;}
16
  .tg td{border-color:black;border-style:solid;border-width:1px;font-family:Arial, sans-serif;font-size:14px;
 
185
  <td class="tg-0pky">18.65</td>
186
  <td class="tg-0pky"><a href="https://huggingface.co/InternRobotics/VLN-PE/tree/main/r2r/fine_tuned/cma_plus" target="_blank" rel="noopener noreferrer">model</a></td>
187
  </tr>
188
+ </tbody></table>
189
+
190
+ ## Citation
191
+ If you find our work helpful, please cite:
192
+
193
+ ```bibtex
194
+ @inproceedings{vlnpe,
195
+ title={Rethinking the Embodied Gap in Vision-and-Language Navigation: A Holistic Study of Physical and Visual Disparities},
196
+ author={Wang, Liuyi and Xia, Xinyuan and Zhao, Hui and Wang, Hanqing and Wang, Tai and Chen, Yilun and Liu, Chengju and Chen, Qijun and Pang, Jiangmiao},
197
+ booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
198
+ year={2025}
199
+ }
200
+ @misc{internnav2025,
201
+ title = {{InternNav: InternRobotics'} open platform for building generalized navigation foundation models},
202
+ author = {InternNav Contributors},
203
+ howpublished={\url{https://github.com/InternRobotics/InternNav}},
204
+ year = {2025}
205
+ }
206
+ ```