import argparse import os import yaml import glob import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as data from torch.utils.tensorboard import SummaryWriter import numpy as np from models.unet import DiffusionUNet from diff2flow import dict2namespace import utils.logging class ReflowDataset(data.Dataset): def __init__(self, data_dir): super().__init__() self.files = sorted(glob.glob(os.path.join(data_dir, "*.pth"))) print(f"Found {len(self.files)} files in {data_dir}") def __len__(self): # We might have batched files. # For simplicity, let's load on demand. return len(self.files) def __getitem__(self, index): # Each file is a dictionary of a BATCH # To make a proper dataset, we should either flattened the files first or handle batches. # Since files are batched, returning a batch from __getitem__ is tricky for DataLoader if batch_size > 1. # However, if we set DataLoader batch_size=1, and use a custom collate, we can just return the batch tensor. # Or we can just load the whole batch and let the training loop handle it (gradient accumulation or just variable batch size). # Let's assume we train with whatever batch size was used for generation (or we can re-batch). # We'll just return the content of the file. path = self.files[index] data_dict = torch.load(path) return data_dict def train_reflow(args, config): device = config.device # helper for tensorboard writer = SummaryWriter(log_dir=os.path.join(args.output, "logs")) # Load Model print("Loading model...") model = DiffusionUNet(config) model.to(device) # Load Pretrained Weights (Optional but recommended for Reflow) if args.resume: print(f"Loading pretrained weights from {args.resume}") checkpoint = torch.load(args.resume, map_location=device) if "state_dict" in checkpoint: state_dict = checkpoint["state_dict"] else: state_dict = checkpoint # Strip module. prefix new_state_dict = {} for k, v in state_dict.items(): if k.startswith("module."): new_state_dict[k[7:]] = v else: new_state_dict[k] = v model.load_state_dict(new_state_dict, strict=True) optimizer = optim.Adam(model.parameters(), lr=config.optim.lr) # Dataset dataset = ReflowDataset(args.data_dir_reflow) # DataLoader: batch_size=1 because __getitem__ returns a batch already loader = data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=4) model.train() print("Starting training...") step = 0 N = config.diffusion.num_diffusion_timesteps # e.g. 1000 for epoch in range(args.epochs): for i, batch_dict in enumerate(loader): # batch_dict contains keys with shape [1, B, C, H, W] due to DataLoader batch_size=1 x_0 = batch_dict["x_data"].squeeze(0).to(device) # Data (Clean) x_1 = batch_dict["x_noise"].squeeze(0).to(device) # Noise (Latent) x_cond = batch_dict["x_cond"].squeeze(0).to(device) # Condition B = x_0.shape[0] # Sample t uniform [0, 1] t = torch.rand(B, device=device) # Interpolate: x_t = t * x_1 + (1 - t) * x_0 # Note: Reflow definition: x_t = x_0 + t * (x_1 - x_0). # If t=0, x_t = x_0 (Data). If t=1, x_t = x_1 (Noise). # Velocity v = x_1 - x_0. # d x_t / dt = x_1 - x_0 = v. # Reshape t for broadcasting t_expand = t.view(B, 1, 1, 1) x_t = (1 - t_expand) * x_0 + t_expand * x_1 v_target = x_1 - x_0 # Prepare input for model # Model forward needs (x, t_emb). # Reuse UNet's embedding logic by scaling t # UNet expects t indices or values that match the embedding frequency. # VP-SDE config usually has t in 0..1000. # So we pass t * N. t_input = t * (N - 1) # Forward # Input to model: concat(x_cond, x_t) usually model_input = torch.cat([x_cond, x_t], dim=1) v_pred = model(model_input, t_input) # Loss loss = torch.mean((v_pred - v_target) ** 2) optimizer.zero_grad() loss.backward() optimizer.step() if step % 10 == 0: print(f"Epoch {epoch}, Step {step}, Loss: {loss.item():.6f}") writer.add_scalar("Loss/train", loss.item(), step) step += 1 # Save checkpoint if (epoch + 1) % 5 == 0 or epoch == 0: save_path = os.path.join(args.output, f"reflow_ckpt_{epoch}.pth") torch.save(model.state_dict(), save_path) print(f"Saved checkpoint to {save_path}") writer.close() def main(): parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, required=True) parser.add_argument("--resume", type=str, default="") parser.add_argument("--data_dir_reflow", type=str, required=True) parser.add_argument("--epochs", type=int, default=10) parser.add_argument("--output", type=str, default="results/reflow_train") parser.add_argument("--seed", type=int, default=61) parser.add_argument("--lr", type=float, default=1e-5) args = parser.parse_args() with open(os.path.join("configs", args.config), "r") as f: config_dict = yaml.safe_load(f) config = dict2namespace(config_dict) if args.lr: config.optim.lr = args.lr device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") config.device = device torch.manual_seed(args.seed) np.random.seed(args.seed) os.makedirs(args.output, exist_ok=True) train_reflow(args, config) if __name__ == "__main__": main()