File size: 48,834 Bytes
8cc7157 bc927d2 299d86a bc927d2 299d86a bc927d2 8cc7157 4f8ffab 8cc7157 8d7ff55 8cc7157 bc927d2 8cc7157 3fd0d17 8cc7157 3fd0d17 8cc7157 3fd0d17 8cc7157 3fd0d17 8cc7157 3fd0d17 8cc7157 3fd0d17 8cc7157 299d86a 8cc7157 299d86a 8cc7157 bc927d2 299d86a bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 3fd0d17 bc927d2 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 299d86a bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 3fd0d17 bc927d2 8cc7157 bc927d2 8cc7157 3fd0d17 bc927d2 8cc7157 bc927d2 8cc7157 8d7ff55 bc927d2 8d7ff55 8cc7157 bc927d2 8d7ff55 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 3fd0d17 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 3fd0d17 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 3fd0d17 8cc7157 299d86a 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 bc927d2 8cc7157 299d86a 8cc7157 3fd0d17 bc927d2 8d7ff55 3fd0d17 8d7ff55 8cc7157 8d7ff55 8cc7157 8d7ff55 8cc7157 8d7ff55 8cc7157 8d7ff55 8cc7157 8d7ff55 8cc7157 3fd0d17 bc927d2 04da2a7 8d7ff55 299d86a 8d7ff55 04da2a7 3fd0d17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 |
#!/usr/bin/env python3
"""
NeoLLM Model with FANformer Integration in both Attention and FFN, Dropout Regularization,
SeeDNorm (Self-Rescaled Dynamic Normalization), and ResFormer Value Residual Learning
for enhanced information flow through deep layers.
Updated to include:
- Fourier Analysis Network (FAN) layer for effective periodicity modeling in attention (relational space)
- FAN layer in FFN for featural periodicity modeling (complementary coverage)
- SeeDNorm: Dynamic normalization with input-dependent scaling for better adaptability
- Dropout regularization at strategic locations
- ResFormer: Feature residual connections from first layer (applied before projections)
"""
import math
from typing import Any, Callable, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from cut_cross_entropy import linear_cross_entropy
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, logging
from transformers.utils.generic import check_model_inputs
from transformers.utils.import_utils import (
is_causal_conv1d_available,
is_flash_linear_attention_available,
)
from .configuration_neollm import NeoLLMConfig
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
if is_flash_linear_attention_available():
from fla.modules import FusedRMSNormGated
from fla.ops.gated_delta_rule import chunk_gated_delta_rule, fused_recurrent_gated_delta_rule
else:
chunk_gated_delta_rule, fused_recurrent_gated_delta_rule = None, None
FusedRMSNormGated = None
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
logger = logging.get_logger(__name__)
class FANLayer(nn.Module):
"""
Fourier Analysis Network (FAN) layer for effective periodicity modeling.
From "FANformer: Improving Large Language Models Through Effective Periodicity Modeling":
FANLayer'(X) = [cos(WpX)||sin(WpX)||(Wp¯X + Bp¯)]
This is the modified version (FANLayer') without activation function that gave
the best results in the paper.
"""
def __init__(self, hidden_size: int, fan_ratio: float = 0.25):
super().__init__()
self.hidden_size = hidden_size
self.fan_ratio = fan_ratio
# Calculate dimensions following the paper's approach
# Output will be: [cos(p) || sin(p) || g] where total = hidden_size + periodic_dim
output_dim = hidden_size + int(hidden_size * fan_ratio)
self.p_output_dim = int(output_dim * fan_ratio)
self.g_output_dim = output_dim - self.p_output_dim * 2
# Single fused projection (more efficient than two separate projections)
self.input_linear = nn.Linear(
hidden_size,
self.p_output_dim + self.g_output_dim,
bias=True
)
# Initialize parameters
self._init_weights()
def _init_weights(self):
"""Initialize weights following the paper's recommendations."""
nn.init.normal_(self.input_linear.weight, mean=0.0, std=0.02)
if self.input_linear.bias is not None:
nn.init.zeros_(self.input_linear.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply Fourier transformation to input.
Args:
x: Input tensor of shape (batch, seq_len, hidden_size)
Returns:
Transformed tensor with Fourier components concatenated
Shape: (batch, seq_len, hidden_size + periodic_dim)
"""
# Single projection followed by split (more efficient)
pg = self.input_linear(x)
p, g = torch.split(pg, [self.p_output_dim, self.g_output_dim], dim=-1)
# Concatenate all components: [cos(WpX) || sin(WpX) || (Wp¯X + Bp¯)]
x_fan = torch.cat([torch.cos(p), torch.sin(p), g], dim=-1)
return x_fan
class LNS(nn.Module):
"""
LayerNorm Scaling (LNS) - applies scaling factor 1/√ℓ as described in the paper.
From "The Curse of Depth in Large Language Models":
h^(ℓ) = LayerNorm(h^(ℓ)) × (1/√ℓ)
This prevents exponential variance growth in deeper layers.
"""
def __init__(self, layer_idx: int):
super().__init__()
# Layer 1 gets index 1, layer 2 gets index 2, etc.
# Avoid division by zero for layer 0
self.layer_idx = max(layer_idx + 1, 1) # +1 because layer_idx starts from 0
self.scale = 1.0 / math.sqrt(self.layer_idx)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x * self.scale
class GPAS(nn.Module):
"""
Gradient-Preserving Activation Scaling (GPAS)
Scales activations without penalizing gradients using stop-gradient.
Applied in Pre-Norm style: after sub-layer output but before residual sum.
"""
def __init__(self, d_model: int):
super().__init__()
self.d_model = d_model
self.alpha = nn.Parameter(torch.zeros(1))
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_detached = x.detach()
scaled_component = F.silu(self.alpha) * x_detached
x_scaled = x - scaled_component
return x_scaled
class SeeDNorm(nn.Module):
"""
Self-Rescaled Dynamic Normalization (SeeDNorm)
From "SeeDNorm: Self-Rescaled Dynamic Normalization":
SeeDNorm(x) = [σ(x·β^T)·α + γ] ⊙ x/RMS(x)
Dynamically adjusts the scaling coefficient based on the current input,
preserving input norm information and enabling data-dependent normalization.
Key features:
- γ: Static scaling factor (like RMSNorm), initialized to 1
- β: Self-rescaling parameter, initialized to 0
- α: Dynamic modulation parameter, initialized to 1
- σ: tanh activation to constrain dynamic scaling range [-1, 1]
Args:
dim: Hidden dimension size
eps: Small constant for numerical stability
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.eps = eps
# Learnable parameters
self.gamma = nn.Parameter(torch.ones(dim)) # γ: static scaling (RMSNorm-like)
self.beta = nn.Parameter(torch.zeros(dim)) # β: self-rescaling parameter
self.alpha = nn.Parameter(torch.ones(dim)) # α: dynamic modulation parameter
def _rms_norm(self, x: torch.Tensor) -> torch.Tensor:
"""Compute RMS normalization: x / RMS(x)"""
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Apply Self-Rescaled Dynamic Normalization.
Args:
x: Input tensor of shape (..., dim)
Returns:
Normalized and dynamically scaled tensor of same shape
"""
# Compute input-dependent rescaling: σ(x·β^T)
# x·β^T produces scalar per token via dot product
rescale_factor = torch.tanh(torch.sum(x * self.beta, dim=-1, keepdim=True))
# Dynamic scaling coefficient: σ(x·β^T)·α + γ
dynamic_scale = rescale_factor * self.alpha + self.gamma
# Apply RMS normalization
x_normalized = self._rms_norm(x.float())
# Apply dynamic scaling
output = x_normalized * dynamic_scale.float()
return output.type_as(x)
def extra_repr(self) -> str:
return f"dim={self.dim}, eps={self.eps}"
class NeoLLMRMSNormGated(nn.Module):
"""
Gated RMSNorm variant used in specific contexts.
"""
def __init__(self, hidden_size, eps=1e-6, **kwargs):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states, gate=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
# Norm before gate
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
hidden_states = self.weight * hidden_states.to(input_dtype)
hidden_states = hidden_states * F.silu(gate.to(torch.float32))
return hidden_states.to(input_dtype)
class NeoLLMRotaryEmbedding(nn.Module):
inv_freq: torch.Tensor # fix linting for `register_buffer`
def __init__(self, config: NeoLLMConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors."""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
# Keep half or full tensor for later concatenation
rotary_dim = cos.shape[-1]
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
# Apply rotary embeddings on the first half or full tensor
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
# Concatenate back to full shape
q_embed = torch.cat([q_embed, q_pass], dim=-1)
k_embed = torch.cat([k_embed, k_pass], dim=-1)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs: Unpack[TransformersKwargs],
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class NeoLLMAttention(nn.Module):
"""
Multi-headed attention with FANformer integration, SeeDNorm for Q/K normalization,
and ResFormer feature residual connections for enhanced information flow.
ResFormer enhancement: Applies learnable feature residual connections from the first layer
BEFORE QKV projections: H'_fan_n = λ_1 * H_fan_1 + λ_2 * H_fan_n
"""
def __init__(self, config: NeoLLMConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
# FANformer integration: FAN layer before QKV projections
self.fan_layer = FANLayer(
hidden_size=config.hidden_size,
fan_ratio=getattr(config, 'fan_ratio', 0.125)
)
# Calculate the output dimension after FAN transformation
fan_output_dim = config.hidden_size + int(config.hidden_size * getattr(config, 'fan_ratio', 0.125))
# QKV projections operate on FAN-transformed features
self.q_proj = nn.Linear(
fan_output_dim, config.num_attention_heads * self.head_dim * 2, bias=config.attention_bias
)
self.k_proj = nn.Linear(
fan_output_dim, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
fan_output_dim, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
# SeeDNorm for Q/K normalization (replaces RMSNorm)
self.q_norm = SeeDNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = SeeDNorm(self.head_dim, eps=config.rms_norm_eps)
# Dropout for attention output
self.dropout = nn.Dropout(config.dropout_rate)
# ResFormer: learnable feature residual parameters (initialized to 0.5)
self.lambda_1 = nn.Parameter(torch.tensor(0.5)) # Weight for H_fan_1 (first layer features)
self.lambda_2 = nn.Parameter(torch.tensor(0.5)) # Weight for H_fan_n (current layer features)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
first_layer_fan: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]:
input_shape = hidden_states.shape[:-1]
# Apply FANformer transformation first
hidden_states_fan = self.fan_layer(hidden_states)
# ResFormer: Apply feature residual connection BEFORE projections
# This ensures dimensional compatibility across all layer types
if first_layer_fan is not None:
hidden_states_fan = self.lambda_1 * first_layer_fan + self.lambda_2 * hidden_states_fan
# Store current FAN features for potential use as first_layer_fan in subsequent layers
current_layer_fan = hidden_states_fan.clone()
hidden_shape = (*input_shape, -1, self.head_dim)
# Use FAN-transformed features (with residual applied) for projections
query_states, gate = torch.chunk(
self.q_proj(hidden_states_fan).view(*input_shape, -1, self.head_dim * 2), 2, dim=-1
)
gate = gate.reshape(*input_shape, -1)
# Apply SeeDNorm to Q and K
query_states = self.q_norm(query_states.view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(hidden_states_fan).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states_fan).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = attn_output * torch.sigmoid(gate)
attn_output = self.o_proj(attn_output)
attn_output = self.dropout(attn_output)
return attn_output, attn_weights, current_layer_fan
def apply_mask_to_padding_states(hidden_states, attention_mask):
"""
Tunes out the hidden states for padding tokens
"""
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return hidden_states
is_fast_path_available = all(
(causal_conv1d_fn, causal_conv1d_update, chunk_gated_delta_rule, fused_recurrent_gated_delta_rule)
)
def torch_causal_conv1d_update(
hidden_states,
conv_state,
weight,
bias=None,
activation=None,
):
_, hidden_size, seq_len = hidden_states.shape
state_len = conv_state.shape[-1]
hidden_states_new = torch.cat([conv_state, hidden_states], dim=-1).to(weight.dtype)
conv_state.copy_(hidden_states_new[:, :, -state_len:])
out = F.conv1d(hidden_states_new, weight.unsqueeze(1), bias, padding=0, groups=hidden_size)
out = F.silu(out[:, :, -seq_len:])
out = out.to(hidden_states.dtype)
return out
def l2norm(x: torch.FloatTensor, dim: int = -1, eps: float = 1e-6):
"""This function is intended to align with the l2norm implementation in the FLA library."""
inv_norm = 1 / torch.sqrt((x * x).sum(dim=dim, keepdim=True) + eps)
return x * inv_norm
def torch_chunk_gated_delta_rule(
query,
key,
value,
g,
beta,
chunk_size=64,
initial_state=None,
output_final_state=False,
use_qk_l2norm_in_kernel=False,
):
initial_dtype = query.dtype
if use_qk_l2norm_in_kernel:
query = l2norm(query, dim=-1, eps=1e-6)
key = l2norm(key, dim=-1, eps=1e-6)
query, key, value, beta, g = [
x.transpose(1, 2).contiguous().to(torch.float32) for x in (query, key, value, beta, g)
]
batch_size, sequence_length, num_heads, k_head_dim = key.shape
v_head_dim = value.shape[-1]
pad_size = (chunk_size - num_heads % chunk_size) % chunk_size
query = F.pad(query, (0, 0, 0, pad_size))
key = F.pad(key, (0, 0, 0, pad_size))
value = F.pad(value, (0, 0, 0, pad_size))
beta = F.pad(beta, (0, pad_size))
g = F.pad(g, (0, pad_size))
tot_heads = num_heads + pad_size
scale = 1 / (query.shape[-1] ** 0.5)
query = query * scale
v_beta = value * beta.unsqueeze(-1)
k_beta = key * beta.unsqueeze(-1)
# reshape to chunks
query, key, value, k_beta, v_beta = [
x.reshape(x.shape[0], x.shape[1], -1, chunk_size, x.shape[-1]) for x in (query, key, value, k_beta, v_beta)
]
g = g.reshape(g.shape[0], g.shape[1], -1, chunk_size)
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=query.device), diagonal=0)
# chunk decay
g = g.cumsum(dim=-1)
decay_mask = ((g.unsqueeze(-1) - g.unsqueeze(-2)).tril().exp().float()).tril()
attn = -((k_beta @ key.transpose(-1, -2)) * decay_mask).masked_fill(mask, 0)
for i in range(1, chunk_size):
row = attn[..., i, :i].clone()
sub = attn[..., :i, :i].clone()
attn[..., i, :i] = row + (row.unsqueeze(-1) * sub).sum(-2)
attn = attn + torch.eye(chunk_size, dtype=attn.dtype, device=attn.device)
value = attn @ v_beta
k_cumdecay = attn @ (k_beta * g.exp().unsqueeze(-1))
last_recurrent_state = (
torch.zeros(batch_size, sequence_length, k_head_dim, v_head_dim).to(value)
if initial_state is None
else initial_state.to(value)
)
core_attn_out = torch.zeros_like(value)
mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=query.device), diagonal=1)
# for each chunk
for i in range(0, tot_heads // chunk_size):
q_i, k_i, v_i = query[:, :, i], key[:, :, i], value[:, :, i]
attn = (q_i @ k_i.transpose(-1, -2) * decay_mask[:, :, i]).masked_fill_(mask, 0)
v_prime = (k_cumdecay[:, :, i]) @ last_recurrent_state
v_new = v_i - v_prime
attn_inter = (q_i * g[:, :, i, :, None].exp()) @ last_recurrent_state
core_attn_out[:, :, i] = attn_inter + attn @ v_new
last_recurrent_state = (
last_recurrent_state * g[:, :, i, -1, None, None].exp()
+ (k_i * (g[:, :, i, -1, None] - g[:, :, i]).exp()[..., None]).transpose(-1, -2) @ v_new
)
if not output_final_state:
last_recurrent_state = None
core_attn_out = core_attn_out.reshape(core_attn_out.shape[0], core_attn_out.shape[1], -1, core_attn_out.shape[-1])
core_attn_out = core_attn_out[:, :, :num_heads]
core_attn_out = core_attn_out.transpose(1, 2).contiguous().to(initial_dtype)
return core_attn_out, last_recurrent_state
def torch_recurrent_gated_delta_rule(
query, key, value, g, beta, initial_state, output_final_state, use_qk_l2norm_in_kernel=False
):
initial_dtype = query.dtype
if use_qk_l2norm_in_kernel:
query = l2norm(query, dim=-1, eps=1e-6)
key = l2norm(key, dim=-1, eps=1e-6)
query, key, value, beta, g = [
x.transpose(1, 2).contiguous().to(torch.float32) for x in (query, key, value, beta, g)
]
batch_size, sequence_length, num_heads, k_head_dim = key.shape
v_head_dim = value.shape[-1]
scale = 1 / (query.shape[-1] ** 0.5)
query = query * scale
core_attn_out = torch.zeros(batch_size, sequence_length, num_heads, v_head_dim).to(value)
last_recurrent_state = (
torch.zeros(batch_size, sequence_length, k_head_dim, v_head_dim).to(value)
if initial_state is None
else initial_state.to(value)
)
for i in range(num_heads):
q_t = query[:, :, i]
k_t = key[:, :, i]
v_t = value[:, :, i]
g_t = g[:, :, i].exp().unsqueeze(-1).unsqueeze(-1)
beta_t = beta[:, :, i].unsqueeze(-1)
last_recurrent_state = last_recurrent_state * g_t
kv_mem = (last_recurrent_state * k_t.unsqueeze(-1)).sum(dim=-2)
delta = (v_t - kv_mem) * beta_t
last_recurrent_state = last_recurrent_state + k_t.unsqueeze(-1) * delta.unsqueeze(-2)
core_attn_out[:, :, i] = (last_recurrent_state * q_t.unsqueeze(-1)).sum(dim=-2)
if not output_final_state:
last_recurrent_state = None
core_attn_out = core_attn_out.transpose(1, 2).contiguous().to(initial_dtype)
return core_attn_out, last_recurrent_state
class NeoLLMGatedDeltaNet(nn.Module):
"""
Linear attention with FANformer integration, SeeDNorm for normalization,
and ResFormer feature residual connections for enhanced information flow.
ResFormer enhancement: Applies learnable feature residual connections from the first layer
BEFORE QKV projections: H'_fan_n = λ_1 * H_fan_1 + λ_2 * H_fan_n
"""
def __init__(self, config: NeoLLMConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.num_v_heads = config.linear_num_value_heads
self.num_k_heads = config.linear_num_key_heads
self.head_k_dim = config.linear_key_head_dim
self.head_v_dim = config.linear_value_head_dim
self.key_dim = self.head_k_dim * self.num_k_heads
self.value_dim = self.head_v_dim * self.num_v_heads
self.conv_kernel_size = config.linear_conv_kernel_dim
self.layer_idx = layer_idx
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.layer_norm_epsilon = config.rms_norm_eps
# FANformer integration: FAN layer before projections
self.fan_layer = FANLayer(
hidden_size=config.hidden_size,
fan_ratio=getattr(config, 'fan_ratio', 0.125)
)
# Calculate the output dimension after FAN transformation
fan_output_dim = config.hidden_size + int(config.hidden_size * getattr(config, 'fan_ratio', 0.125))
# QKV - operates on FAN-transformed features
self.conv_dim = self.key_dim * 2 + self.value_dim
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=False,
kernel_size=self.conv_kernel_size,
groups=self.conv_dim,
padding=self.conv_kernel_size - 1,
)
# projection of the FAN-transformed hidden states
projection_size_qkvz = self.key_dim * 2 + self.value_dim * 2
projection_size_ba = self.num_v_heads * 2
self.in_proj_qkvz = nn.Linear(fan_output_dim, projection_size_qkvz, bias=False)
self.in_proj_ba = nn.Linear(fan_output_dim, projection_size_ba, bias=False)
# time step projection (discretization)
self.dt_bias = nn.Parameter(torch.ones(self.num_v_heads))
A = torch.empty(self.num_v_heads).uniform_(0, 16)
self.A_log = nn.Parameter(torch.log(A))
# FLA compatibility: use "silu" for FusedRMSNormGated, original activation elsewhere
fla_compatible_activation = "silu" if self.activation not in ['swish', 'silu', 'sigmoid'] else self.activation
self.norm = (
NeoLLMRMSNormGated(self.head_v_dim, eps=self.layer_norm_epsilon)
if FusedRMSNormGated is None
else FusedRMSNormGated(
self.head_v_dim,
eps=self.layer_norm_epsilon,
activation=fla_compatible_activation,
device=torch.cuda.current_device(),
dtype=config.dtype if config.dtype is not None else torch.get_default_dtype(),
)
)
self.out_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
# Dropout for attention output
self.dropout = nn.Dropout(config.dropout_rate)
self.causal_conv1d_fn = causal_conv1d_fn
self.causal_conv1d_update = causal_conv1d_update or torch_causal_conv1d_update
self.chunk_gated_delta_rule = chunk_gated_delta_rule or torch_chunk_gated_delta_rule
self.recurrent_gated_delta_rule = fused_recurrent_gated_delta_rule or torch_recurrent_gated_delta_rule
# ResFormer: learnable feature residual parameters (initialized to 0.5)
self.lambda_1 = nn.Parameter(torch.tensor(0.5)) # Weight for H_fan_1 (first layer features)
self.lambda_2 = nn.Parameter(torch.tensor(0.5)) # Weight for H_fan_n (current layer features)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because one of the required library is not installed. Falling back to "
"torch implementation. To install follow https://github.com/fla-org/flash-linear-attention#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
def fix_query_key_value_ordering(self, mixed_qkvz, mixed_ba):
"""
Derives `query`, `key` and `value` tensors from `mixed_qkvz` and `mixed_ba`.
"""
new_tensor_shape_qkvz = mixed_qkvz.size()[:-1] + (
self.num_k_heads,
2 * self.head_k_dim + 2 * self.head_v_dim * self.num_v_heads // self.num_k_heads,
)
new_tensor_shape_ba = mixed_ba.size()[:-1] + (self.num_k_heads, 2 * self.num_v_heads // self.num_k_heads)
mixed_qkvz = mixed_qkvz.view(*new_tensor_shape_qkvz)
mixed_ba = mixed_ba.view(*new_tensor_shape_ba)
split_arg_list_qkvz = [
self.head_k_dim,
self.head_k_dim,
(self.num_v_heads // self.num_k_heads * self.head_v_dim),
(self.num_v_heads // self.num_k_heads * self.head_v_dim),
]
split_arg_list_ba = [self.num_v_heads // self.num_k_heads, self.num_v_heads // self.num_k_heads]
query, key, value, z = torch.split(mixed_qkvz, split_arg_list_qkvz, dim=3)
b, a = torch.split(mixed_ba, split_arg_list_ba, dim=3)
# [b, sq, ng, np/ng * hn] -> [b, sq, np, hn]
value = value.reshape(value.size(0), value.size(1), -1, self.head_v_dim)
z = z.reshape(z.size(0), z.size(1), -1, self.head_v_dim)
b = b.reshape(b.size(0), b.size(1), self.num_v_heads)
a = a.reshape(a.size(0), a.size(1), self.num_v_heads)
return query, key, value, z, b, a
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
first_layer_fan: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
hidden_states = apply_mask_to_padding_states(hidden_states, attention_mask)
# Set up dimensions for reshapes later
batch_size, seq_len, _ = hidden_states.shape
# Apply FANformer transformation first
hidden_states_fan = self.fan_layer(hidden_states)
# ResFormer: Apply feature residual connection BEFORE projections
# This ensures dimensional compatibility across all layer types
if first_layer_fan is not None:
hidden_states_fan = self.lambda_1 * first_layer_fan + self.lambda_2 * hidden_states_fan
# Store current FAN features for potential use as first_layer_fan in subsequent layers
current_layer_fan = hidden_states_fan.clone()
# Use FAN-transformed features (with residual applied) for projections
projected_states_qkvz = self.in_proj_qkvz(hidden_states_fan)
projected_states_ba = self.in_proj_ba(hidden_states_fan)
query, key, value, z, b, a = self.fix_query_key_value_ordering(projected_states_qkvz, projected_states_ba)
query, key, value = (x.reshape(x.shape[0], x.shape[1], -1) for x in (query, key, value))
mixed_qkv = torch.cat((query, key, value), dim=-1)
mixed_qkv = mixed_qkv.transpose(1, 2)
# Simple convolution without cache
if self.causal_conv1d_fn is not None:
mixed_qkv = self.causal_conv1d_fn(
x=mixed_qkv,
weight=self.conv1d.weight.squeeze(1),
bias=self.conv1d.bias,
activation="silu", # Keep original activation for conv1d
seq_idx=None,
)
else:
mixed_qkv = F.silu(self.conv1d(mixed_qkv)[:, :, :seq_len])
mixed_qkv = mixed_qkv.transpose(1, 2)
query, key, value = torch.split(
mixed_qkv,
[
self.key_dim,
self.key_dim,
self.value_dim,
],
dim=-1,
)
query = query.reshape(query.shape[0], query.shape[1], -1, self.head_k_dim)
key = key.reshape(key.shape[0], key.shape[1], -1, self.head_k_dim)
value = value.reshape(value.shape[0], value.shape[1], -1, self.head_v_dim)
beta = b.sigmoid()
# If the model is loaded in fp16, without the .float() here, A might be -inf
g = -self.A_log.float().exp() * F.softplus(a.float() + self.dt_bias)
if self.num_v_heads // self.num_k_heads > 1:
query = query.repeat_interleave(self.num_v_heads // self.num_k_heads, dim=2)
key = key.repeat_interleave(self.num_v_heads // self.num_k_heads, dim=2)
# Use chunk-based implementation without cache
core_attn_out, _ = self.chunk_gated_delta_rule(
query,
key,
value,
g=g,
beta=beta,
initial_state=None,
output_final_state=False,
use_qk_l2norm_in_kernel=True,
)
z_shape_og = z.shape
# reshape input data into 2D tensor
core_attn_out = core_attn_out.reshape(-1, core_attn_out.shape[-1])
z = z.reshape(-1, z.shape[-1])
core_attn_out = self.norm(core_attn_out, z)
core_attn_out = core_attn_out.reshape(z_shape_og)
core_attn_out = core_attn_out.reshape(core_attn_out.shape[0], core_attn_out.shape[1], -1)
output = self.out_proj(core_attn_out)
output = self.dropout(output) # Apply dropout after output projection
return output, current_layer_fan
class PolyNorm(torch.nn.Module):
def __init__(self, eps=1e-6):
super(PolyNorm, self).__init__()
self.weight = torch.nn.Parameter(torch.ones(3) / 3)
self.bias = torch.nn.Parameter(torch.zeros(1))
self.eps = eps
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
return self.weight[0] * self._norm(x**3) + self.weight[1] * self._norm(x**2) + self.weight[2] * self._norm(x) + self.bias
class NeoLLMMLP(nn.Module):
"""
MLP with FANformer integration for featural periodicity modeling.
This captures periodicities in the feature space (semantic/embedding dimensions)
complementary to the relational periodicities captured by attention mechanisms.
Works in conjunction with ResFormer for comprehensive information flow.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
# NEW: FANformer integration for featural space periodicity
self.fan_layer = FANLayer(
hidden_size=config.hidden_size,
fan_ratio=getattr(config, 'fan_ratio_ffn', 0.0625) # Half of attention's fan_ratio
)
# Calculate the output dimension after FAN transformation
fan_output_dim = config.hidden_size + int(config.hidden_size * getattr(config, 'fan_ratio_ffn', 0.0625))
# SwiGLU/Gated architecture - now operates on FAN-transformed features
self.gate_proj = nn.Linear(fan_output_dim, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(fan_output_dim, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = PolyNorm()
# Dropout for MLP hidden layer
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
# NEW: Apply FAN transformation before projections
x_fan = self.fan_layer(x)
# Use FAN-transformed features for gate and up projections
gate_output = self.act_fn(self.gate_proj(x_fan))
up_output = self.up_proj(x_fan)
hidden = gate_output * up_output
hidden = self.dropout(hidden)
return self.down_proj(hidden)
class NeoLLMDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: NeoLLMConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.layer_idx = layer_idx
# token mixer
self.layer_type = config.layer_types[layer_idx]
if self.layer_type == "linear_attention":
self.linear_attn = NeoLLMGatedDeltaNet(config, layer_idx)
elif self.layer_type == "full_attention":
self.self_attn = NeoLLMAttention(config, layer_idx)
# MLP with FANformer integration
self.mlp = NeoLLMMLP(config)
# SeeDNorm for input and post-attention normalization (replaces RMSNorm)
self.input_layernorm = SeeDNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = SeeDNorm(config.hidden_size, eps=config.rms_norm_eps)
# LNS (LayerNorm Scaling) - applies 1/√ℓ scaling
self.lns_attn = LNS(layer_idx)
self.lns_mlp = LNS(layer_idx)
# GPAS (Gradient-Preserving Activation Scaling) - applied after residual connections
self.gpas_attn = GPAS(config.hidden_size)
self.gpas_mlp = GPAS(config.hidden_size)
# ResFormer: storage for current layer's FAN features
self.current_layer_fan = None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
first_layer_fan: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> torch.FloatTensor:
residual = hidden_states
# Apply SeeDNorm normalization
hidden_states = self.input_layernorm(hidden_states)
# Apply LNS scaling after normalization
hidden_states = self.lns_attn(hidden_states)
# Token Mixer with ResFormer feature residual connections
if self.layer_type == "linear_attention":
hidden_states, self.current_layer_fan = self.linear_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
first_layer_fan=first_layer_fan,
)
elif self.layer_type == "full_attention":
# Self Attention
hidden_states, _, self.current_layer_fan = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
first_layer_fan=first_layer_fan,
**kwargs,
)
# Standard residual connection
hidden_states = residual + hidden_states
# Apply GPAS after attention residual connection
hidden_states = self.gpas_attn(hidden_states)
# Fully Connected with FANformer
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
# Apply LNS scaling after normalization
hidden_states = self.lns_mlp(hidden_states)
# MLP now includes FAN transformation internally
hidden_states = self.mlp(hidden_states)
# Standard residual connection
hidden_states = residual + hidden_states
# Apply GPAS after MLP residual connection
hidden_states = self.gpas_mlp(hidden_states)
return hidden_states
class NeoLLMPreTrainedModel(PreTrainedModel):
config: NeoLLMConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["NeoLLMDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_is_stateful = True
def _init_weights(self, module):
super()._init_weights(module)
if isinstance(module, NeoLLMGatedDeltaNet):
module.dt_bias.data.fill_(1.0)
module.A_log.data.uniform_(0, 16).log_()
# ResFormer: initialize lambda parameters for linear attention
if hasattr(module, 'lambda_1'):
module.lambda_1.data.fill_(0.5)
if hasattr(module, 'lambda_2'):
module.lambda_2.data.fill_(0.5)
elif isinstance(module, NeoLLMAttention):
# ResFormer: initialize lambda parameters for full attention
if hasattr(module, 'lambda_1'):
module.lambda_1.data.fill_(0.5)
if hasattr(module, 'lambda_2'):
module.lambda_2.data.fill_(0.5)
elif isinstance(module, GPAS):
# Initialize GPAS alpha to 0 as per paper
module.alpha.data.fill_(0.0)
elif isinstance(module, FANLayer):
# FANLayer initialization is handled within the class
pass
elif isinstance(module, SeeDNorm):
# SeeDNorm initialization:
# gamma (γ) initialized to 1 (default in Parameter definition)
# beta (β) initialized to 0 (default in Parameter definition)
# alpha (α) initialized to 1 (default in Parameter definition)
pass
class NeoLLMModel(NeoLLMPreTrainedModel):
def __init__(self, config: NeoLLMConfig):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
# Each layer creates its own components (no shared parameters)
self.layers = nn.ModuleList(
[NeoLLMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
# SeeDNorm for final output normalization (replaces RMSNorm)
self.norm = SeeDNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = NeoLLMRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# ResFormer: storage for first layer's FAN features (H_fan_1)
self.first_layer_fan = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> BaseModelOutputWithPast:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if position_ids is None:
position_ids = torch.arange(0, inputs_embeds.shape[1], device=inputs_embeds.device).unsqueeze(0)
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=position_ids.squeeze(0),
past_key_values=None,
position_ids=position_ids,
)
linear_attn_mask = self._update_linear_attn_mask(attention_mask, position_ids.squeeze(0))
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# ResFormer: reset first_layer_fan at the start of each forward pass
self.first_layer_fan = None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
layer_mask = linear_attn_mask if decoder_layer.layer_type == "linear_attention" else causal_mask
hidden_states = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=layer_mask,
first_layer_fan=self.first_layer_fan, # Pass H_fan_1 to all layers
**kwargs,
)
# ResFormer: capture H_fan_1 from the first layer
if self.first_layer_fan is None and hasattr(decoder_layer, 'current_layer_fan'):
self.first_layer_fan = decoder_layer.current_layer_fan
# Apply SeeDNorm for final normalization
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=None,
)
def _update_linear_attn_mask(self, attention_mask, cache_position):
"""
NOTE: Left-padding is used for linear attention mask.
No need for zeroing states when attending to all inputs
"""
linear_attn_mask = attention_mask
if attention_mask is not None and torch.all(attention_mask == 1):
linear_attn_mask = None
return linear_attn_mask
@torch.compiler.disable
def compute_cce_loss(hidden_states, labels, lm_head_weight, lm_head_bias=None, pad_token_id=None):
"""
CCE loss computation excluded from compilation.
Preprocesses labels to eliminate torch.compile warnings.
"""
# Ensure labels are on the correct device
processed_labels = labels.to(hidden_states.device)
# Handle pad tokens: convert pad_token_id to -100 for proper masking
if pad_token_id is not None:
processed_labels = torch.where(
processed_labels == pad_token_id,
torch.tensor(-100, dtype=processed_labels.dtype, device=processed_labels.device),
processed_labels
)
return linear_cross_entropy(
hidden_states,
lm_head_weight,
processed_labels,
bias=lm_head_bias,
shift=1,
impl="cce_kahan_full_c",
reduction="mean"
)
class NeoLLMForCausalLM(NeoLLMPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = NeoLLMModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> CausalLMOutputWithPast:
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# CCE Loss computation for training
if labels is not None:
loss = compute_cce_loss(
hidden_states,
labels,
self.lm_head.weight,
getattr(self.lm_head, 'bias', None),
self.config.pad_token_id
)
logits = None
else:
# Inference mode - compute logits normally
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=None,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# ==================== AUTOMODEL REGISTRATION ====================
__all__ = [
"NeoLLMForCausalLM",
"NeoLLMModel",
"NeoLLMPreTrainedModel",
"NeoLLMConfig",
"FANLayer",
"SeeDNorm",
]
# Register the configuration and model for AutoClass support
AutoConfig.register("neollm", NeoLLMConfig)
AutoModel.register(NeoLLMConfig, NeoLLMModel)
AutoModelForCausalLM.register(NeoLLMConfig, NeoLLMForCausalLM) |