|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class NeoLLMConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`NeoLLMModel`]. It is used to instantiate a |
|
|
NeoLLM model according to the specified arguments, defining the model architecture. |
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. |
|
|
""" |
|
|
model_type = "neollm" |
|
|
keys_to_ignore_at_inference = [] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=151665, |
|
|
hidden_size=512, |
|
|
intermediate_size=1536, |
|
|
num_hidden_layers=12, |
|
|
num_attention_heads=8, |
|
|
num_key_value_heads=2, |
|
|
hidden_act="xielu", |
|
|
max_position_embeddings=32768, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-6, |
|
|
tie_word_embeddings=True, |
|
|
rope_theta=10000.0, |
|
|
rope_scaling=None, |
|
|
partial_rotary_factor=0.25, |
|
|
attention_bias=False, |
|
|
attention_dropout=0.1, |
|
|
head_dim=64, |
|
|
linear_conv_kernel_dim=4, |
|
|
linear_key_head_dim=32, |
|
|
linear_value_head_dim=32, |
|
|
linear_num_key_heads=8, |
|
|
linear_num_value_heads=16, |
|
|
layer_types=None, |
|
|
fan_ratio=0.125, |
|
|
fan_ratio_ffn=0.0625, |
|
|
dropout_rate=0.1, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs) |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.partial_rotary_factor = partial_rotary_factor |
|
|
self.attention_bias = attention_bias |
|
|
self.attention_dropout = attention_dropout |
|
|
self.head_dim = head_dim |
|
|
|
|
|
rope_config_validation(self) |
|
|
|
|
|
self.layer_types = layer_types |
|
|
if self.layer_types is None: |
|
|
interval_pattern = kwargs.get("full_attention_interval", 4) |
|
|
self.layer_types = [ |
|
|
"linear_attention" if bool((i + 1) % interval_pattern) else "full_attention" |
|
|
for i in range(self.num_hidden_layers) |
|
|
] |
|
|
|
|
|
|
|
|
self.linear_conv_kernel_dim = linear_conv_kernel_dim |
|
|
self.linear_key_head_dim = linear_key_head_dim |
|
|
self.linear_value_head_dim = linear_value_head_dim |
|
|
self.linear_num_key_heads = linear_num_key_heads |
|
|
self.linear_num_value_heads = linear_num_value_heads |
|
|
|
|
|
|
|
|
self.fan_ratio = fan_ratio |
|
|
self.fan_ratio_ffn = fan_ratio_ffn |
|
|
|
|
|
self.dropout_rate = dropout_rate |
|
|
|
|
|
self.auto_map = { |
|
|
"AutoConfig": "configuration_neollm.NeoLLMConfig", |
|
|
"AutoModel": "modeling_neollm.NeoLLMModel", |
|
|
"AutoModelForCausalLM": "modeling_neollm.NeoLLMForCausalLM" |
|
|
} |
|
|
|
|
|
__all__ = ["NeoLLMConfig"] |
|
|
|