NeoLLM / configuration_neollm.py
KitsuVp's picture
Update configuration_neollm.py
a85fd6b verified
# ==================== configuration_neollm.py ====================
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class NeoLLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NeoLLMModel`]. It is used to instantiate a
NeoLLM model according to the specified arguments, defining the model architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
"""
model_type = "neollm"
keys_to_ignore_at_inference = []
def __init__(
self,
vocab_size=151665,
hidden_size=512,
intermediate_size=1536,
num_hidden_layers=12,
num_attention_heads=8,
num_key_value_heads=2,
hidden_act="xielu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.25,
attention_bias=False,
attention_dropout=0.1,
head_dim=64,
linear_conv_kernel_dim=4,
linear_key_head_dim=32,
linear_value_head_dim=32,
linear_num_key_heads=8,
linear_num_value_heads=16,
layer_types=None,
fan_ratio=0.125,
fan_ratio_ffn=0.0625, # NEW: Half of fan_ratio for FFN periodicity modeling
dropout_rate=0.1,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.head_dim = head_dim
rope_config_validation(self)
self.layer_types = layer_types
if self.layer_types is None:
interval_pattern = kwargs.get("full_attention_interval", 4)
self.layer_types = [
"linear_attention" if bool((i + 1) % interval_pattern) else "full_attention"
for i in range(self.num_hidden_layers)
]
# Linear attention parameters
self.linear_conv_kernel_dim = linear_conv_kernel_dim
self.linear_key_head_dim = linear_key_head_dim
self.linear_value_head_dim = linear_value_head_dim
self.linear_num_key_heads = linear_num_key_heads
self.linear_num_value_heads = linear_num_value_heads
# FANformer parameters
self.fan_ratio = fan_ratio # Used in attention mechanisms
self.fan_ratio_ffn = fan_ratio_ffn # NEW: Used in FFN for complementary periodicity
self.dropout_rate = dropout_rate
self.auto_map = {
"AutoConfig": "configuration_neollm.NeoLLMConfig",
"AutoModel": "modeling_neollm.NeoLLMModel",
"AutoModelForCausalLM": "modeling_neollm.NeoLLMForCausalLM"
}
__all__ = ["NeoLLMConfig"]