|
|
class s0(): |
|
|
def __init__(self, s): |
|
|
self.s = s |
|
|
self.l = 0 |
|
|
def __eq__(self, target): |
|
|
return all([self.l==target.l, self.s==target.s]) |
|
|
|
|
|
class w(): |
|
|
def __init__(self, l, W0, T=None, G=[]): |
|
|
if type(G)==list and type(l)==int and l>=0 and l==W0.l+1: |
|
|
pass |
|
|
else: |
|
|
raise ValueError('At least one of them wrong: level l; representative element W0; tag T; generation rule G') |
|
|
self.l = l |
|
|
self.W0 = W0 |
|
|
self.T = T |
|
|
self.G = G |
|
|
|
|
|
self.W = self.G |
|
|
def __eq__(self, target): |
|
|
return all([self.l==target.l, self.W0==target.W0, self.T==target.T, self.G==target.G, self.W==target.W]) |
|
|
|
|
|
class s(): |
|
|
def __init__(self, l, words): |
|
|
if type(words)==list and all(list(map(lambda x: x[0]==l and type(x)==list and len(x)==3, words))): |
|
|
self.s = words |
|
|
else: |
|
|
raise ValueError(f'Cannot form a list of words at level {l}!') |
|
|
self.l = l |
|
|
def __eq__(self, target): |
|
|
return all([self.l==target.l, self.s==target.s]) |
|
|
|
|
|
class DAHSF(): |
|
|
def __init__(self, pairs=[]): |
|
|
self.ids = [] |
|
|
self.words = [] |
|
|
try: |
|
|
for ID, word in pairs: |
|
|
assert all([type(ID)==list, len(ID)==3, type(ID[0])==int, type(word)==w, word.l==ID[0]]) |
|
|
assert ID not in self.ids; assert word not in self.words |
|
|
self.ids.append(ID); self.words.append(word) |
|
|
except: |
|
|
raise TypeError('Not pairwise (ID triple, word) or Repetitive!') |
|
|
def __call__(self, target): |
|
|
if type(target)==list: |
|
|
return self.words[self.ids.index(target)] |
|
|
elif type(target)==w: |
|
|
return self.ids[self.words.index(target)] |
|
|
else: |
|
|
raise TypeError |
|
|
def levels(self): |
|
|
assert self.ids!=[] and self.words!=[] |
|
|
return sorted(self.ids, reverse=True)[0][0] |
|
|
def receptor_grows(self, l): |
|
|
receptor = [] |
|
|
for coordinate in self.ids: |
|
|
if coordinate[0]==l: |
|
|
word = self(coordinate) |
|
|
for probe in map(lambda x: x.s, word.W): |
|
|
receptor.append([probe, coordinate]) |
|
|
receptor.sort(key=lambda x: len(x[0]), reverse=True) |
|
|
return receptor |
|
|
def generator_grows(self, l): |
|
|
generator = [] |
|
|
for coordinate in self.ids: |
|
|
if coordinate[0]==l: |
|
|
word = self(coordinate) |
|
|
generator.append([word.W0.s, list(map(lambda x: x.s, word.W))]) |
|
|
return generator |
|
|
def W(self, W0): |
|
|
for idx, ID in enumerate(self.ids): |
|
|
if ID[-1]==W0: |
|
|
return list(map(lambda x: x.s, self.words[idx].W)) |
|
|
def W0(self, Wi): |
|
|
for idx, word in enumerate(self.words): |
|
|
if Wi in map(lambda x: x.s, word.W): |
|
|
return word.W0.s |
|
|
def tags(self, l): |
|
|
TAGS = set() |
|
|
for coordinate in self.ids: |
|
|
if coordinate[0]==l: |
|
|
TAGS.add(coordinate[1]) |
|
|
return TAGS |
|
|
def get_tag(self, Wi): |
|
|
for idx, word in enumerate(self.words): |
|
|
if Wi in map(lambda x: x.s, word.W): |
|
|
return word.T |
|
|
def refresh_changes(self, changes): |
|
|
from copy import deepcopy |
|
|
levels = list(map(lambda x: x[0], self.ids)) |
|
|
levels.append(levels[-1]+1) |
|
|
for level in range(int(*changes) + 1, levels[-1]): |
|
|
changes[level] = [] |
|
|
for index, coordinate in enumerate(self.ids): |
|
|
if coordinate[0]!=level: |
|
|
continue |
|
|
for change in changes[level-1]: |
|
|
old_ID = deepcopy(coordinate) |
|
|
while change[0] in coordinate[2]: |
|
|
idx = coordinate[2].index(change[0]) |
|
|
coordinate[2][idx] = change[1] |
|
|
for W in self.words[index].W: |
|
|
while change[0] in W.s: |
|
|
idx = W.s.index(change[0]) |
|
|
W.s[idx] = change[1] |
|
|
|
|
|
changes[level].append((old_ID, coordinate, self.words[index])) |
|
|
del old_ID |
|
|
def modify_tag(self, ID, T): |
|
|
|
|
|
W = self(ID) |
|
|
from copy import deepcopy |
|
|
old_ID = deepcopy(ID) |
|
|
|
|
|
idx = self.ids.index(ID) |
|
|
|
|
|
W.T = T |
|
|
ID[1] = T |
|
|
|
|
|
self.ids[idx] = ID |
|
|
self.words[idx] = W |
|
|
|
|
|
changes = {ID[0]: [(old_ID, ID)]} |
|
|
del old_ID, W |
|
|
self.refresh_changes(changes) |
|
|
def change_representative_element(self, old_ID, new_representative_element): |
|
|
|
|
|
W = self(old_ID) |
|
|
assert new_representative_element in list(map(lambda x: x.s, W.W)) |
|
|
|
|
|
idx = self.ids.index(old_ID) |
|
|
|
|
|
new_ID = old_ID[:-1] |
|
|
new_ID.append(new_representative_element) |
|
|
|
|
|
self.ids[idx] = new_ID |
|
|
W.W0.s = new_representative_element |
|
|
self.words[idx] = W |
|
|
|
|
|
changes = {new_ID[0]: [(old_ID, new_ID)]} |
|
|
del W |
|
|
self.refresh_changes(changes) |
|
|
|
|
|
def add_generation_rule(self, ID, generation_rule): |
|
|
|
|
|
W = self(ID) |
|
|
|
|
|
W.G.append(generation_rule) |
|
|
def delete_generation_rule(self, ID, generation_rule): |
|
|
|
|
|
W = self(ID) |
|
|
|
|
|
for item in W.G: |
|
|
if generation_rule==item: |
|
|
W.G.remove(item) |
|
|
break |
|
|
def insert(self, word): |
|
|
assert type(word)==w |
|
|
ID = [word.l, word.T, word.W0.s] |
|
|
assert ID not in self.ids; assert word not in self.words |
|
|
self.ids.append(ID); self.words.append(word) |
|
|
def remove(self, ID): |
|
|
|
|
|
W = self(ID) |
|
|
|
|
|
self.ids.remove(ID); self.words.remove(W) |
|
|
changes = {ID[0]: [ID]} |
|
|
del ID, W |
|
|
|
|
|
from copy import deepcopy |
|
|
levels = list(map(lambda x: x[0], self.ids)) |
|
|
levels.append(levels[-1]+1) |
|
|
for level in range(int(*changes) + 1, levels[-1]): |
|
|
changes[level] = [] |
|
|
index = 0 |
|
|
while index<len(self.words): |
|
|
word = self.words[index] |
|
|
if word.l==level: |
|
|
for change in changes[level-1]: |
|
|
if any(map(lambda w: change in w.s, word.W)): |
|
|
changes[level].append(self.ids[index]) |
|
|
del self.ids[index]; del self.words[index] |
|
|
index -= 1 |
|
|
break |
|
|
index += 1 |
|
|
|