Add SetFit model
Browse files- 1_Pooling/config.json +3 -3
- README.md +63 -46
- config.json +7 -7
- config_sentence_transformers.json +3 -3
- config_setfit.json +2 -2
- model.safetensors +2 -2
- model_head.pkl +2 -2
- modules.json +6 -0
- sentence_bert_config.json +1 -1
- special_tokens_map.json +6 -20
- tokenizer.json +2 -2
- tokenizer_config.json +17 -17
- vocab.txt +0 -0
1_Pooling/config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
-
"word_embedding_dimension":
|
| 3 |
-
"pooling_mode_cls_token":
|
| 4 |
-
"pooling_mode_mean_tokens":
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"word_embedding_dimension": 312,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
"pooling_mode_max_tokens": false,
|
| 6 |
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
"pooling_mode_weightedmean_tokens": false,
|
README.md
CHANGED
|
@@ -5,20 +5,19 @@ tags:
|
|
| 5 |
- text-classification
|
| 6 |
- generated_from_setfit_trainer
|
| 7 |
widget:
|
| 8 |
-
- text:
|
| 9 |
-
- text: Какие
|
| 10 |
-
- text:
|
| 11 |
-
- text:
|
| 12 |
-
- text:
|
| 13 |
-
баллы
|
| 14 |
metrics:
|
| 15 |
- accuracy
|
| 16 |
pipeline_tag: text-classification
|
| 17 |
library_name: setfit
|
| 18 |
inference: true
|
| 19 |
-
base_model:
|
| 20 |
model-index:
|
| 21 |
-
- name: SetFit with
|
| 22 |
results:
|
| 23 |
- task:
|
| 24 |
type: text-classification
|
|
@@ -29,13 +28,13 @@ model-index:
|
|
| 29 |
split: test
|
| 30 |
metrics:
|
| 31 |
- type: accuracy
|
| 32 |
-
value:
|
| 33 |
name: Accuracy
|
| 34 |
---
|
| 35 |
|
| 36 |
-
# SetFit with
|
| 37 |
|
| 38 |
-
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [
|
| 39 |
|
| 40 |
The model has been trained using an efficient few-shot learning technique that involves:
|
| 41 |
|
|
@@ -46,9 +45,9 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 46 |
|
| 47 |
### Model Description
|
| 48 |
- **Model Type:** SetFit
|
| 49 |
-
- **Sentence Transformer body:** [
|
| 50 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 51 |
-
- **Maximum Sequence Length:**
|
| 52 |
- **Number of Classes:** 8 classes
|
| 53 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 54 |
<!-- - **Language:** Unknown -->
|
|
@@ -61,23 +60,23 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
| 61 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 62 |
|
| 63 |
### Model Labels
|
| 64 |
-
| Label | Examples
|
| 65 |
-
|
| 66 |
-
|
|
| 67 |
-
|
|
| 68 |
-
|
|
| 69 |
-
|
|
| 70 |
-
|
|
| 71 |
-
|
|
| 72 |
-
|
|
| 73 |
-
|
|
| 74 |
|
| 75 |
## Evaluation
|
| 76 |
|
| 77 |
### Metrics
|
| 78 |
| Label | Accuracy |
|
| 79 |
|:--------|:---------|
|
| 80 |
-
| **all** |
|
| 81 |
|
| 82 |
## Uses
|
| 83 |
|
|
@@ -97,7 +96,7 @@ from setfit import SetFitModel
|
|
| 97 |
# Download from the 🤗 Hub
|
| 98 |
model = SetFitModel.from_pretrained("Maxim01/Intent_Classification_Test")
|
| 99 |
# Run inference
|
| 100 |
-
preds = model("
|
| 101 |
```
|
| 102 |
|
| 103 |
<!--
|
|
@@ -129,18 +128,18 @@ preds = model("Общежитие")
|
|
| 129 |
### Training Set Metrics
|
| 130 |
| Training set | Min | Median | Max |
|
| 131 |
|:-------------|:----|:-------|:----|
|
| 132 |
-
| Word count |
|
| 133 |
|
| 134 |
| Label | Training Sample Count |
|
| 135 |
|:------|:----------------------|
|
| 136 |
-
| 0 |
|
| 137 |
-
| 1 |
|
| 138 |
-
| 2 |
|
| 139 |
-
| 3 |
|
| 140 |
-
| 4 |
|
| 141 |
-
| 5 |
|
| 142 |
-
| 6 |
|
| 143 |
-
| 7 |
|
| 144 |
|
| 145 |
### Training Hyperparameters
|
| 146 |
- batch_size: (8, 8)
|
|
@@ -164,20 +163,38 @@ preds = model("Общежитие")
|
|
| 164 |
### Training Results
|
| 165 |
| Epoch | Step | Training Loss | Validation Loss |
|
| 166 |
|:------:|:----:|:-------------:|:---------------:|
|
| 167 |
-
| 0.
|
| 168 |
-
| 0.
|
| 169 |
-
| 0.
|
| 170 |
-
| 0.
|
| 171 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
### Framework Versions
|
| 174 |
-
- Python: 3.11.
|
| 175 |
-
- SetFit: 1.1.
|
| 176 |
-
- Sentence Transformers: 3.
|
| 177 |
-
- Transformers: 4.
|
| 178 |
-
- PyTorch: 2.
|
| 179 |
-
- Datasets: 3.
|
| 180 |
-
- Tokenizers: 0.21.
|
| 181 |
|
| 182 |
## Citation
|
| 183 |
|
|
|
|
| 5 |
- text-classification
|
| 6 |
- generated_from_setfit_trainer
|
| 7 |
widget:
|
| 8 |
+
- text: Как подать документы, если я нахожусь в другом городе?
|
| 9 |
+
- text: Какие перспективы после окончания ВУЦ?
|
| 10 |
+
- text: Как проходит апелляция по результатам экзаменов?
|
| 11 |
+
- text: Как узнать, какие документы нужны для поступления на магистратуру?
|
| 12 |
+
- text: Какие достижения учитываются для аспирантуры?
|
|
|
|
| 13 |
metrics:
|
| 14 |
- accuracy
|
| 15 |
pipeline_tag: text-classification
|
| 16 |
library_name: setfit
|
| 17 |
inference: true
|
| 18 |
+
base_model: cointegrated/rubert-tiny2
|
| 19 |
model-index:
|
| 20 |
+
- name: SetFit with cointegrated/rubert-tiny2
|
| 21 |
results:
|
| 22 |
- task:
|
| 23 |
type: text-classification
|
|
|
|
| 28 |
split: test
|
| 29 |
metrics:
|
| 30 |
- type: accuracy
|
| 31 |
+
value: 0.7857142857142857
|
| 32 |
name: Accuracy
|
| 33 |
---
|
| 34 |
|
| 35 |
+
# SetFit with cointegrated/rubert-tiny2
|
| 36 |
|
| 37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
| 38 |
|
| 39 |
The model has been trained using an efficient few-shot learning technique that involves:
|
| 40 |
|
|
|
|
| 45 |
|
| 46 |
### Model Description
|
| 47 |
- **Model Type:** SetFit
|
| 48 |
+
- **Sentence Transformer body:** [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2)
|
| 49 |
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
| 50 |
+
- **Maximum Sequence Length:** 2048 tokens
|
| 51 |
- **Number of Classes:** 8 classes
|
| 52 |
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
| 53 |
<!-- - **Language:** Unknown -->
|
|
|
|
| 60 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
| 61 |
|
| 62 |
### Model Labels
|
| 63 |
+
| Label | Examples |
|
| 64 |
+
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 65 |
+
| 4 | <ul><li>'Как узнать результаты отбора в ВУЦ?'</li><li>'Как узнать, какие ВУЦ есть в моем регионе?'</li><li>'Какие экзамены принимаются в ВУЦ?'</li></ul> |
|
| 66 |
+
| 1 | <ul><li>'Как подать документы на платное отделение?'</li><li>'Как узнать, какие документы нужны для поступления на педагогические специальности?'</li><li>'Какие ошибки чаще всего допускают при подаче документов?'</li></ul> |
|
| 67 |
+
| 3 | <ul><li>'Как узнать, какие специальности доступны для дистанционного обучения?'</li><li>'Можно ли подать документы на специальности с разными условиями поступления?'</li><li>'Как узнать конкуренцию на специальность?'</li></ul> |
|
| 68 |
+
| 2 | <ul><li>'Сколько баллов можно получить за индивидуальные достижения?'</li><li>'Можно ли подать достижения после подачи документов?'</li><li>'Сколько максимум баллов можно получить за достижения?'</li></ul> |
|
| 69 |
+
| 5 | <ul><li>'Можно ли поступить на заочное отделение после колледжа?'</li><li>'Как подготовиться к вступительным экзаменам после колледжа'</li><li>'Можно ли поступить на бюджет после колледжа?'</li></ul> |
|
| 70 |
+
| 7 | <ul><li>'Какие документы нужны для заселения в общежитие?'</li><li>'Как узнать, есть ли свободные места в общежитии?'</li><li>'Какие условия проживания в общежитии?'</li></ul> |
|
| 71 |
+
| 0 | <ul><li>'Как узнать, что мои документы не потерялись?'</li><li>'Как подать заявление на несколько специальностей?'</li><li>'Какие сроки рассмотрения заявлений?'</li></ul> |
|
| 72 |
+
| 6 | <ul><li>'Какие ошибки чаще всего допускают на экзаменах?'</li><li>'Какие документы нужны на экзамен?'</li><li>'Как получить консультацию по вступительным испытаниям?'</li></ul> |
|
| 73 |
|
| 74 |
## Evaluation
|
| 75 |
|
| 76 |
### Metrics
|
| 77 |
| Label | Accuracy |
|
| 78 |
|:--------|:---------|
|
| 79 |
+
| **all** | 0.7857 |
|
| 80 |
|
| 81 |
## Uses
|
| 82 |
|
|
|
|
| 96 |
# Download from the 🤗 Hub
|
| 97 |
model = SetFitModel.from_pretrained("Maxim01/Intent_Classification_Test")
|
| 98 |
# Run inference
|
| 99 |
+
preds = model("Какие перспективы после окончания ВУЦ?")
|
| 100 |
```
|
| 101 |
|
| 102 |
<!--
|
|
|
|
| 128 |
### Training Set Metrics
|
| 129 |
| Training set | Min | Median | Max |
|
| 130 |
|:-------------|:----|:-------|:----|
|
| 131 |
+
| Word count | 3 | 6.7143 | 11 |
|
| 132 |
|
| 133 |
| Label | Training Sample Count |
|
| 134 |
|:------|:----------------------|
|
| 135 |
+
| 0 | 33 |
|
| 136 |
+
| 1 | 32 |
|
| 137 |
+
| 2 | 32 |
|
| 138 |
+
| 3 | 33 |
|
| 139 |
+
| 4 | 31 |
|
| 140 |
+
| 5 | 15 |
|
| 141 |
+
| 6 | 15 |
|
| 142 |
+
| 7 | 33 |
|
| 143 |
|
| 144 |
### Training Hyperparameters
|
| 145 |
- batch_size: (8, 8)
|
|
|
|
| 163 |
### Training Results
|
| 164 |
| Epoch | Step | Training Loss | Validation Loss |
|
| 165 |
|:------:|:----:|:-------------:|:---------------:|
|
| 166 |
+
| 0.0009 | 1 | 0.1623 | - |
|
| 167 |
+
| 0.0446 | 50 | 0.2355 | - |
|
| 168 |
+
| 0.0893 | 100 | 0.1756 | - |
|
| 169 |
+
| 0.1339 | 150 | 0.1501 | - |
|
| 170 |
+
| 0.1786 | 200 | 0.1329 | - |
|
| 171 |
+
| 0.2232 | 250 | 0.119 | - |
|
| 172 |
+
| 0.2679 | 300 | 0.1048 | - |
|
| 173 |
+
| 0.3125 | 350 | 0.0928 | - |
|
| 174 |
+
| 0.3571 | 400 | 0.0902 | - |
|
| 175 |
+
| 0.4018 | 450 | 0.0841 | - |
|
| 176 |
+
| 0.4464 | 500 | 0.0903 | - |
|
| 177 |
+
| 0.4911 | 550 | 0.0969 | - |
|
| 178 |
+
| 0.5357 | 600 | 0.0747 | - |
|
| 179 |
+
| 0.5804 | 650 | 0.0704 | - |
|
| 180 |
+
| 0.625 | 700 | 0.0809 | - |
|
| 181 |
+
| 0.6696 | 750 | 0.0793 | - |
|
| 182 |
+
| 0.7143 | 800 | 0.0711 | - |
|
| 183 |
+
| 0.7589 | 850 | 0.0687 | - |
|
| 184 |
+
| 0.8036 | 900 | 0.0726 | - |
|
| 185 |
+
| 0.8482 | 950 | 0.0718 | - |
|
| 186 |
+
| 0.8929 | 1000 | 0.0751 | - |
|
| 187 |
+
| 0.9375 | 1050 | 0.0635 | - |
|
| 188 |
+
| 0.9821 | 1100 | 0.0723 | - |
|
| 189 |
|
| 190 |
### Framework Versions
|
| 191 |
+
- Python: 3.11.12
|
| 192 |
+
- SetFit: 1.1.2
|
| 193 |
+
- Sentence Transformers: 3.4.1
|
| 194 |
+
- Transformers: 4.51.3
|
| 195 |
+
- PyTorch: 2.6.0+cu124
|
| 196 |
+
- Datasets: 3.5.1
|
| 197 |
+
- Tokenizers: 0.21.1
|
| 198 |
|
| 199 |
## Citation
|
| 200 |
|
config.json
CHANGED
|
@@ -1,26 +1,26 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 3 |
"architectures": [
|
| 4 |
"BertModel"
|
| 5 |
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
| 7 |
"classifier_dropout": null,
|
|
|
|
| 8 |
"gradient_checkpointing": false,
|
| 9 |
"hidden_act": "gelu",
|
| 10 |
"hidden_dropout_prob": 0.1,
|
| 11 |
-
"hidden_size":
|
| 12 |
"initializer_range": 0.02,
|
| 13 |
-
"intermediate_size":
|
| 14 |
"layer_norm_eps": 1e-12,
|
| 15 |
-
"max_position_embeddings":
|
| 16 |
"model_type": "bert",
|
| 17 |
"num_attention_heads": 12,
|
| 18 |
-
"num_hidden_layers":
|
| 19 |
"pad_token_id": 0,
|
| 20 |
"position_embedding_type": "absolute",
|
| 21 |
"torch_dtype": "float32",
|
| 22 |
-
"transformers_version": "4.
|
| 23 |
"type_vocab_size": 2,
|
| 24 |
"use_cache": true,
|
| 25 |
-
"vocab_size":
|
| 26 |
}
|
|
|
|
| 1 |
{
|
|
|
|
| 2 |
"architectures": [
|
| 3 |
"BertModel"
|
| 4 |
],
|
| 5 |
"attention_probs_dropout_prob": 0.1,
|
| 6 |
"classifier_dropout": null,
|
| 7 |
+
"emb_size": 312,
|
| 8 |
"gradient_checkpointing": false,
|
| 9 |
"hidden_act": "gelu",
|
| 10 |
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 312,
|
| 12 |
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 600,
|
| 14 |
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 2048,
|
| 16 |
"model_type": "bert",
|
| 17 |
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 3,
|
| 19 |
"pad_token_id": 0,
|
| 20 |
"position_embedding_type": "absolute",
|
| 21 |
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.51.3",
|
| 23 |
"type_vocab_size": 2,
|
| 24 |
"use_cache": true,
|
| 25 |
+
"vocab_size": 83828
|
| 26 |
}
|
config_sentence_transformers.json
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
{
|
| 2 |
"__version__": {
|
| 3 |
-
"sentence_transformers": "3.
|
| 4 |
-
"transformers": "4.
|
| 5 |
-
"pytorch": "2.
|
| 6 |
},
|
| 7 |
"prompts": {},
|
| 8 |
"default_prompt_name": null,
|
|
|
|
| 1 |
{
|
| 2 |
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
},
|
| 7 |
"prompts": {},
|
| 8 |
"default_prompt_name": null,
|
config_setfit.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"labels": null,
|
| 3 |
+
"normalize_embeddings": false
|
| 4 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3a8f3fe6e2cf4b237225f8f386d64fa2da6aebfcf6f5f0ec1d705bc2a84a8e1
|
| 3 |
+
size 116781184
|
model_head.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:07cfc5e1dca040c262ef706939d162a0c4e964b7a799f6b895362e79f08cb68c
|
| 3 |
+
size 20935
|
modules.json
CHANGED
|
@@ -10,5 +10,11 @@
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
}
|
| 14 |
]
|
|
|
|
| 10 |
"name": "1",
|
| 11 |
"path": "1_Pooling",
|
| 12 |
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
}
|
| 20 |
]
|
sentence_bert_config.json
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
{
|
| 2 |
-
"max_seq_length":
|
| 3 |
"do_lower_case": false
|
| 4 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"max_seq_length": 2048,
|
| 3 |
"do_lower_case": false
|
| 4 |
}
|
special_tokens_map.json
CHANGED
|
@@ -1,48 +1,34 @@
|
|
| 1 |
{
|
| 2 |
-
"bos_token": {
|
| 3 |
-
"content": "<s>",
|
| 4 |
-
"lstrip": false,
|
| 5 |
-
"normalized": false,
|
| 6 |
-
"rstrip": false,
|
| 7 |
-
"single_word": false
|
| 8 |
-
},
|
| 9 |
"cls_token": {
|
| 10 |
-
"content": "
|
| 11 |
-
"lstrip": false,
|
| 12 |
-
"normalized": false,
|
| 13 |
-
"rstrip": false,
|
| 14 |
-
"single_word": false
|
| 15 |
-
},
|
| 16 |
-
"eos_token": {
|
| 17 |
-
"content": "</s>",
|
| 18 |
"lstrip": false,
|
| 19 |
"normalized": false,
|
| 20 |
"rstrip": false,
|
| 21 |
"single_word": false
|
| 22 |
},
|
| 23 |
"mask_token": {
|
| 24 |
-
"content": "
|
| 25 |
-
"lstrip":
|
| 26 |
"normalized": false,
|
| 27 |
"rstrip": false,
|
| 28 |
"single_word": false
|
| 29 |
},
|
| 30 |
"pad_token": {
|
| 31 |
-
"content": "
|
| 32 |
"lstrip": false,
|
| 33 |
"normalized": false,
|
| 34 |
"rstrip": false,
|
| 35 |
"single_word": false
|
| 36 |
},
|
| 37 |
"sep_token": {
|
| 38 |
-
"content": "
|
| 39 |
"lstrip": false,
|
| 40 |
"normalized": false,
|
| 41 |
"rstrip": false,
|
| 42 |
"single_word": false
|
| 43 |
},
|
| 44 |
"unk_token": {
|
| 45 |
-
"content": "
|
| 46 |
"lstrip": false,
|
| 47 |
"normalized": false,
|
| 48 |
"rstrip": false,
|
|
|
|
| 1 |
{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"lstrip": false,
|
| 5 |
"normalized": false,
|
| 6 |
"rstrip": false,
|
| 7 |
"single_word": false
|
| 8 |
},
|
| 9 |
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
"normalized": false,
|
| 13 |
"rstrip": false,
|
| 14 |
"single_word": false
|
| 15 |
},
|
| 16 |
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
"lstrip": false,
|
| 19 |
"normalized": false,
|
| 20 |
"rstrip": false,
|
| 21 |
"single_word": false
|
| 22 |
},
|
| 23 |
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
"lstrip": false,
|
| 26 |
"normalized": false,
|
| 27 |
"rstrip": false,
|
| 28 |
"single_word": false
|
| 29 |
},
|
| 30 |
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
"lstrip": false,
|
| 33 |
"normalized": false,
|
| 34 |
"rstrip": false,
|
tokenizer.json
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:754380a0044be8d5446c3435eba091032a336a7ba966773468921e7db6a04cc1
|
| 3 |
+
size 2413692
|
tokenizer_config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
"added_tokens_decoder": {
|
| 3 |
"0": {
|
| 4 |
-
"content": "
|
| 5 |
"lstrip": false,
|
| 6 |
"normalized": false,
|
| 7 |
"rstrip": false,
|
|
@@ -9,7 +9,7 @@
|
|
| 9 |
"special": true
|
| 10 |
},
|
| 11 |
"1": {
|
| 12 |
-
"content": "
|
| 13 |
"lstrip": false,
|
| 14 |
"normalized": false,
|
| 15 |
"rstrip": false,
|
|
@@ -17,7 +17,7 @@
|
|
| 17 |
"special": true
|
| 18 |
},
|
| 19 |
"2": {
|
| 20 |
-
"content": "
|
| 21 |
"lstrip": false,
|
| 22 |
"normalized": false,
|
| 23 |
"rstrip": false,
|
|
@@ -25,41 +25,41 @@
|
|
| 25 |
"special": true
|
| 26 |
},
|
| 27 |
"3": {
|
| 28 |
-
"content": "
|
| 29 |
"lstrip": false,
|
| 30 |
"normalized": false,
|
| 31 |
"rstrip": false,
|
| 32 |
"single_word": false,
|
| 33 |
"special": true
|
| 34 |
},
|
| 35 |
-
"
|
| 36 |
-
"content": "
|
| 37 |
-
"lstrip":
|
| 38 |
"normalized": false,
|
| 39 |
"rstrip": false,
|
| 40 |
"single_word": false,
|
| 41 |
"special": true
|
| 42 |
}
|
| 43 |
},
|
| 44 |
-
"bos_token": "<s>",
|
| 45 |
"clean_up_tokenization_spaces": false,
|
| 46 |
-
"cls_token": "
|
| 47 |
-
"
|
| 48 |
-
"
|
| 49 |
"extra_special_tokens": {},
|
| 50 |
-
"mask_token": "
|
| 51 |
-
"max_length":
|
| 52 |
-
"model_max_length":
|
|
|
|
| 53 |
"pad_to_multiple_of": null,
|
| 54 |
-
"pad_token": "
|
| 55 |
"pad_token_type_id": 0,
|
| 56 |
"padding_side": "right",
|
| 57 |
-
"sep_token": "
|
| 58 |
"stride": 0,
|
| 59 |
"strip_accents": null,
|
| 60 |
"tokenize_chinese_chars": true,
|
| 61 |
"tokenizer_class": "BertTokenizer",
|
| 62 |
"truncation_side": "right",
|
| 63 |
"truncation_strategy": "longest_first",
|
| 64 |
-
"unk_token": "
|
| 65 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"added_tokens_decoder": {
|
| 3 |
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
"lstrip": false,
|
| 6 |
"normalized": false,
|
| 7 |
"rstrip": false,
|
|
|
|
| 9 |
"special": true
|
| 10 |
},
|
| 11 |
"1": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
"lstrip": false,
|
| 14 |
"normalized": false,
|
| 15 |
"rstrip": false,
|
|
|
|
| 17 |
"special": true
|
| 18 |
},
|
| 19 |
"2": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
"lstrip": false,
|
| 22 |
"normalized": false,
|
| 23 |
"rstrip": false,
|
|
|
|
| 25 |
"special": true
|
| 26 |
},
|
| 27 |
"3": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
"lstrip": false,
|
| 30 |
"normalized": false,
|
| 31 |
"rstrip": false,
|
| 32 |
"single_word": false,
|
| 33 |
"special": true
|
| 34 |
},
|
| 35 |
+
"4": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
"normalized": false,
|
| 39 |
"rstrip": false,
|
| 40 |
"single_word": false,
|
| 41 |
"special": true
|
| 42 |
}
|
| 43 |
},
|
|
|
|
| 44 |
"clean_up_tokenization_spaces": false,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": false,
|
| 48 |
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "[MASK]",
|
| 50 |
+
"max_length": 512,
|
| 51 |
+
"model_max_length": 2048,
|
| 52 |
+
"never_split": null,
|
| 53 |
"pad_to_multiple_of": null,
|
| 54 |
+
"pad_token": "[PAD]",
|
| 55 |
"pad_token_type_id": 0,
|
| 56 |
"padding_side": "right",
|
| 57 |
+
"sep_token": "[SEP]",
|
| 58 |
"stride": 0,
|
| 59 |
"strip_accents": null,
|
| 60 |
"tokenize_chinese_chars": true,
|
| 61 |
"tokenizer_class": "BertTokenizer",
|
| 62 |
"truncation_side": "right",
|
| 63 |
"truncation_strategy": "longest_first",
|
| 64 |
+
"unk_token": "[UNK]"
|
| 65 |
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|