Commit
·
e8602b0
1
Parent(s):
4ef15ac
added easier zero-shot code
Browse files
README.md
CHANGED
|
@@ -149,8 +149,17 @@ This multilingual model can perform natural language inference (NLI) on 100 lang
|
|
| 149 |
As of December 2021, mDeBERTa-v3-base is the best performing multilingual base-sized transformer model introduced by Microsoft in [this paper](https://arxiv.org/pdf/2111.09543.pdf).
|
| 150 |
|
| 151 |
|
| 152 |
-
|
| 153 |
-
####
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
```python
|
| 155 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 156 |
import torch
|
|
|
|
| 149 |
As of December 2021, mDeBERTa-v3-base is the best performing multilingual base-sized transformer model introduced by Microsoft in [this paper](https://arxiv.org/pdf/2111.09543.pdf).
|
| 150 |
|
| 151 |
|
| 152 |
+
### How to use the model
|
| 153 |
+
#### Simple zero-shot classification pipeline
|
| 154 |
+
```python
|
| 155 |
+
from transformers import pipeline
|
| 156 |
+
classifier = pipeline("zero-shot-classification", model="MoritzLaurer/mDeBERTa-v3-base-mnli-xnli")
|
| 157 |
+
sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
|
| 158 |
+
candidate_labels = ["politics", "economy", "entertainment", "environment"]
|
| 159 |
+
output = classifier(sequence_to_classify, candidate_labels, multi_label=False)
|
| 160 |
+
print(output)
|
| 161 |
+
```
|
| 162 |
+
#### NLI use-case
|
| 163 |
```python
|
| 164 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 165 |
import torch
|