| import os | |
| import sys | |
| import torch | |
| import numpy as np | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from librosa.filters import mel | |
| sys.path.append(os.getcwd()) | |
| N_MELS, N_CLASS = 128, 360 | |
| def autopad(k, p=None): | |
| if p is None: p = k // 2 if isinstance(k, int) else [x // 2 for x in k] | |
| return p | |
| class Conv(nn.Module): | |
| def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): | |
| super().__init__() | |
| self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) | |
| self.bn = nn.BatchNorm2d(c2) | |
| self.act = nn.SiLU() if act else nn.Identity() | |
| def forward(self, x): | |
| return self.act(self.bn(self.conv(x))) | |
| class DSConv(nn.Module): | |
| def __init__(self, c1, c2, k=3, s=1, p=None, act=True): | |
| super().__init__() | |
| self.dwconv = nn.Conv2d(c1, c1, k, s, autopad(k, p), groups=c1, bias=False) | |
| self.pwconv = nn.Conv2d(c1, c2, 1, 1, 0, bias=False) | |
| self.bn = nn.BatchNorm2d(c2) | |
| self.act = nn.SiLU() if act else nn.Identity() | |
| def forward(self, x): | |
| return self.act(self.bn(self.pwconv(self.dwconv(x)))) | |
| class DS_Bottleneck(nn.Module): | |
| def __init__(self, c1, c2, k=3, shortcut=True): | |
| super().__init__() | |
| self.dsconv1 = DSConv(c1, c1, k=3, s=1) | |
| self.dsconv2 = DSConv(c1, c2, k=k, s=1) | |
| self.shortcut = shortcut and c1 == c2 | |
| def forward(self, x): | |
| return x + self.dsconv2(self.dsconv1(x)) if self.shortcut else self.dsconv2(self.dsconv1(x)) | |
| class DS_C3k(nn.Module): | |
| def __init__(self, c1, c2, n=1, k=3, e=0.5): | |
| super().__init__() | |
| self.cv1 = Conv(c1, int(c2 * e), 1, 1) | |
| self.cv2 = Conv(c1, int(c2 * e), 1, 1) | |
| self.cv3 = Conv(2 * int(c2 * e), c2, 1, 1) | |
| self.m = nn.Sequential(*[DS_Bottleneck(int(c2 * e), int(c2 * e), k=k, shortcut=True) for _ in range(n)]) | |
| def forward(self, x): | |
| return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) | |
| class DS_C3k2(nn.Module): | |
| def __init__(self, c1, c2, n=1, k=3, e=0.5): | |
| super().__init__() | |
| self.cv1 = Conv(c1, int(c2 * e), 1, 1) | |
| self.m = DS_C3k(int(c2 * e), int(c2 * e), n=n, k=k, e=1.0) | |
| self.cv2 = Conv(int(c2 * e), c2, 1, 1) | |
| def forward(self, x): | |
| return self.cv2(self.m(self.cv1(x))) | |
| class AdaptiveHyperedgeGeneration(nn.Module): | |
| def __init__(self, in_channels, num_hyperedges, num_heads): | |
| super().__init__() | |
| self.num_hyperedges = num_hyperedges | |
| self.num_heads = num_heads | |
| self.head_dim = max(1, in_channels // num_heads) | |
| self.global_proto = nn.Parameter(torch.randn(num_hyperedges, in_channels)) | |
| self.context_mapper = nn.Linear(2 * in_channels, num_hyperedges * in_channels, bias=False) | |
| self.query_proj = nn.Linear(in_channels, in_channels, bias=False) | |
| self.scale = self.head_dim ** -0.5 | |
| def forward(self, x): | |
| B, N, C = x.shape | |
| P = self.global_proto.unsqueeze(0) + self.context_mapper(torch.cat((F.adaptive_avg_pool1d(x.permute(0, 2, 1), 1).squeeze(-1), F.adaptive_max_pool1d(x.permute(0, 2, 1), 1).squeeze(-1)), dim=1)).view(B, self.num_hyperedges, C) | |
| return F.softmax(((self.query_proj(x).view(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3) @ P.view(B, self.num_hyperedges, self.num_heads, self.head_dim).permute(0, 2, 3, 1)) * self.scale).mean(dim=1).permute(0, 2, 1), dim=-1) | |
| class HypergraphConvolution(nn.Module): | |
| def __init__(self, in_channels, out_channels): | |
| super().__init__() | |
| self.W_e = nn.Linear(in_channels, in_channels, bias=False) | |
| self.W_v = nn.Linear(in_channels, out_channels, bias=False) | |
| self.act = nn.SiLU() | |
| def forward(self, x, A): | |
| return x + self.act(self.W_v(A.transpose(1, 2).bmm(self.act(self.W_e(A.bmm(x)))))) | |
| class AdaptiveHypergraphComputation(nn.Module): | |
| def __init__(self, in_channels, out_channels, num_hyperedges, num_heads): | |
| super().__init__() | |
| self.adaptive_hyperedge_gen = AdaptiveHyperedgeGeneration(in_channels, num_hyperedges, num_heads) | |
| self.hypergraph_conv = HypergraphConvolution(in_channels, out_channels) | |
| def forward(self, x): | |
| B, _, H, W = x.shape | |
| x_flat = x.flatten(2).permute(0, 2, 1) | |
| return self.hypergraph_conv(x_flat, self.adaptive_hyperedge_gen(x_flat)).permute(0, 2, 1).view(B, -1, H, W) | |
| class C3AH(nn.Module): | |
| def __init__(self, c1, c2, num_hyperedges, num_heads, e=0.5): | |
| super().__init__() | |
| self.cv1 = Conv(c1, int(c1 * e), 1, 1) | |
| self.cv2 = Conv(c1, int(c1 * e), 1, 1) | |
| self.ahc = AdaptiveHypergraphComputation(int(c1 * e), int(c1 * e), num_hyperedges, num_heads) | |
| self.cv3 = Conv(2 * int(c1 * e), c2, 1, 1) | |
| def forward(self, x): | |
| return self.cv3(torch.cat((self.ahc(self.cv2(x)), self.cv1(x)), dim=1)) | |
| class HyperACE(nn.Module): | |
| def __init__(self, in_channels, out_channels, num_hyperedges=16, num_heads=8, k=2, l=1, c_h=0.5, c_l=0.25): | |
| super().__init__() | |
| c2, c3, c4, c5 = in_channels | |
| c_mid = c4 | |
| self.fuse_conv = Conv(c2 + c3 + c4 + c5, c_mid, 1, 1) | |
| self.c_h = int(c_mid * c_h) | |
| self.c_l = int(c_mid * c_l) | |
| self.c_s = c_mid - self.c_h - self.c_l | |
| self.high_order_branch = nn.ModuleList([C3AH(self.c_h, self.c_h, num_hyperedges=num_hyperedges, num_heads=num_heads, e=1.0) for _ in range(k)]) | |
| self.high_order_fuse = Conv(self.c_h * k, self.c_h, 1, 1) | |
| self.low_order_branch = nn.Sequential(*[DS_C3k(self.c_l, self.c_l, n=1, k=3, e=1.0) for _ in range(l)]) | |
| self.final_fuse = Conv(self.c_h + self.c_l + self.c_s, out_channels, 1, 1) | |
| def forward(self, x): | |
| B2, B3, B4, B5 = x | |
| _, _, H4, W4 = B4.shape | |
| x_h, x_l, x_s = self.fuse_conv( | |
| torch.cat( | |
| ( | |
| F.interpolate(B2, size=(H4, W4), mode='bilinear', align_corners=False), | |
| F.interpolate(B3, size=(H4, W4), mode='bilinear', align_corners=False), | |
| B4, | |
| F.interpolate(B5, size=(H4, W4), mode='bilinear', align_corners=False) | |
| ), | |
| dim=1 | |
| ) | |
| ).split([self.c_h, self.c_l, self.c_s], dim=1) | |
| return self.final_fuse(torch.cat((self.high_order_fuse(torch.cat([m(x_h) for m in self.high_order_branch], dim=1)), self.low_order_branch(x_l), x_s), dim=1)) | |
| class GatedFusion(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.gamma = nn.Parameter(torch.zeros(1, in_channels, 1, 1)) | |
| def forward(self, f_in, h): | |
| return f_in + self.gamma * h | |
| class YOLO13Encoder(nn.Module): | |
| def __init__(self, in_channels, base_channels=32): | |
| super().__init__() | |
| self.stem = DSConv(in_channels, base_channels, k=3, s=1) | |
| self.p2 = nn.Sequential( | |
| DSConv(base_channels, base_channels*2, k=3, s=(2, 2)), | |
| DS_C3k2(base_channels*2, base_channels*2, n=1) | |
| ) | |
| self.p3 = nn.Sequential( | |
| DSConv(base_channels*2, base_channels*4, k=3, s=(2, 2)), | |
| DS_C3k2(base_channels*4, base_channels*4, n=2) | |
| ) | |
| self.p4 = nn.Sequential( | |
| DSConv(base_channels*4, base_channels*8, k=3, s=(2, 2)), | |
| DS_C3k2(base_channels*8, base_channels*8, n=2) | |
| ) | |
| self.p5 = nn.Sequential( | |
| DSConv(base_channels*8, base_channels*16, k=3, s=(2, 2)), | |
| DS_C3k2(base_channels*16, base_channels*16, n=1) | |
| ) | |
| self.out_channels = [base_channels*2, base_channels*4, base_channels*8, base_channels*16] | |
| def forward(self, x): | |
| x = self.stem(x) | |
| p2 = self.p2(x) | |
| p3 = self.p3(p2) | |
| p4 = self.p4(p3) | |
| p5 = self.p5(p4) | |
| return [p2, p3, p4, p5] | |
| class YOLO13FullPADDecoder(nn.Module): | |
| def __init__(self, encoder_channels, hyperace_out_c, out_channels_final): | |
| super().__init__() | |
| c_p2, c_p3, c_p4, c_p5 = encoder_channels | |
| c_d5, c_d4, c_d3, c_d2 = c_p5, c_p4, c_p3, c_p2 | |
| self.h_to_d5 = Conv(hyperace_out_c, c_d5, 1, 1) | |
| self.h_to_d4 = Conv(hyperace_out_c, c_d4, 1, 1) | |
| self.h_to_d3 = Conv(hyperace_out_c, c_d3, 1, 1) | |
| self.h_to_d2 = Conv(hyperace_out_c, c_d2, 1, 1) | |
| self.fusion_d5 = GatedFusion(c_d5) | |
| self.fusion_d4 = GatedFusion(c_d4) | |
| self.fusion_d3 = GatedFusion(c_d3) | |
| self.fusion_d2 = GatedFusion(c_d2) | |
| self.skip_p5 = Conv(c_p5, c_d5, 1, 1) | |
| self.skip_p4 = Conv(c_p4, c_d4, 1, 1) | |
| self.skip_p3 = Conv(c_p3, c_d3, 1, 1) | |
| self.skip_p2 = Conv(c_p2, c_d2, 1, 1) | |
| self.up_d5 = DS_C3k2(c_d5, c_d4, n=1) | |
| self.up_d4 = DS_C3k2(c_d4, c_d3, n=1) | |
| self.up_d3 = DS_C3k2(c_d3, c_d2, n=1) | |
| self.final_d2 = DS_C3k2(c_d2, c_d2, n=1) | |
| self.final_conv = Conv(c_d2, out_channels_final, 1, 1) | |
| def forward(self, enc_feats, h_ace): | |
| p2, p3, p4, p5 = enc_feats | |
| d5 = self.skip_p5(p5) | |
| d4 = self.up_d5(F.interpolate(self.fusion_d5(d5, self.h_to_d5(F.interpolate(h_ace, size=d5.shape[2:], mode='bilinear', align_corners=False))), size=p4.shape[2:], mode='bilinear', align_corners=False)) + self.skip_p4(p4) | |
| d3 = self.up_d4(F.interpolate(self.fusion_d4(d4, self.h_to_d4(F.interpolate(h_ace, size=d4.shape[2:], mode='bilinear', align_corners=False))), size=p3.shape[2:], mode='bilinear', align_corners=False)) + self.skip_p3(p3) | |
| d2 = self.up_d3(F.interpolate(self.fusion_d3(d3, self.h_to_d3(F.interpolate(h_ace, size=d3.shape[2:], mode='bilinear', align_corners=False))), size=p2.shape[2:], mode='bilinear', align_corners=False)) + self.skip_p2(p2) | |
| return self.final_conv(self.final_d2(self.fusion_d2(d2, self.h_to_d2(F.interpolate(h_ace, size=d2.shape[2:], mode='bilinear', align_corners=False))))) | |
| class ConvBlockRes(nn.Module): | |
| def __init__(self, in_channels, out_channels, momentum=0.01): | |
| super(ConvBlockRes, self).__init__() | |
| self.conv = nn.Sequential( | |
| nn.Conv2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=(3, 3), | |
| stride=(1, 1), | |
| padding=(1, 1), | |
| bias=False | |
| ), | |
| nn.BatchNorm2d( | |
| out_channels, | |
| momentum=momentum | |
| ), | |
| nn.ReLU(), | |
| nn.Conv2d( | |
| in_channels=out_channels, | |
| out_channels=out_channels, | |
| kernel_size=(3, 3), | |
| stride=(1, 1), | |
| padding=(1, 1), | |
| bias=False | |
| ), | |
| nn.BatchNorm2d( | |
| out_channels, | |
| momentum=momentum | |
| ), | |
| nn.ReLU() | |
| ) | |
| if in_channels != out_channels: | |
| self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1)) | |
| self.is_shortcut = True | |
| else: self.is_shortcut = False | |
| def forward(self, x): | |
| return (self.conv(x) + self.shortcut(x)) if self.is_shortcut else (self.conv(x) + x) | |
| class ResEncoderBlock(nn.Module): | |
| def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01): | |
| super(ResEncoderBlock, self).__init__() | |
| self.n_blocks = n_blocks | |
| self.conv = nn.ModuleList() | |
| self.conv.append(ConvBlockRes(in_channels, out_channels, momentum)) | |
| for _ in range(n_blocks - 1): | |
| self.conv.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
| self.kernel_size = kernel_size | |
| if self.kernel_size is not None: self.pool = nn.AvgPool2d(kernel_size=kernel_size) | |
| def forward(self, x): | |
| for i in range(self.n_blocks): | |
| x = self.conv[i](x) | |
| if self.kernel_size is not None: return x, self.pool(x) | |
| else: return x | |
| class Encoder(nn.Module): | |
| def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01): | |
| super(Encoder, self).__init__() | |
| self.n_encoders = n_encoders | |
| self.bn = nn.BatchNorm2d(in_channels, momentum=momentum) | |
| self.layers = nn.ModuleList() | |
| for _ in range(self.n_encoders): | |
| self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum)) | |
| in_channels = out_channels | |
| out_channels *= 2 | |
| in_size //= 2 | |
| self.out_size = in_size | |
| self.out_channel = out_channels | |
| def forward(self, x): | |
| concat_tensors = [] | |
| x = self.bn(x) | |
| for layer in self.layers: | |
| t, x = layer(x) | |
| concat_tensors.append(t) | |
| return x, concat_tensors | |
| class Intermediate(nn.Module): | |
| def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01): | |
| super(Intermediate, self).__init__() | |
| self.layers = nn.ModuleList() | |
| self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum)) | |
| for _ in range(n_inters - 1): | |
| self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum)) | |
| def forward(self, x): | |
| for layer in self.layers: | |
| x = layer(x) | |
| return x | |
| class ResDecoderBlock(nn.Module): | |
| def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01): | |
| super(ResDecoderBlock, self).__init__() | |
| out_padding = (0, 1) if stride == (1, 2) else (1, 1) | |
| self.conv1 = nn.Sequential( | |
| nn.ConvTranspose2d( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| kernel_size=(3, 3), | |
| stride=stride, | |
| padding=(1, 1), | |
| output_padding=out_padding, | |
| bias=False | |
| ), | |
| nn.BatchNorm2d( | |
| out_channels, | |
| momentum=momentum | |
| ), | |
| nn.ReLU() | |
| ) | |
| self.conv2 = nn.ModuleList() | |
| self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum)) | |
| for _ in range(n_blocks - 1): | |
| self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum)) | |
| def forward(self, x, concat_tensor): | |
| x = torch.cat((self.conv1(x), concat_tensor), dim=1) | |
| for conv2 in self.conv2: | |
| x = conv2(x) | |
| return x | |
| class Decoder(nn.Module): | |
| def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01): | |
| super(Decoder, self).__init__() | |
| self.layers = nn.ModuleList() | |
| for _ in range(n_decoders): | |
| out_channels = in_channels // 2 | |
| self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum)) | |
| in_channels = out_channels | |
| def forward(self, x, concat_tensors): | |
| for i, layer in enumerate(self.layers): | |
| x = layer(x, concat_tensors[-1 - i]) | |
| return x | |
| class DeepUnet(nn.Module): | |
| def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16): | |
| super(DeepUnet, self).__init__() | |
| self.encoder = Encoder(in_channels, 128, en_de_layers, kernel_size, n_blocks, en_out_channels) | |
| self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks) | |
| self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks) | |
| def forward(self, x): | |
| x, concat_tensors = self.encoder(x) | |
| return self.decoder(self.intermediate(x), concat_tensors) | |
| class HPADeepUnet(nn.Module): | |
| def __init__(self, in_channels=1, en_out_channels=16, base_channels=64, hyperace_k=2, hyperace_l=1, num_hyperedges=16, num_heads=8): | |
| super().__init__() | |
| self.encoder = YOLO13Encoder(in_channels, base_channels) | |
| enc_ch = self.encoder.out_channels | |
| self.hyperace = HyperACE( | |
| in_channels=enc_ch, | |
| out_channels=enc_ch[-1], | |
| num_hyperedges=num_hyperedges, | |
| num_heads=num_heads, | |
| k=hyperace_k, | |
| l=hyperace_l | |
| ) | |
| self.decoder = YOLO13FullPADDecoder( | |
| encoder_channels=enc_ch, | |
| hyperace_out_c=enc_ch[-1], | |
| out_channels_final=en_out_channels | |
| ) | |
| def forward(self, x): | |
| features = self.encoder(x) | |
| return nn.functional.interpolate(self.decoder(features, self.hyperace(features)), size=x.shape[2:], mode='bilinear', align_corners=False) | |
| class BiGRU(nn.Module): | |
| def __init__(self, input_features, hidden_features, num_layers): | |
| super(BiGRU, self).__init__() | |
| self.gru = nn.GRU(input_features, hidden_features, num_layers=num_layers, batch_first=True, bidirectional=True) | |
| def forward(self, x): | |
| try: | |
| return self.gru(x)[0] | |
| except: | |
| torch.backends.cudnn.enabled = False | |
| return self.gru(x)[0] | |
| class E2E(nn.Module): | |
| def __init__(self, n_blocks, n_gru, kernel_size, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16, hpa=False): | |
| super(E2E, self).__init__() | |
| self.unet = ( | |
| HPADeepUnet( | |
| in_channels=in_channels, | |
| en_out_channels=en_out_channels, | |
| base_channels=64, | |
| hyperace_k=2, | |
| hyperace_l=1, | |
| num_hyperedges=16, | |
| num_heads=4 | |
| ) | |
| ) if hpa else ( | |
| DeepUnet( | |
| kernel_size, | |
| n_blocks, | |
| en_de_layers, | |
| inter_layers, | |
| in_channels, | |
| en_out_channels | |
| ) | |
| ) | |
| self.cnn = nn.Conv2d(en_out_channels, 3, (3, 3), padding=(1, 1)) | |
| self.fc = ( | |
| nn.Sequential( | |
| BiGRU(3 * 128, 256, n_gru), | |
| nn.Linear(512, N_CLASS), | |
| nn.Dropout(0.25), | |
| nn.Sigmoid() | |
| ) | |
| ) if n_gru else ( | |
| nn.Sequential( | |
| nn.Linear(3 * N_MELS, N_CLASS), | |
| nn.Dropout(0.25), | |
| nn.Sigmoid() | |
| ) | |
| ) | |
| def forward(self, mel): | |
| return self.fc(self.cnn(self.unet(mel.transpose(-1, -2).unsqueeze(1))).transpose(1, 2).flatten(-2)) | |
| class MelSpectrogram(nn.Module): | |
| def __init__(self, n_mel_channels, sample_rate, win_length, hop_length, n_fft=None, mel_fmin=0, mel_fmax=None, clamp=1e-5): | |
| super().__init__() | |
| n_fft = win_length if n_fft is None else n_fft | |
| self.hann_window = {} | |
| mel_basis = mel(sr=sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=mel_fmin, fmax=mel_fmax, htk=True) | |
| mel_basis = torch.from_numpy(mel_basis).float() | |
| self.register_buffer("mel_basis", mel_basis) | |
| self.n_fft = win_length if n_fft is None else n_fft | |
| self.hop_length = hop_length | |
| self.win_length = win_length | |
| self.sample_rate = sample_rate | |
| self.n_mel_channels = n_mel_channels | |
| self.clamp = clamp | |
| def forward(self, audio, keyshift=0, speed=1, center=True): | |
| factor = 2 ** (keyshift / 12) | |
| win_length_new = int(np.round(self.win_length * factor)) | |
| keyshift_key = str(keyshift) + "_" + str(audio.device) | |
| if keyshift_key not in self.hann_window: self.hann_window[keyshift_key] = torch.hann_window(win_length_new).to(audio.device) | |
| n_fft = int(np.round(self.n_fft * factor)) | |
| hop_length = int(np.round(self.hop_length * speed)) | |
| fft = torch.stft(audio, n_fft=n_fft, hop_length=hop_length, win_length=win_length_new, window=self.hann_window[keyshift_key], center=center, return_complex=True) | |
| magnitude = (fft.real.pow(2) + fft.imag.pow(2)).sqrt() | |
| if keyshift != 0: | |
| size = self.n_fft // 2 + 1 | |
| resize = magnitude.size(1) | |
| if resize < size: magnitude = F.pad(magnitude, (0, 0, 0, size - resize)) | |
| magnitude = magnitude[:, :size, :] * self.win_length / win_length_new | |
| mel_output = self.mel_basis @ magnitude | |
| return mel_output.clamp(min=self.clamp).log() | |
| class RMVPE: | |
| def __init__(self, model_path, is_half, device=None, providers=None, onnx=False, hpa=False): | |
| self.onnx = onnx | |
| if self.onnx: | |
| import onnxruntime as ort | |
| sess_options = ort.SessionOptions() | |
| sess_options.log_severity_level = 3 | |
| self.model = ort.InferenceSession(model_path, sess_options=sess_options, providers=providers) | |
| else: | |
| model = E2E(4, 1, (2, 2), 5, 4, 1, 16, hpa=hpa) | |
| model.load_state_dict(torch.load(model_path, map_location="cpu", weights_only=True)) | |
| model.eval() | |
| if is_half: model = model.half() | |
| self.model = model.to(device) | |
| self.device = device | |
| self.is_half = is_half | |
| self.mel_extractor = MelSpectrogram(N_MELS, 16000, 1024, 160, None, 30, 8000).to(device) | |
| cents_mapping = 20 * np.arange(N_CLASS) + 1997.3794084376191 | |
| self.cents_mapping = np.pad(cents_mapping, (4, 4)) | |
| def mel2hidden(self, mel, chunk_size = 32000): | |
| with torch.no_grad(): | |
| n_frames = mel.shape[-1] | |
| mel = F.pad(mel, (0, 32 * ((n_frames - 1) // 32 + 1) - n_frames), mode="reflect") | |
| output_chunks = [] | |
| pad_frames = mel.shape[-1] | |
| for start in range(0, pad_frames, chunk_size): | |
| mel_chunk = mel[..., start:min(start + chunk_size, pad_frames)] | |
| assert mel_chunk.shape[-1] % 32 == 0 | |
| if self.onnx: | |
| mel_chunk = mel_chunk.cpu().numpy().astype(np.float32) | |
| out_chunk = torch.as_tensor(self.model.run([self.model.get_outputs()[0].name], {self.model.get_inputs()[0].name: mel_chunk})[0], device=self.device) | |
| else: | |
| if self.is_half: mel_chunk = mel_chunk.half() | |
| out_chunk = self.model(mel_chunk) | |
| output_chunks.append(out_chunk) | |
| hidden = torch.cat(output_chunks, dim=1) | |
| return hidden[:, :n_frames] | |
| def decode(self, hidden, thred=0.03): | |
| f0 = 10 * (2 ** (self.to_local_average_cents(hidden, thred=thred) / 1200)) | |
| f0[f0 == 10] = 0 | |
| return f0 | |
| def infer_from_audio(self, audio, thred=0.03): | |
| hidden = self.mel2hidden(self.mel_extractor(torch.from_numpy(audio).float().to(self.device).unsqueeze(0), center=True)) | |
| return self.decode(hidden.squeeze(0).cpu().numpy().astype(np.float32), thred=thred) | |
| def infer_from_audio_with_pitch(self, audio, thred=0.03, f0_min=50, f0_max=1100): | |
| f0 = self.infer_from_audio(audio, thred) | |
| f0[(f0 < f0_min) | (f0 > f0_max)] = 0 | |
| return f0 | |
| def to_local_average_cents(self, salience, thred=0.05): | |
| center = np.argmax(salience, axis=1) | |
| salience = np.pad(salience, ((0, 0), (4, 4))) | |
| center += 4 | |
| todo_salience, todo_cents_mapping = [], [] | |
| starts = center - 4 | |
| ends = center + 5 | |
| for idx in range(salience.shape[0]): | |
| todo_salience.append(salience[:, starts[idx] : ends[idx]][idx]) | |
| todo_cents_mapping.append(self.cents_mapping[starts[idx] : ends[idx]]) | |
| todo_salience = np.array(todo_salience) | |
| devided = np.sum(todo_salience * np.array(todo_cents_mapping), 1) / np.sum(todo_salience, 1) | |
| devided[np.max(salience, axis=1) <= thred] = 0 | |
| return devided |