Delete infer/lib/utils.py
Browse files- infer/lib/utils.py +0 -478
infer/lib/utils.py
DELETED
|
@@ -1,478 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import re
|
| 3 |
-
import gc
|
| 4 |
-
import sys
|
| 5 |
-
import torch
|
| 6 |
-
import faiss
|
| 7 |
-
import codecs
|
| 8 |
-
import logging
|
| 9 |
-
|
| 10 |
-
import numpy as np
|
| 11 |
-
|
| 12 |
-
from pydub import AudioSegment
|
| 13 |
-
|
| 14 |
-
sys.path.append(os.getcwd())
|
| 15 |
-
|
| 16 |
-
from main.tools import huggingface
|
| 17 |
-
from main.library.backends import directml, opencl
|
| 18 |
-
from main.app.variables import translations, configs, config, logger, embedders_model, spin_model, whisper_model
|
| 19 |
-
|
| 20 |
-
for l in ["httpx", "httpcore"]:
|
| 21 |
-
logging.getLogger(l).setLevel(logging.ERROR)
|
| 22 |
-
|
| 23 |
-
def check_assets(f0_method, hubert, predictor_onnx=False, embedders_mode="fairseq"):
|
| 24 |
-
predictors_url = codecs.decode(
|
| 25 |
-
"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/cerqvpgbef/",
|
| 26 |
-
"rot13"
|
| 27 |
-
)
|
| 28 |
-
embedders_url = codecs.decode(
|
| 29 |
-
"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/rzorqqref/",
|
| 30 |
-
"rot13"
|
| 31 |
-
)
|
| 32 |
-
|
| 33 |
-
if embedders_mode == "spin": embedders_mode = "transformers"
|
| 34 |
-
|
| 35 |
-
def download_predictor(predictor):
|
| 36 |
-
model_path = os.path.join(configs["predictors_path"], predictor)
|
| 37 |
-
|
| 38 |
-
if not os.path.exists(model_path):
|
| 39 |
-
huggingface.HF_download_file(
|
| 40 |
-
predictors_url + predictor,
|
| 41 |
-
model_path
|
| 42 |
-
)
|
| 43 |
-
|
| 44 |
-
return os.path.exists(model_path)
|
| 45 |
-
|
| 46 |
-
def download_embedder(embedders_mode, hubert):
|
| 47 |
-
model_path = (
|
| 48 |
-
os.path.join(
|
| 49 |
-
configs["speaker_diarization_path"],
|
| 50 |
-
"models",
|
| 51 |
-
hubert
|
| 52 |
-
)
|
| 53 |
-
) if embedders_mode == "whisper" else (
|
| 54 |
-
os.path.join(
|
| 55 |
-
configs["embedders_path"],
|
| 56 |
-
hubert
|
| 57 |
-
)
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
if embedders_mode != "transformers" and not os.path.exists(model_path):
|
| 61 |
-
if embedders_mode == "whisper":
|
| 62 |
-
huggingface.HF_download_file(
|
| 63 |
-
"".join([
|
| 64 |
-
codecs.decode(
|
| 65 |
-
"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/",
|
| 66 |
-
"rot13"
|
| 67 |
-
),
|
| 68 |
-
hubert
|
| 69 |
-
]),
|
| 70 |
-
model_path
|
| 71 |
-
)
|
| 72 |
-
else:
|
| 73 |
-
huggingface.HF_download_file(
|
| 74 |
-
"".join([
|
| 75 |
-
embedders_url, "fairseq/" if embedders_mode == "fairseq" else "onnx/",
|
| 76 |
-
hubert
|
| 77 |
-
]),
|
| 78 |
-
model_path
|
| 79 |
-
)
|
| 80 |
-
elif embedders_mode == "transformers":
|
| 81 |
-
url = "transformers/" if not hubert.startswith("spin") else "spin/"
|
| 82 |
-
|
| 83 |
-
bin_file = os.path.join(model_path, "model.safetensors")
|
| 84 |
-
config_file = os.path.join(model_path, "config.json")
|
| 85 |
-
|
| 86 |
-
os.makedirs(model_path, exist_ok=True)
|
| 87 |
-
|
| 88 |
-
if not os.path.exists(bin_file):
|
| 89 |
-
huggingface.HF_download_file(
|
| 90 |
-
"".join([embedders_url, url, hubert, "/model.safetensors"]),
|
| 91 |
-
bin_file
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
if not os.path.exists(config_file):
|
| 95 |
-
huggingface.HF_download_file(
|
| 96 |
-
"".join([embedders_url, url, hubert, "/config.json"]),
|
| 97 |
-
config_file
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
return os.path.exists(bin_file) and os.path.exists(config_file)
|
| 101 |
-
|
| 102 |
-
return os.path.exists(model_path)
|
| 103 |
-
|
| 104 |
-
def get_modelname(f0_method, predictor_onnx=False):
|
| 105 |
-
suffix = ".onnx" if predictor_onnx else (".pt" if "crepe" not in f0_method else ".pth")
|
| 106 |
-
|
| 107 |
-
if "rmvpe" in f0_method:
|
| 108 |
-
modelname = (
|
| 109 |
-
"hpa-rmvpe-76000"
|
| 110 |
-
if "previous" in f0_method else
|
| 111 |
-
"hpa-rmvpe-112000"
|
| 112 |
-
) if "hpa" in f0_method else "rmvpe"
|
| 113 |
-
elif "fcpe" in f0_method:
|
| 114 |
-
modelname = (
|
| 115 |
-
"fcpe_legacy"
|
| 116 |
-
if "legacy" in f0_method else
|
| 117 |
-
"fcpe"
|
| 118 |
-
) if "previous" in f0_method or "legacy" in f0_method else "ddsp_200k"
|
| 119 |
-
elif "crepe" in f0_method:
|
| 120 |
-
modelname = "crepe_" + f0_method.replace("mangio-", "").split("-")[1]
|
| 121 |
-
elif "penn" in f0_method:
|
| 122 |
-
modelname = "fcn"
|
| 123 |
-
elif "djcm" in f0_method:
|
| 124 |
-
modelname = "djcm" + "-svs" if "svs" in f0_method else ""
|
| 125 |
-
elif "pesto" in f0_method:
|
| 126 |
-
modelname = "pesto"
|
| 127 |
-
elif "swift" in f0_method:
|
| 128 |
-
return "swift.onnx"
|
| 129 |
-
else:
|
| 130 |
-
return None
|
| 131 |
-
|
| 132 |
-
return modelname + suffix
|
| 133 |
-
|
| 134 |
-
results = []
|
| 135 |
-
count = configs.get("num_of_restart", 5)
|
| 136 |
-
|
| 137 |
-
for _ in range(count):
|
| 138 |
-
if "hybrid" in f0_method:
|
| 139 |
-
methods_str = re.search(r"hybrid\[(.+)\]", f0_method)
|
| 140 |
-
|
| 141 |
-
if methods_str:
|
| 142 |
-
methods = [
|
| 143 |
-
f0_method.strip()
|
| 144 |
-
for f0_method in methods_str.group(1).split("+")
|
| 145 |
-
]
|
| 146 |
-
|
| 147 |
-
for method in methods:
|
| 148 |
-
modelname = get_modelname(method, predictor_onnx)
|
| 149 |
-
|
| 150 |
-
if modelname is not None:
|
| 151 |
-
results.append(
|
| 152 |
-
download_predictor(modelname)
|
| 153 |
-
)
|
| 154 |
-
else:
|
| 155 |
-
modelname = get_modelname(f0_method, predictor_onnx)
|
| 156 |
-
|
| 157 |
-
if modelname is not None:
|
| 158 |
-
results.append(
|
| 159 |
-
download_predictor(modelname)
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
if hubert in embedders_model + spin_model + whisper_model:
|
| 163 |
-
if embedders_mode != "transformers":
|
| 164 |
-
hubert += ".pt" if embedders_mode in ["fairseq", "whisper"] else ".onnx"
|
| 165 |
-
|
| 166 |
-
results.append(
|
| 167 |
-
download_embedder(
|
| 168 |
-
embedders_mode,
|
| 169 |
-
hubert
|
| 170 |
-
)
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
if all(results): return
|
| 174 |
-
else: results = []
|
| 175 |
-
|
| 176 |
-
logger.warning(translations["check_assets_error"].format(count=count))
|
| 177 |
-
sys.exit(1)
|
| 178 |
-
|
| 179 |
-
def check_spk_diarization(model_size, speechbrain=True):
|
| 180 |
-
whisper_model = os.path.join(configs["speaker_diarization_path"], "models", f"{model_size}.pt")
|
| 181 |
-
|
| 182 |
-
if not os.path.exists(whisper_model):
|
| 183 |
-
huggingface.HF_download_file(
|
| 184 |
-
"".join([
|
| 185 |
-
codecs.decode(
|
| 186 |
-
"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/",
|
| 187 |
-
"rot13"
|
| 188 |
-
),
|
| 189 |
-
model_size,
|
| 190 |
-
".pt"
|
| 191 |
-
]),
|
| 192 |
-
whisper_model
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
-
speechbrain_path = os.path.join(configs["speaker_diarization_path"], "models", "speechbrain")
|
| 196 |
-
if not os.path.exists(speechbrain_path): os.makedirs(speechbrain_path, exist_ok=True)
|
| 197 |
-
|
| 198 |
-
if speechbrain:
|
| 199 |
-
for f in [
|
| 200 |
-
"classifier.ckpt",
|
| 201 |
-
"config.json",
|
| 202 |
-
"embedding_model.ckpt",
|
| 203 |
-
"hyperparams.yaml",
|
| 204 |
-
"mean_var_norm_emb.ckpt"
|
| 205 |
-
]:
|
| 206 |
-
speechbrain_model = os.path.join(speechbrain_path, f)
|
| 207 |
-
|
| 208 |
-
if not os.path.exists(speechbrain_model):
|
| 209 |
-
huggingface.HF_download_file(
|
| 210 |
-
codecs.decode(
|
| 211 |
-
"uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/fcrnxre_qvnevmngvba/fcrrpuoenva/",
|
| 212 |
-
"rot13"
|
| 213 |
-
) + f,
|
| 214 |
-
speechbrain_model
|
| 215 |
-
)
|
| 216 |
-
|
| 217 |
-
def load_audio(file, sample_rate=16000, formant_shifting=False, formant_qfrency=0.8, formant_timbre=0.8):
|
| 218 |
-
import librosa
|
| 219 |
-
import soundfile as sf
|
| 220 |
-
|
| 221 |
-
try:
|
| 222 |
-
file = file.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
| 223 |
-
if not os.path.isfile(file): raise FileNotFoundError(translations["not_found"].format(name=file))
|
| 224 |
-
|
| 225 |
-
try:
|
| 226 |
-
audio, sr = sf.read(file, dtype=np.float32)
|
| 227 |
-
except:
|
| 228 |
-
audio, sr = librosa.load(file, sr=None)
|
| 229 |
-
|
| 230 |
-
if len(audio.shape) > 1: audio = librosa.to_mono(audio.T)
|
| 231 |
-
|
| 232 |
-
if sr != sample_rate:
|
| 233 |
-
audio = librosa.resample(
|
| 234 |
-
audio,
|
| 235 |
-
orig_sr=sr,
|
| 236 |
-
target_sr=sample_rate,
|
| 237 |
-
res_type="soxr_vhq"
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
if formant_shifting:
|
| 241 |
-
from main.library.algorithm.stftpitchshift import StftPitchShift
|
| 242 |
-
|
| 243 |
-
pitchshifter = StftPitchShift(
|
| 244 |
-
1024,
|
| 245 |
-
32,
|
| 246 |
-
sample_rate
|
| 247 |
-
)
|
| 248 |
-
|
| 249 |
-
audio = pitchshifter.shiftpitch(
|
| 250 |
-
audio,
|
| 251 |
-
factors=1,
|
| 252 |
-
quefrency=formant_qfrency * 1e-3,
|
| 253 |
-
distortion=formant_timbre
|
| 254 |
-
)
|
| 255 |
-
except Exception as e:
|
| 256 |
-
raise RuntimeError(f"{translations['errors_loading_audio']}: {e}")
|
| 257 |
-
|
| 258 |
-
return audio.flatten()
|
| 259 |
-
|
| 260 |
-
def pydub_load(input_path, volume = None):
|
| 261 |
-
try:
|
| 262 |
-
if input_path.endswith(".wav"): audio = AudioSegment.from_wav(input_path)
|
| 263 |
-
elif input_path.endswith(".mp3"): audio = AudioSegment.from_mp3(input_path)
|
| 264 |
-
elif input_path.endswith(".ogg"): audio = AudioSegment.from_ogg(input_path)
|
| 265 |
-
else: audio = AudioSegment.from_file(input_path)
|
| 266 |
-
except:
|
| 267 |
-
audio = AudioSegment.from_file(input_path)
|
| 268 |
-
|
| 269 |
-
return audio if volume is None else (audio + volume)
|
| 270 |
-
|
| 271 |
-
def load_embedders_model(embedder_model, embedders_mode="fairseq"):
|
| 272 |
-
if embedders_mode in ["fairseq", "whisper"]: embedder_model += ".pt"
|
| 273 |
-
elif embedders_mode == "onnx": embedder_model += ".onnx"
|
| 274 |
-
elif embedders_mode == "spin": embedders_mode = "transformers"
|
| 275 |
-
|
| 276 |
-
embedder_model_path = (
|
| 277 |
-
os.path.join(
|
| 278 |
-
configs["speaker_diarization_path"],
|
| 279 |
-
"models",
|
| 280 |
-
embedder_model
|
| 281 |
-
)
|
| 282 |
-
) if embedders_mode == "whisper" else (
|
| 283 |
-
os.path.join(
|
| 284 |
-
configs["embedders_path"],
|
| 285 |
-
embedder_model
|
| 286 |
-
)
|
| 287 |
-
)
|
| 288 |
-
|
| 289 |
-
if not os.path.exists(embedder_model_path):
|
| 290 |
-
raise FileNotFoundError(
|
| 291 |
-
f"{translations['not_found'].format(name=translations['model'])}: {embedder_model}"
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
try:
|
| 295 |
-
if embedders_mode == "fairseq":
|
| 296 |
-
from main.library.embedders.fairseq import load_model
|
| 297 |
-
|
| 298 |
-
hubert_model = load_model(
|
| 299 |
-
embedder_model_path
|
| 300 |
-
)
|
| 301 |
-
elif embedders_mode == "onnx":
|
| 302 |
-
from main.library.embedders.onnx import HubertModelONNX
|
| 303 |
-
|
| 304 |
-
hubert_model = HubertModelONNX(
|
| 305 |
-
embedder_model_path,
|
| 306 |
-
config.providers,
|
| 307 |
-
config.device
|
| 308 |
-
)
|
| 309 |
-
elif embedders_mode == "transformers":
|
| 310 |
-
from main.library.embedders.transformers import HubertModelWithFinalProj
|
| 311 |
-
|
| 312 |
-
hubert_model = HubertModelWithFinalProj.from_pretrained(
|
| 313 |
-
embedder_model_path
|
| 314 |
-
)
|
| 315 |
-
elif embedders_mode == "whisper":
|
| 316 |
-
from main.library.embedders.ppg import WhisperModel
|
| 317 |
-
|
| 318 |
-
hubert_model = WhisperModel(
|
| 319 |
-
embedder_model_path,
|
| 320 |
-
config.device
|
| 321 |
-
)
|
| 322 |
-
else: raise ValueError(translations["option_not_valid"])
|
| 323 |
-
except Exception as e:
|
| 324 |
-
raise RuntimeError(translations["read_model_error"].format(e=e))
|
| 325 |
-
|
| 326 |
-
return hubert_model
|
| 327 |
-
|
| 328 |
-
def cut(audio, sr, db_thresh=-60, min_interval=250):
|
| 329 |
-
from main.inference.preprocess.slicer2 import Slicer2
|
| 330 |
-
|
| 331 |
-
slicer = Slicer2(
|
| 332 |
-
sr=sr,
|
| 333 |
-
threshold=db_thresh,
|
| 334 |
-
min_interval=min_interval
|
| 335 |
-
)
|
| 336 |
-
|
| 337 |
-
return slicer.slice2(audio)
|
| 338 |
-
|
| 339 |
-
def restore(segments, total_len, dtype=np.float32):
|
| 340 |
-
out = []
|
| 341 |
-
last_end = 0
|
| 342 |
-
|
| 343 |
-
for start, end, processed_seg in segments:
|
| 344 |
-
if start > last_end:
|
| 345 |
-
out.append(
|
| 346 |
-
np.zeros(start - last_end, dtype=dtype)
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
out.append(processed_seg)
|
| 350 |
-
last_end = end
|
| 351 |
-
|
| 352 |
-
if last_end < total_len:
|
| 353 |
-
out.append(
|
| 354 |
-
np.zeros(total_len - last_end, dtype=dtype)
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
return np.concatenate(out, axis=-1)
|
| 358 |
-
|
| 359 |
-
def extract_features(model, feats, version, device="cpu"):
|
| 360 |
-
with torch.no_grad():
|
| 361 |
-
logits = model.extract_features(
|
| 362 |
-
**{
|
| 363 |
-
"source": feats,
|
| 364 |
-
"padding_mask": torch.BoolTensor(feats.shape).fill_(False).to(device),
|
| 365 |
-
"output_layer": 9 if version == "v1" else 12
|
| 366 |
-
}
|
| 367 |
-
)
|
| 368 |
-
feats = model.final_proj(logits[0]) if version == "v1" else logits[0]
|
| 369 |
-
|
| 370 |
-
return feats
|
| 371 |
-
|
| 372 |
-
def autotune_f0(note_dict, f0, f0_autotune_strength):
|
| 373 |
-
autotuned_f0 = np.zeros_like(f0)
|
| 374 |
-
|
| 375 |
-
for i, freq in enumerate(f0):
|
| 376 |
-
autotuned_f0[i] = freq + (min(note_dict, key=lambda x: abs(x - freq)) - freq) * f0_autotune_strength
|
| 377 |
-
|
| 378 |
-
return autotuned_f0
|
| 379 |
-
|
| 380 |
-
def change_rms(source_audio, source_rate, target_audio, target_rate, rate):
|
| 381 |
-
import librosa
|
| 382 |
-
import torch.nn.functional as F
|
| 383 |
-
|
| 384 |
-
rms2 = F.interpolate(
|
| 385 |
-
torch.from_numpy(
|
| 386 |
-
librosa.feature.rms(
|
| 387 |
-
y=target_audio,
|
| 388 |
-
frame_length=target_rate // 2 * 2,
|
| 389 |
-
hop_length=target_rate // 2
|
| 390 |
-
)
|
| 391 |
-
).float().unsqueeze(0),
|
| 392 |
-
size=target_audio.shape[0],
|
| 393 |
-
mode="linear"
|
| 394 |
-
).squeeze()
|
| 395 |
-
|
| 396 |
-
return target_audio * (
|
| 397 |
-
F.interpolate(
|
| 398 |
-
torch.from_numpy(
|
| 399 |
-
librosa.feature.rms(
|
| 400 |
-
y=source_audio,
|
| 401 |
-
frame_length=source_rate // 2 * 2,
|
| 402 |
-
hop_length=source_rate // 2
|
| 403 |
-
)
|
| 404 |
-
).float().unsqueeze(0),
|
| 405 |
-
size=target_audio.shape[0],
|
| 406 |
-
mode="linear"
|
| 407 |
-
).squeeze().pow(1 - rate) * rms2.maximum(torch.zeros_like(rms2) + 1e-6).pow(rate - 1)
|
| 408 |
-
).numpy()
|
| 409 |
-
|
| 410 |
-
def clear_gpu_cache():
|
| 411 |
-
gc.collect()
|
| 412 |
-
|
| 413 |
-
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
| 414 |
-
elif torch.backends.mps.is_available(): torch.mps.empty_cache()
|
| 415 |
-
elif directml.is_available(): directml.empty_cache()
|
| 416 |
-
elif opencl.is_available(): opencl.pytorch_ocl.empty_cache()
|
| 417 |
-
|
| 418 |
-
def extract_median_f0(f0):
|
| 419 |
-
f0 = np.where(f0 == 0, np.nan, f0)
|
| 420 |
-
|
| 421 |
-
return float(
|
| 422 |
-
np.median(
|
| 423 |
-
np.interp(
|
| 424 |
-
np.arange(len(f0)),
|
| 425 |
-
np.where(~np.isnan(f0))[0],
|
| 426 |
-
f0[~np.isnan(f0)]
|
| 427 |
-
)
|
| 428 |
-
)
|
| 429 |
-
)
|
| 430 |
-
|
| 431 |
-
def proposal_f0_up_key(f0, target_f0 = 155.0, limit = 12):
|
| 432 |
-
try:
|
| 433 |
-
return max(
|
| 434 |
-
-limit,
|
| 435 |
-
min(
|
| 436 |
-
limit, int(np.round(12 * np.log2(target_f0 / extract_median_f0(f0))))
|
| 437 |
-
)
|
| 438 |
-
)
|
| 439 |
-
except ValueError:
|
| 440 |
-
return 0
|
| 441 |
-
|
| 442 |
-
def circular_write(new_data, target):
|
| 443 |
-
offset = new_data.shape[0]
|
| 444 |
-
|
| 445 |
-
target[: -offset] = target[offset :].detach().clone()
|
| 446 |
-
target[-offset :] = new_data
|
| 447 |
-
|
| 448 |
-
return target
|
| 449 |
-
|
| 450 |
-
def load_faiss_index(index_path):
|
| 451 |
-
if index_path != "" and os.path.exists(index_path):
|
| 452 |
-
try:
|
| 453 |
-
index = faiss.read_index(index_path)
|
| 454 |
-
big_npy = index.reconstruct_n(0, index.ntotal)
|
| 455 |
-
except Exception as e:
|
| 456 |
-
logger.error(translations["read_faiss_index_error"].format(e=e))
|
| 457 |
-
index = big_npy = None
|
| 458 |
-
else: index = big_npy = None
|
| 459 |
-
|
| 460 |
-
return index, big_npy
|
| 461 |
-
|
| 462 |
-
def load_model(model_path, weights_only=True, log_severity_level=3):
|
| 463 |
-
if not os.path.isfile(model_path): return None
|
| 464 |
-
|
| 465 |
-
if model_path.endswith(".pth"):
|
| 466 |
-
return torch.load(
|
| 467 |
-
model_path,
|
| 468 |
-
map_location="cpu",
|
| 469 |
-
weights_only=weights_only
|
| 470 |
-
)
|
| 471 |
-
else:
|
| 472 |
-
from main.library.onnx.wrapper import ONNXRVC
|
| 473 |
-
|
| 474 |
-
return ONNXRVC(
|
| 475 |
-
model_path,
|
| 476 |
-
config.providers,
|
| 477 |
-
log_severity_level=log_severity_level
|
| 478 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|