File size: 1,248 Bytes
6d3b444 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import torch
from transformers import AutoTokenizer, AutoModel
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import numpy as np
import sympy as sp
# Load ProtBert model from HuggingFace
tokenizer = AutoTokenizer.from_pretrained("Rostlab/prot_bert", do_lower_case=False)
model = AutoModel.from_pretrained("Rostlab/prot_bert")
analyzer = SentimentIntensityAnalyzer()
def fuse_perspectives(target_signature, models=['newton', 'davinci', 'quantum', 'ethics']):
sequence = target_signature['cleaned_sequence']
encoded_input = tokenizer(sequence, return_tensors="pt")
with torch.no_grad():
embedding = model(**encoded_input).last_hidden_state.mean(dim=1).squeeze().numpy()
# Normalize vector
norm_embedding = embedding / np.linalg.norm(embedding)
# Simulated reasoning output
sentiment = analyzer.polarity_scores(sequence)
symbolic_logic = sp.sympify(target_signature['isoelectric_point']) + sp.Rational(1, 3)
fused_output = {
"embedding_vector": norm_embedding.tolist(),
"sentiment_trace": sentiment,
"symbolic_logic_score": float(symbolic_logic),
"perspective_tags": models,
"reasoning_fusion": "Completed"
}
return fused_output
|