from modules.extract_signature import extract_signature from modules.fuse_perspectives import fuse_perspectives from modules.generate_binders import generate_binders from modules.run_simulations import run_simulations from modules.validate_ethics import validate_ethics from modules.personalize_binders import personalize_binders from modules.exporter import export_designs def codette_pipeline(target_input): # Stage 1: Extract Signature sig = extract_signature(target_input) # Stage 2: Perspective Fusion context = fuse_perspectives(sig) # Stage 3: Candidate Generation candidates = generate_binders(context) # Stage 4: Simulations scored = run_simulations(candidates) # Stage 5: Ethics Filter ethics_checked = validate_ethics(scored) # Stage 6: Personalization personalized = personalize_binders(ethics_checked, patient_data={ "immune_profile": ["A*24:02", "B*27:05"], "metabolic_rate": 1.2, "prior_exposure": ["SARS-CoV-2", "Influenza-B"], "ancestry_profile": ["Native", "Irish"] }) # Stage 7: Export result = export_designs(personalized) return result if __name__ == "__main__": # Example input test_seq = "MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFD" output = codette_pipeline(test_seq) print(output)