Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,86 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
base_model:
|
| 7 |
+
- Qwen/Qwen2.5-0.5B-Instruct
|
| 8 |
+
tags:
|
| 9 |
+
- context compression
|
| 10 |
+
- sentence selection
|
| 11 |
+
- probing classifier
|
| 12 |
+
- attention probing
|
| 13 |
+
- RAG
|
| 14 |
+
- LongBench
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# Sentinel Probing Classifier (Logistic Regression)
|
| 18 |
+
|
| 19 |
+
This repository contains the sentence-level classifier used in **Sentinel**, a lightweight context compression framework introduced in our ACL 2025 paper:
|
| 20 |
+
|
| 21 |
+
> **Sentinel: Attention Probing of Proxy Models for LLM Context Compression with an Understanding Perspective**
|
| 22 |
+
> Yong Zhang, Yanwen Huang, Ning Cheng, Yang Guo, Yun Zhu, Yanmeng Wang, Shaojun Wang, Jing Xiao
|
| 23 |
+
> π [Paper (Arxiv 2025)](https://arxiv.org/abs/2303.08774)β|βπ» [Code on GitHub](https://github.com/yzhangchuck/Sentinel)
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## π§ What is Sentinel?
|
| 28 |
+
|
| 29 |
+
**Sentinel** reframes LLM context compression as a lightweight attention-based *understanding* task. Instead of fine-tuning a full compression model, it:
|
| 30 |
+
|
| 31 |
+
- Extracts **decoder attention** from a small proxy LLM (e.g., Qwen-2.5-0.5B)
|
| 32 |
+
- Computes **sentence-level attention features**
|
| 33 |
+
- Applies a **logistic regression (LR) classifier** to select relevant sentences
|
| 34 |
+
|
| 35 |
+
This approach is efficient, model-agnostic, and highly interpretable.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## π¦ Files Included
|
| 40 |
+
|
| 41 |
+
| File | Description |
|
| 42 |
+
|-------------------------|----------------------------------------------|
|
| 43 |
+
| `sentinel_lr_model.pkl` | Trained logistic regression classifier |
|
| 44 |
+
| `sentinel_config.json` | Feature extraction configuration |
|
| 45 |
+
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
## π Usage
|
| 49 |
+
|
| 50 |
+
Use this classifier on attention-derived feature vectors to predict sentence-level relevance scores:
|
| 51 |
+
|
| 52 |
+
π Feature extraction code and full pipeline available at:
|
| 53 |
+
π https://github.com/yzhangchuck/Sentinel
|
| 54 |
+
|
| 55 |
+
## π Benchmark Results
|
| 56 |
+
<p align="center">
|
| 57 |
+
<img src="longbench_gpt35.png" alt="LongBench GPT-3.5 Results" width="750"/>
|
| 58 |
+
</p>
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
<p align="center">
|
| 62 |
+
<img src="longbench_qwen7b.png" alt="LongBench Qwen Results" width="750"/>
|
| 63 |
+
</p>
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
## π Citation
|
| 67 |
+
Please cite us if you use this model:
|
| 68 |
+
|
| 69 |
+
@misc{zhang2025sentinelattentionprobingproxy,
|
| 70 |
+
title={Sentinel: Attention Probing of Proxy Models for LLM Context Compression with an Understanding Perspective},
|
| 71 |
+
author={Yong Zhang and Yanwen Huang and Ning Cheng and Yang Guo and Yun Zhu and Yanmeng Wang and Shaojun Wang and Jing Xiao},
|
| 72 |
+
year={2025},
|
| 73 |
+
eprint={2505.23277},
|
| 74 |
+
archivePrefix={arXiv},
|
| 75 |
+
primaryClass={cs.CL},
|
| 76 |
+
url={https://arxiv.org/abs/2505.23277},
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
## π¬ Contact
|
| 80 |
+
β’ π§ [email protected]
|
| 81 |
+
β’ π Project: https://github.com/yzhangchuck/Sentinel
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
## π License
|
| 85 |
+
|
| 86 |
+
Apache License 2.0 β Free for research and commercial use with attribution.
|