File size: 2,588 Bytes
eab98b6 4a65b37 eab98b6 4a65b37 eab98b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language: vi
datasets:
- nyamuda/samsum
tags:
- summarization
license: mit
widget:
- text: ViFortuneAI.
---
# ViT5-Base Finetuned on `vietnews` Abstractive Summarization (No prefix needed)
State-of-the-art pretrained Transformer-based encoder-decoder model for Vietnamese.
[](https://paperswithcode.com/sota/abstractive-text-summarization-on-vietnews?p=vit5-pretrained-text-to-text-transformer-for)
## How to use
For more details, do check out [our Github repo](https://github.com/vietai/ViT5) and [eval script](https://github.com/vietai/ViT5/blob/main/eval/Eval_vietnews_sum.ipynb).
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load model và tokenizer
model_name = "ViFortune-AI/ViT5Summer"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
model.cuda()
# DỮ LIỆU ĐẦU VÀO CỦA BẠN: nguyên văn hội thoại (giống trong dataset)
sentence = "Bạn đã thanh toán cho cà phê không?>> Hmm... tôi nghĩ không phải là vậy, nhưng nó cũng không sao, tôi sẽ thanh toán anh ta mai nhé."
# ✅ KHÔNG thêm "summarize:", KHÔNG thêm "</s>"
encoding = tokenizer(
sentence,
return_tensors="pt",
max_length=512,
truncation=True,
padding=False # hoặc "max_length" nếu muốn
)
input_ids = encoding["input_ids"].to("cuda")
attention_mask = encoding["attention_mask"].to("cuda")
# Generate
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_length=256,
min_length=10,
num_beams=4,
early_stopping=True,
no_repeat_ngram_size=2,
length_penalty=1.0
)
# Decode
for output in outputs:
summary = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print("Tóm tắt:", summary)
```
## Citation
```
@inproceedings{phan-etal-2022-vit5,
title = "{V}i{T}5: Pretrained Text-to-Text Transformer for {V}ietnamese Language Generation",
author = "Phan, Long and Tran, Hieu and Nguyen, Hieu and Trinh, Trieu H.",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Student Research Workshop",
year = "2022",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-srw.18",
pages = "136--142",
}
``` |