--- base_model: XD-MU/ScriptAgent library_name: peft pipeline_tag: text-generation tags: - base_model:adapter:XD-MU/ScriptAgent - lora - transformers --- # ScriptAgent: Dialogue-to-Shooting-Script Generation Model This model is a fine-tuned adapter (LoRA) on top of the `XD-MU/ScriptAgent` base model, designed to **generate detailed shooting scripts from dialogue inputs**. It is trained to transform conversational text into structured screenplay formats suitable for film or video production. The model is compatible with [ms-swift](https://github.com/modelscope/swift) and supports efficient inference via the **vLLM backend**. > 💡 Note: This repository contains a **PEFT adapter** (e.g., LoRA). To use it, you must merge it with the original base model or load it via `ms-swift`. ## ▶️ Inference with ms-swift (vLLM Backend) To generate shooting scripts from dialogue inputs, use the following command with **ms-swift**: You can find **DialoguePrompts** here: https://huggingface.co/datasets/XD-MU/DialoguePrompts ```bash import os from huggingface_hub import snapshot_download os.environ['CUDA_VISIBLE_DEVICES'] = '0' model_name = "XD-MU/ScriptAgent" local_path = "./models/ScriptAgent" # 下载整个仓库的所有文件 print("下载模型所有文件...") snapshot_download( repo_id=model_name, local_dir=local_path, local_dir_use_symlinks=False, resume_download=True ) print(f"模型已完整下载到: {local_path}") # 使用 SWIFT 加载 from swift.llm import PtEngine, RequestConfig, InferRequest engine = PtEngine(local_path, max_batch_size=1) request_config = RequestConfig(max_tokens=8192, temperature=0.7) infer_request = InferRequest(messages=[ {"role": "user", "content": "你的对话上下文(Your Dialogue)"} ]) response = engine.infer([infer_request], request_config)[0] print(response.choices[0].message.content) ```