File size: 1,528 Bytes
c887597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

from transformers import PretrainedConfig

class TinyRecursiveConfig(PretrainedConfig):
    model_type = "tiny_recursive"

    def __init__(
        self,
        vocab_size=50257,
        n_positions=1024,
        n_embd=512,
        n_head=8,
        n_physical_layers=2,
        n_loops=6,
        activation_function="gelu_new",
        resid_pdrop=0.1,
        embd_pdrop=0.1,
        attn_pdrop=0.1,
        layer_norm_epsilon=1e-5,
        scale_attn_weights=True,
        scale_attn_by_inverse_layer_idx=False,
        reorder_and_upcast_attn=False,
        **kwargs,
    ):
        super().__init__(**kwargs)
        # Standard config
        self.vocab_size = vocab_size
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_head = n_head
        self.n_physical_layers = n_physical_layers
        self.n_loops = n_loops
        self.activation_function = activation_function
        self.resid_pdrop = resid_pdrop
        self.embd_pdrop = embd_pdrop
        self.attn_pdrop = attn_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.scale_attn_weights = scale_attn_weights
        self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
        self.reorder_and_upcast_attn = reorder_and_upcast_attn

        # CRITICAL FIXES FOR COMPATIBILITY
        self.max_position_embeddings = n_positions 
        self.hidden_size = n_embd
        self.num_attention_heads = n_head
        self.num_hidden_layers = n_physical_layers
        self.n_inner = None