Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,189 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
-
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
## Model Details
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
- **
|
| 148 |
-
- **
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
##
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets:
|
| 5 |
+
- roneneldan/TinyStories
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Tiny Recursive Model (TRM)
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
A compact language model featuring a recursive architecture designed for efficient text generation. This model uses a custom `TinyRecursiveModel` class with a ~7M parameter logic core [1].
|
| 13 |
|
| 14 |
## Model Details
|
| 15 |
|
| 16 |
+
- **Model Type**: Causal Language Model with Custom Recursive Architecture
|
| 17 |
+
- **Parameters**: ~40.21M total parameters (7.39M logic core, 32.82M vocabulary)
|
| 18 |
+
- **Architecture**: 3 physical layers, 8 recursive loops, 8 attention heads [1]
|
| 19 |
+
- **Vocabulary Size**: 50,257 tokens
|
| 20 |
+
- **Context Length**: 1024 tokens
|
| 21 |
+
- **Embedding Dimension**: 512
|
| 22 |
+
|
| 23 |
+
## ⚠️ Important: Custom Model Class
|
| 24 |
+
|
| 25 |
+
This model uses a **custom `TinyRecursiveModel` class** that is not part of the standard transformers library [1]. You must use `trust_remote_code=True` when loading the model.
|
| 26 |
+
|
| 27 |
+
## Installation Requirements
|
| 28 |
+
|
| 29 |
+
```bash
|
| 30 |
+
pip install transformers torch
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## Usage
|
| 34 |
+
|
| 35 |
+
### Method 1: Using trust_remote_code (Recommended)
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 39 |
+
import torch
|
| 40 |
+
|
| 41 |
+
# Load the model and tokenizer (MUST use trust_remote_code=True)
|
| 42 |
+
model_name = "ainz/tiny-recursive-model"
|
| 43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
model_name,
|
| 46 |
+
trust_remote_code=True # Required for custom model class
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Generate text
|
| 50 |
+
input_text = "Once upon a time"
|
| 51 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 52 |
+
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
outputs = model.generate(
|
| 55 |
+
inputs["input_ids"],
|
| 56 |
+
max_length=100,
|
| 57 |
+
do_sample=True,
|
| 58 |
+
temperature=0.7,
|
| 59 |
+
top_p=0.9,
|
| 60 |
+
pad_token_id=tokenizer.eos_token_id
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 64 |
+
print(generated_text)
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### Method 2: Manual Class Loading
|
| 68 |
+
|
| 69 |
+
If you prefer not to use `trust_remote_code`, you can manually download and use the model files:
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
import torch
|
| 73 |
+
from huggingface_hub import hf_hub_download
|
| 74 |
+
|
| 75 |
+
# Download the model files
|
| 76 |
+
model_path = hf_hub_download(repo_id="ainz/tiny-recursive-model", filename="pytorch_model.bin")
|
| 77 |
+
config_path = hf_hub_download(repo_id="ainz/tiny-recursive-model", filename="config.json")
|
| 78 |
+
|
| 79 |
+
# You'll need to copy the TinyRecursiveModel class definition locally
|
| 80 |
+
# Then load manually:
|
| 81 |
+
# model = TinyRecursiveModel.from_pretrained("ainz/tiny-recursive-model")
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
### Batch Generation Example
|
| 85 |
+
|
| 86 |
+
```python
|
| 87 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 88 |
+
|
| 89 |
+
# Load model with trust_remote_code
|
| 90 |
+
tokenizer = AutoTokenizer.from_pretrained("ainz/tiny-recursive-model")
|
| 91 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 92 |
+
"ainz/tiny-recursive-model",
|
| 93 |
+
trust_remote_code=True
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Generate for multiple prompts
|
| 97 |
+
prompts = [
|
| 98 |
+
"The future of artificial intelligence",
|
| 99 |
+
"In a distant galaxy",
|
| 100 |
+
"The secret to happiness"
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True)
|
| 104 |
+
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
outputs = model.generate(
|
| 107 |
+
inputs["input_ids"],
|
| 108 |
+
attention_mask=inputs["attention_mask"],
|
| 109 |
+
max_length=80,
|
| 110 |
+
do_sample=True,
|
| 111 |
+
temperature=0.7,
|
| 112 |
+
pad_token_id=tokenizer.eos_token_id
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
for i, output in enumerate(outputs):
|
| 116 |
+
text = tokenizer.decode(output, skip_special_tokens=True)
|
| 117 |
+
print(f"Prompt {i+1}: {text}\n")
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
### Advanced Generation Parameters
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
+
# More creative generation
|
| 124 |
+
outputs = model.generate(
|
| 125 |
+
inputs["input_ids"],
|
| 126 |
+
max_length=150,
|
| 127 |
+
do_sample=True,
|
| 128 |
+
temperature=0.8, # Higher = more creative
|
| 129 |
+
top_k=50, # Consider top 50 tokens
|
| 130 |
+
top_p=0.95, # Nucleus sampling
|
| 131 |
+
repetition_penalty=1.1, # Reduce repetition
|
| 132 |
+
pad_token_id=tokenizer.eos_token_id
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Deterministic generation
|
| 136 |
+
outputs = model.generate(
|
| 137 |
+
inputs["input_ids"],
|
| 138 |
+
max_length=100,
|
| 139 |
+
do_sample=False, # Greedy decoding
|
| 140 |
+
pad_token_id=tokenizer.eos_token_id
|
| 141 |
+
)
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
## Architecture Overview
|
| 145 |
+
|
| 146 |
+
This model implements a novel recursive architecture where layers are reused multiple times through loops [1]. Key features:
|
| 147 |
+
|
| 148 |
+
- **Recursive Layers**: 3 physical transformer layers recursively applied 8 times
|
| 149 |
+
- **Parameter Efficiency**: Achieves 7.39M logic parameters through recursive design
|
| 150 |
+
- **Custom Implementation**: Uses `TinyRecursiveModel` class with `TRMConfig`
|
| 151 |
+
|
| 152 |
+
## Model Performance
|
| 153 |
+
|
| 154 |
+
Training completed with:
|
| 155 |
+
- **Final Training Loss**: ~2.0
|
| 156 |
+
- **Training Steps**: 7,032 (1 epoch)
|
| 157 |
+
- **Parameter Breakdown**: 7.39M logic core + 32.82M vocabulary
|
| 158 |
+
|
| 159 |
+
## Security Note
|
| 160 |
+
|
| 161 |
+
This model requires `trust_remote_code=True` because it uses custom model architecture code. Only use this if you trust the model source.
|
| 162 |
+
|
| 163 |
+
## Troubleshooting
|
| 164 |
+
|
| 165 |
+
**Error loading model?**
|
| 166 |
+
- Make sure you're using `trust_remote_code=True`
|
| 167 |
+
- Ensure you have the latest transformers version: `pip install --upgrade transformers`
|
| 168 |
+
|
| 169 |
+
**Generation issues?**
|
| 170 |
+
- The model is relatively small (7.39M logic parameters) - adjust temperature and sampling parameters
|
| 171 |
+
- Try different prompt formats for better results
|
| 172 |
+
|
| 173 |
+
## Limitations
|
| 174 |
+
|
| 175 |
+
- Small model size (~7M logic parameters) may limit performance compared to larger models
|
| 176 |
+
- Custom architecture requires `trust_remote_code=True`
|
| 177 |
+
- Best suited for creative writing and simple text completion tasks
|
| 178 |
+
|
| 179 |
+
## Citation
|
| 180 |
+
|
| 181 |
+
```bibtex
|
| 182 |
+
@model{tiny_recursive_model_2024,
|
| 183 |
+
author = {ainz},
|
| 184 |
+
title = {Tiny Recursive Model},
|
| 185 |
+
year = {2025},
|
| 186 |
+
publisher = {Hugging Face},
|
| 187 |
+
url = {https://huggingface.co/ainz/tiny-recursive-model}
|
| 188 |
+
}
|
| 189 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|