ainz commited on
Commit
82fce22
·
verified ·
1 Parent(s): 02795c9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +181 -191
README.md CHANGED
@@ -1,199 +1,189 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ license: apache-2.0
4
+ datasets:
5
+ - roneneldan/TinyStories
6
+ language:
7
+ - en
8
  ---
9
 
10
+ # Tiny Recursive Model (TRM)
 
 
 
11
 
12
+ A compact language model featuring a recursive architecture designed for efficient text generation. This model uses a custom `TinyRecursiveModel` class with a ~7M parameter logic core [1].
13
 
14
  ## Model Details
15
 
16
+ - **Model Type**: Causal Language Model with Custom Recursive Architecture
17
+ - **Parameters**: ~40.21M total parameters (7.39M logic core, 32.82M vocabulary)
18
+ - **Architecture**: 3 physical layers, 8 recursive loops, 8 attention heads [1]
19
+ - **Vocabulary Size**: 50,257 tokens
20
+ - **Context Length**: 1024 tokens
21
+ - **Embedding Dimension**: 512
22
+
23
+ ## ⚠️ Important: Custom Model Class
24
+
25
+ This model uses a **custom `TinyRecursiveModel` class** that is not part of the standard transformers library [1]. You must use `trust_remote_code=True` when loading the model.
26
+
27
+ ## Installation Requirements
28
+
29
+ ```bash
30
+ pip install transformers torch
31
+ ```
32
+
33
+ ## Usage
34
+
35
+ ### Method 1: Using trust_remote_code (Recommended)
36
+
37
+ ```python
38
+ from transformers import AutoTokenizer, AutoModelForCausalLM
39
+ import torch
40
+
41
+ # Load the model and tokenizer (MUST use trust_remote_code=True)
42
+ model_name = "ainz/tiny-recursive-model"
43
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
44
+ model = AutoModelForCausalLM.from_pretrained(
45
+ model_name,
46
+ trust_remote_code=True # Required for custom model class
47
+ )
48
+
49
+ # Generate text
50
+ input_text = "Once upon a time"
51
+ inputs = tokenizer(input_text, return_tensors="pt")
52
+
53
+ with torch.no_grad():
54
+ outputs = model.generate(
55
+ inputs["input_ids"],
56
+ max_length=100,
57
+ do_sample=True,
58
+ temperature=0.7,
59
+ top_p=0.9,
60
+ pad_token_id=tokenizer.eos_token_id
61
+ )
62
+
63
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
64
+ print(generated_text)
65
+ ```
66
+
67
+ ### Method 2: Manual Class Loading
68
+
69
+ If you prefer not to use `trust_remote_code`, you can manually download and use the model files:
70
+
71
+ ```python
72
+ import torch
73
+ from huggingface_hub import hf_hub_download
74
+
75
+ # Download the model files
76
+ model_path = hf_hub_download(repo_id="ainz/tiny-recursive-model", filename="pytorch_model.bin")
77
+ config_path = hf_hub_download(repo_id="ainz/tiny-recursive-model", filename="config.json")
78
+
79
+ # You'll need to copy the TinyRecursiveModel class definition locally
80
+ # Then load manually:
81
+ # model = TinyRecursiveModel.from_pretrained("ainz/tiny-recursive-model")
82
+ ```
83
+
84
+ ### Batch Generation Example
85
+
86
+ ```python
87
+ from transformers import AutoTokenizer, AutoModelForCausalLM
88
+
89
+ # Load model with trust_remote_code
90
+ tokenizer = AutoTokenizer.from_pretrained("ainz/tiny-recursive-model")
91
+ model = AutoModelForCausalLM.from_pretrained(
92
+ "ainz/tiny-recursive-model",
93
+ trust_remote_code=True
94
+ )
95
+
96
+ # Generate for multiple prompts
97
+ prompts = [
98
+ "The future of artificial intelligence",
99
+ "In a distant galaxy",
100
+ "The secret to happiness"
101
+ ]
102
+
103
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True, truncation=True)
104
+
105
+ with torch.no_grad():
106
+ outputs = model.generate(
107
+ inputs["input_ids"],
108
+ attention_mask=inputs["attention_mask"],
109
+ max_length=80,
110
+ do_sample=True,
111
+ temperature=0.7,
112
+ pad_token_id=tokenizer.eos_token_id
113
+ )
114
+
115
+ for i, output in enumerate(outputs):
116
+ text = tokenizer.decode(output, skip_special_tokens=True)
117
+ print(f"Prompt {i+1}: {text}\n")
118
+ ```
119
+
120
+ ### Advanced Generation Parameters
121
+
122
+ ```python
123
+ # More creative generation
124
+ outputs = model.generate(
125
+ inputs["input_ids"],
126
+ max_length=150,
127
+ do_sample=True,
128
+ temperature=0.8, # Higher = more creative
129
+ top_k=50, # Consider top 50 tokens
130
+ top_p=0.95, # Nucleus sampling
131
+ repetition_penalty=1.1, # Reduce repetition
132
+ pad_token_id=tokenizer.eos_token_id
133
+ )
134
+
135
+ # Deterministic generation
136
+ outputs = model.generate(
137
+ inputs["input_ids"],
138
+ max_length=100,
139
+ do_sample=False, # Greedy decoding
140
+ pad_token_id=tokenizer.eos_token_id
141
+ )
142
+ ```
143
+
144
+ ## Architecture Overview
145
+
146
+ This model implements a novel recursive architecture where layers are reused multiple times through loops [1]. Key features:
147
+
148
+ - **Recursive Layers**: 3 physical transformer layers recursively applied 8 times
149
+ - **Parameter Efficiency**: Achieves 7.39M logic parameters through recursive design
150
+ - **Custom Implementation**: Uses `TinyRecursiveModel` class with `TRMConfig`
151
+
152
+ ## Model Performance
153
+
154
+ Training completed with:
155
+ - **Final Training Loss**: ~2.0
156
+ - **Training Steps**: 7,032 (1 epoch)
157
+ - **Parameter Breakdown**: 7.39M logic core + 32.82M vocabulary
158
+
159
+ ## Security Note
160
+
161
+ This model requires `trust_remote_code=True` because it uses custom model architecture code. Only use this if you trust the model source.
162
+
163
+ ## Troubleshooting
164
+
165
+ **Error loading model?**
166
+ - Make sure you're using `trust_remote_code=True`
167
+ - Ensure you have the latest transformers version: `pip install --upgrade transformers`
168
+
169
+ **Generation issues?**
170
+ - The model is relatively small (7.39M logic parameters) - adjust temperature and sampling parameters
171
+ - Try different prompt formats for better results
172
+
173
+ ## Limitations
174
+
175
+ - Small model size (~7M logic parameters) may limit performance compared to larger models
176
+ - Custom architecture requires `trust_remote_code=True`
177
+ - Best suited for creative writing and simple text completion tasks
178
+
179
+ ## Citation
180
+
181
+ ```bibtex
182
+ @model{tiny_recursive_model_2024,
183
+ author = {ainz},
184
+ title = {Tiny Recursive Model},
185
+ year = {2025},
186
+ publisher = {Hugging Face},
187
+ url = {https://huggingface.co/ainz/tiny-recursive-model}
188
+ }
189
+ ```