ashercn97 commited on
Commit
0011dfc
·
verified ·
1 Parent(s): 205489c

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 'Procedure note: Colonoscopy completed. Findings consistent with diverticulosis.
9
+ CPT 45378 used.'
10
+ - text: 'Patient diagnosed with Acute appendicitis (ICD-10-CM: K35.80). Appendectomy
11
+ performed (CPT: 44950).'
12
+ - text: If your child shows signs of anxiety, consider talking to a pediatric psychologist.
13
+ - text: Encounter billed under APC 5371. Patient stable. To follow up with PCP.
14
+ - text: Learn how cognitive behavioral therapy can improve focus and reduce anxiety.
15
+ metrics:
16
+ - accuracy
17
+ pipeline_tag: text-classification
18
+ library_name: setfit
19
+ inference: true
20
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
21
+ ---
22
+
23
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
24
+
25
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
26
+
27
+ The model has been trained using an efficient few-shot learning technique that involves:
28
+
29
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
30
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
31
+
32
+ ## Model Details
33
+
34
+ ### Model Description
35
+ - **Model Type:** SetFit
36
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
37
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
38
+ - **Maximum Sequence Length:** 512 tokens
39
+ - **Number of Classes:** 2 classes
40
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
41
+ <!-- - **Language:** Unknown -->
42
+ <!-- - **License:** Unknown -->
43
+
44
+ ### Model Sources
45
+
46
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
47
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
48
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
49
+
50
+ ### Model Labels
51
+ | Label | Examples |
52
+ |:--------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
53
+ | med | <ul><li>'Patient diagnosed with Acute appendicitis (ICD-10-CM: K35.80). Appendectomy performed (CPT: 44950).'</li><li>'Follow-up on 04/10/2025. Status post laparoscopic cholecystectomy (ICD-10: K81.1, CPT: 47562).'</li><li>'Procedure note: Colonoscopy completed. Findings consistent with diverticulosis. CPT 45378 used.'</li></ul> |
54
+ | general | <ul><li>'The Chinese gender calendar predicts baby gender based on conception month and mother’s age.'</li><li>'This article outlines tips for stress management through meditation and mindfulness.'</li><li>'Eating a balanced diet and regular exercise improves overall well-being.'</li></ul> |
55
+
56
+ ## Uses
57
+
58
+ ### Direct Use for Inference
59
+
60
+ First install the SetFit library:
61
+
62
+ ```bash
63
+ pip install setfit
64
+ ```
65
+
66
+ Then you can load this model and run inference.
67
+
68
+ ```python
69
+ from setfit import SetFitModel
70
+
71
+ # Download from the 🤗 Hub
72
+ model = SetFitModel.from_pretrained("ashercn97/medicalcode-classifier")
73
+ # Run inference
74
+ preds = model("Encounter billed under APC 5371. Patient stable. To follow up with PCP.")
75
+ ```
76
+
77
+ <!--
78
+ ### Downstream Use
79
+
80
+ *List how someone could finetune this model on their own dataset.*
81
+ -->
82
+
83
+ <!--
84
+ ### Out-of-Scope Use
85
+
86
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
87
+ -->
88
+
89
+ <!--
90
+ ## Bias, Risks and Limitations
91
+
92
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
93
+ -->
94
+
95
+ <!--
96
+ ### Recommendations
97
+
98
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
99
+ -->
100
+
101
+ ## Training Details
102
+
103
+ ### Training Set Metrics
104
+ | Training set | Min | Median | Max |
105
+ |:-------------|:----|:--------|:----|
106
+ | Word count | 10 | 11.4375 | 14 |
107
+
108
+ | Label | Training Sample Count |
109
+ |:--------|:----------------------|
110
+ | med | 8 |
111
+ | general | 8 |
112
+
113
+ ### Training Hyperparameters
114
+ - batch_size: (8, 8)
115
+ - num_epochs: (2, 2)
116
+ - max_steps: -1
117
+ - sampling_strategy: oversampling
118
+ - body_learning_rate: (2e-05, 1e-05)
119
+ - head_learning_rate: 0.01
120
+ - loss: CosineSimilarityLoss
121
+ - distance_metric: cosine_distance
122
+ - margin: 0.25
123
+ - end_to_end: False
124
+ - use_amp: False
125
+ - warmup_proportion: 0.1
126
+ - l2_weight: 0.01
127
+ - seed: 42
128
+ - eval_max_steps: -1
129
+ - load_best_model_at_end: False
130
+
131
+ ### Training Results
132
+ | Epoch | Step | Training Loss | Validation Loss |
133
+ |:------:|:----:|:-------------:|:---------------:|
134
+ | 0.0556 | 1 | 0.385 | - |
135
+
136
+ ### Framework Versions
137
+ - Python: 3.10.12
138
+ - SetFit: 1.1.2
139
+ - Sentence Transformers: 4.0.2
140
+ - Transformers: 4.51.2
141
+ - PyTorch: 2.6.0+cpu
142
+ - Datasets: 3.5.0
143
+ - Tokenizers: 0.21.1
144
+
145
+ ## Citation
146
+
147
+ ### BibTeX
148
+ ```bibtex
149
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
150
+ doi = {10.48550/ARXIV.2209.11055},
151
+ url = {https://arxiv.org/abs/2209.11055},
152
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
153
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
154
+ title = {Efficient Few-Shot Learning Without Prompts},
155
+ publisher = {arXiv},
156
+ year = {2022},
157
+ copyright = {Creative Commons Attribution 4.0 International}
158
+ }
159
+ ```
160
+
161
+ <!--
162
+ ## Glossary
163
+
164
+ *Clearly define terms in order to be accessible across audiences.*
165
+ -->
166
+
167
+ <!--
168
+ ## Model Card Authors
169
+
170
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
171
+ -->
172
+
173
+ <!--
174
+ ## Model Card Contact
175
+
176
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
177
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.51.2",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.2",
4
+ "transformers": "4.51.2",
5
+ "pytorch": "2.6.0+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "med",
5
+ "general"
6
+ ]
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9506cf0a989cf5fe5511a45b16d1a04d47af4f443e3ed7e1c1cd9d81de1414ea
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e65285f19c0e24f39ed9ae40fa915b187adf9f8a7b7a0e72a8d094e13e880527
3
+ size 7055
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_token": "<pad>",
55
+ "sep_token": "</s>",
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "MPNetTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff