|
|
import json |
|
|
import os |
|
|
import random |
|
|
from tqdm import tqdm |
|
|
from torch.utils.data import Dataset |
|
|
from mask_image import ImageNet_Masked |
|
|
from pycocotools.coco import COCO |
|
|
from pycocotools import mask as maskUtils |
|
|
from PIL import Image |
|
|
import cv2 |
|
|
import random |
|
|
from torchvision import transforms |
|
|
from tqdm import tqdm |
|
|
PIXEL_MEAN = (0.48145466, 0.4578275, 0.40821073) |
|
|
MASK_FILL = [int(255 * c) for c in PIXEL_MEAN] |
|
|
import pickle |
|
|
import torch |
|
|
import numpy as np |
|
|
import copy |
|
|
import sys |
|
|
import shutil |
|
|
from PIL import Image |
|
|
|
|
|
def get_file(url): |
|
|
return |
|
|
|
|
|
clip_standard_transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Resize((224, 224), interpolation=Image.BICUBIC), |
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
|
]) |
|
|
|
|
|
hi_clip_standard_transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Resize((336, 336), interpolation=Image.BICUBIC), |
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
|
]) |
|
|
|
|
|
res_clip_standard_transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Resize((336, 336), interpolation=Image.BICUBIC), |
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
|
]) |
|
|
|
|
|
mask_transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Resize((224, 224)), |
|
|
transforms.Normalize(0.5, 0.26) |
|
|
]) |
|
|
|
|
|
hi_mask_transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Resize((336, 336)), |
|
|
transforms.Normalize(0.5, 0.26) |
|
|
]) |
|
|
|
|
|
res_mask_transform = transforms.Compose([ |
|
|
transforms.ToTensor(), |
|
|
transforms.Resize((336, 336)), |
|
|
transforms.Normalize(0.5, 0.26) |
|
|
]) |
|
|
|
|
|
def crop_center(img, croph, cropw): |
|
|
h, w = img.shape[:2] |
|
|
starth = h//2 - (croph//2) |
|
|
startw = w//2 - (cropw//2) |
|
|
return img[starth:starth+croph, startw:startw+cropw, :] |
|
|
|
|
|
class Alpha_GRIT(Dataset): |
|
|
def __init__(self, ids_file='grit_1m_ids.pkl', root_pth='grit-1m/', common_pair=0.0, hi_res=False, subnum=None): |
|
|
if subnum is not None: |
|
|
self.ids = pickle.load(open(ids_file, 'rb'))[:subnum] |
|
|
else: |
|
|
self.ids = pickle.load(open(ids_file, 'rb')) |
|
|
self.root_pth = root_pth |
|
|
self.with_common_pair_prop = common_pair |
|
|
if hi_res: |
|
|
self.mask_transform = res_mask_transform |
|
|
self.clip_standard_transform = res_clip_standard_transform |
|
|
else: |
|
|
self.mask_transform = mask_transform |
|
|
self.clip_standard_transform = clip_standard_transform |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.ids) |
|
|
|
|
|
def __getitem__(self, index): |
|
|
id = self.ids[index] |
|
|
ann = json.loads(get_file(self.root_pth + str(id) + '.json')) |
|
|
image_data = get_file(self.root_pth + str(id) + '.jpg') |
|
|
img = np.frombuffer(image_data, dtype=np.uint8) |
|
|
img = cv2.imdecode(img, cv2.IMREAD_COLOR) |
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
ref_exps = ann['ref_exps'] |
|
|
|
|
|
choice = random.randint(0, len(ref_exps)-1) |
|
|
ref_exp = ref_exps[choice] |
|
|
text = ann['caption'][int(ref_exp[0]): int(ref_exp[1])] |
|
|
mask = maskUtils.decode(ann['seudo_masks'][choice]) |
|
|
if mask.shape != img.shape[:2]: |
|
|
img = np.rot90(img) |
|
|
rgba = np.concatenate((img, np.expand_dims(mask, axis=-1)), axis=-1) |
|
|
h, w = rgba.shape[:2] |
|
|
choice = random.randint(0, 1) |
|
|
choice = 0 |
|
|
if choice == 0: |
|
|
if max(h, w) == w: |
|
|
pad = (w - h) // 2 |
|
|
l, r = pad, w - h - pad |
|
|
rgba = np.pad(rgba, ((l, r), (0, 0), (0, 0)), 'constant', constant_values=0) |
|
|
else: |
|
|
pad = (h - w) // 2 |
|
|
l, r = pad, h - w - pad |
|
|
rgba = np.pad(rgba, ((0, 0), (l, r), (0, 0)), 'constant', constant_values=0) |
|
|
else: |
|
|
if min(h, w) == h: |
|
|
rgba = crop_center(rgba, h, h) |
|
|
else: |
|
|
rgba = crop_center(rgba, w, w) |
|
|
rgb = rgba[:, :, :-1] |
|
|
mask = rgba[:, :, -1] |
|
|
image_torch = self.clip_standard_transform(rgb) |
|
|
|
|
|
choice = random.random() |
|
|
if choice >= self.with_common_pair_prop: |
|
|
mask_torch = self.mask_transform(mask * 255) |
|
|
return image_torch, mask_torch, text |
|
|
else: |
|
|
mask_torch = self.mask_transform(np.ones_like(mask) * 255) |
|
|
return image_torch, mask_torch, ann['caption'] |