Upload 9 files
Browse files- added_tokens.json +4 -0
- main.py +102 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +73 -0
- trainer_state.json +309 -0
- vocab.json +0 -0
added_tokens.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"<from>": 50265,
|
| 3 |
+
"<to>": 50266
|
| 4 |
+
}
|
main.py
ADDED
|
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 7 |
+
from transformers import EncoderDecoderModel, RobertaTokenizerFast, PreTrainedModel
|
| 8 |
+
from torch.utils.data import DataLoader, TensorDataset
|
| 9 |
+
|
| 10 |
+
class DependencyAnalyzer(nn.Module, PyTorchModelHubMixin):
|
| 11 |
+
def __init__(self, encoder: PreTrainedModel | None = None,
|
| 12 |
+
match_tokenizer: RobertaTokenizerFast | None = None):
|
| 13 |
+
super(DependencyAnalyzer, self).__init__()
|
| 14 |
+
if not encoder:
|
| 15 |
+
encoder: PreTrainedModel = EncoderDecoderModel.from_encoder_decoder_pretrained("microsoft/codebert-base", "microsoft/codebert-base").encoder
|
| 16 |
+
if match_tokenizer:
|
| 17 |
+
encoder.resize_token_embeddings(len(match_tokenizer))
|
| 18 |
+
encoder.config.decoder_start_token_id = match_tokenizer.cls_token_id
|
| 19 |
+
encoder.config.pad_token_id = match_tokenizer.pad_token_id
|
| 20 |
+
encoder.config.eos_token_id = match_tokenizer.sep_token_id
|
| 21 |
+
encoder.config.vocab_size = match_tokenizer.vocab_size
|
| 22 |
+
self.encoder = encoder
|
| 23 |
+
self.dense = nn.Linear(768, 2)
|
| 24 |
+
|
| 25 |
+
def forward(self, input_ids, attention_mask):
|
| 26 |
+
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
| 27 |
+
pooler_output = outputs.pooler_output
|
| 28 |
+
output_2d = self.dense(pooler_output)
|
| 29 |
+
return output_2d
|
| 30 |
+
|
| 31 |
+
def load_model_and_tokenizer(model_dir, directly_load = True, model_with_structure_dir = None):
|
| 32 |
+
if directly_load:
|
| 33 |
+
tokenizer = RobertaTokenizerFast.from_pretrained(model_dir)
|
| 34 |
+
if model_with_structure_dir:
|
| 35 |
+
model = DependencyAnalyzer.from_pretrained(model_with_structure_dir)
|
| 36 |
+
else:
|
| 37 |
+
model = DependencyAnalyzer(match_tokenizer=tokenizer)
|
| 38 |
+
model.load_state_dict(torch.load(os.path.join(model_dir,'pytorch_model.bin')))
|
| 39 |
+
return model, tokenizer
|
| 40 |
+
|
| 41 |
+
model = EncoderDecoderModel.from_pretrained(model_dir)
|
| 42 |
+
if not isinstance(model, EncoderDecoderModel):
|
| 43 |
+
raise RuntimeError(f"Model read from {model_dir} is not valid")
|
| 44 |
+
model = model.encoder
|
| 45 |
+
if not isinstance(model, PreTrainedModel):
|
| 46 |
+
raise RuntimeError(f"Encoder of original model is not valid")
|
| 47 |
+
|
| 48 |
+
tokenizer: RobertaTokenizerFast = RobertaTokenizerFast.from_pretrained("microsoft/codebert-base")
|
| 49 |
+
if not isinstance(tokenizer, RobertaTokenizerFast):
|
| 50 |
+
raise RuntimeError("Cannot read tokenizer as microsoft/codebert-base")
|
| 51 |
+
special_tokens = ['<from>', '<to>']
|
| 52 |
+
# tokenizer.add_tokens(my_tokens, special_tokens = False)
|
| 53 |
+
tokenizer.add_tokens(special_tokens, special_tokens = True)
|
| 54 |
+
|
| 55 |
+
model = DependencyAnalyzer(model, tokenizer)
|
| 56 |
+
|
| 57 |
+
return model, tokenizer
|
| 58 |
+
|
| 59 |
+
class DependencyClassifier:
|
| 60 |
+
def __init__(self, load_dir, load_with_model_struture=False):
|
| 61 |
+
self.model, self.tokenizer = load_model_and_tokenizer(load_dir, model_with_structure_dir=load_dir) \
|
| 62 |
+
if load_with_model_struture \
|
| 63 |
+
else load_model_and_tokenizer(load_dir)
|
| 64 |
+
if torch.cuda.is_available():
|
| 65 |
+
self.model.to(torch.device('cuda:1'))
|
| 66 |
+
|
| 67 |
+
def construct_pair(self, code_1: str, code_2: str):
|
| 68 |
+
return '<from>' + code_1 + '<to>' + code_2
|
| 69 |
+
|
| 70 |
+
def construct_corpus_pair(self, corpus: list[tuple[str, str]]):
|
| 71 |
+
return [self.construct_pair(code_1, code_2) for code_1, code_2 in corpus]
|
| 72 |
+
|
| 73 |
+
def gen(self, text: str):
|
| 74 |
+
sigmoid = nn.Sigmoid()
|
| 75 |
+
token_input = self.tokenizer(text, return_tensors='pt') # ATTENTION: converted to batch here
|
| 76 |
+
if torch.cuda.is_available():
|
| 77 |
+
token_input = token_input.to(torch.device('cuda:1'))
|
| 78 |
+
|
| 79 |
+
with torch.no_grad():
|
| 80 |
+
outputs = self.model(
|
| 81 |
+
input_ids=token_input['input_ids'],
|
| 82 |
+
attention_mask=token_input['attention_mask']
|
| 83 |
+
)[0]
|
| 84 |
+
outputs = sigmoid(outputs).detach().cpu()
|
| 85 |
+
return outputs[1]
|
| 86 |
+
|
| 87 |
+
def batch_gen(self, corpus_pair: list[str]):
|
| 88 |
+
sigmoid = nn.Sigmoid()
|
| 89 |
+
device = torch.device('cuda:1') if torch.cuda.is_available() else torch.device('cpu')
|
| 90 |
+
token_input = self.tokenizer(corpus_pair, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
| 91 |
+
dataset = TensorDataset(token_input["input_ids"], token_input["attention_mask"])
|
| 92 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
|
| 93 |
+
|
| 94 |
+
preds = []
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
for batch in dataloader:
|
| 97 |
+
batch_input, attention_mask = [item.to(device) for item in batch]
|
| 98 |
+
outputs = self.model(input_ids=batch_input, attention_mask=attention_mask)
|
| 99 |
+
outputs = sigmoid(outputs)[:,1]
|
| 100 |
+
preds.append(outputs.detach().cpu())
|
| 101 |
+
preds = torch.cat(preds, dim=0)
|
| 102 |
+
return preds.numpy()
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d1fb9be53ed3766622caeb3f01af5be70ff0d18645d20904ba0b4a63f34bb0b
|
| 3 |
+
size 498678894
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": true,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": true,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"50265": {
|
| 45 |
+
"content": "<from>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"50266": {
|
| 53 |
+
"content": "<to>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
"bos_token": "<s>",
|
| 62 |
+
"clean_up_tokenization_spaces": true,
|
| 63 |
+
"cls_token": "<s>",
|
| 64 |
+
"eos_token": "</s>",
|
| 65 |
+
"errors": "replace",
|
| 66 |
+
"mask_token": "<mask>",
|
| 67 |
+
"model_max_length": 512,
|
| 68 |
+
"pad_token": "<pad>",
|
| 69 |
+
"sep_token": "</s>",
|
| 70 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 71 |
+
"trim_offsets": true,
|
| 72 |
+
"unk_token": "<unk>"
|
| 73 |
+
}
|
trainer_state.json
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": 0.04831862449645996,
|
| 3 |
+
"best_model_checkpoint": "./model/new-14/checkpoint-4410",
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 4410,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.02,
|
| 13 |
+
"learning_rate": 1.1337868480725626e-05,
|
| 14 |
+
"loss": 0.4789,
|
| 15 |
+
"step": 100
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.05,
|
| 19 |
+
"learning_rate": 2.267573696145125e-05,
|
| 20 |
+
"loss": 0.2222,
|
| 21 |
+
"step": 200
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.07,
|
| 25 |
+
"learning_rate": 3.401360544217687e-05,
|
| 26 |
+
"loss": 0.109,
|
| 27 |
+
"step": 300
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.09,
|
| 31 |
+
"learning_rate": 4.53514739229025e-05,
|
| 32 |
+
"loss": 0.072,
|
| 33 |
+
"step": 400
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.11,
|
| 37 |
+
"learning_rate": 4.964792934717747e-05,
|
| 38 |
+
"loss": 0.0751,
|
| 39 |
+
"step": 500
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.14,
|
| 43 |
+
"learning_rate": 4.905119942713928e-05,
|
| 44 |
+
"loss": 0.0525,
|
| 45 |
+
"step": 600
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.16,
|
| 49 |
+
"learning_rate": 4.8454469507101085e-05,
|
| 50 |
+
"loss": 0.0604,
|
| 51 |
+
"step": 700
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.18,
|
| 55 |
+
"learning_rate": 4.78577395870629e-05,
|
| 56 |
+
"loss": 0.0512,
|
| 57 |
+
"step": 800
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.2,
|
| 61 |
+
"learning_rate": 4.726100966702471e-05,
|
| 62 |
+
"loss": 0.0659,
|
| 63 |
+
"step": 900
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.23,
|
| 67 |
+
"learning_rate": 4.6664279746986514e-05,
|
| 68 |
+
"loss": 0.0771,
|
| 69 |
+
"step": 1000
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.25,
|
| 73 |
+
"learning_rate": 4.6067549826948325e-05,
|
| 74 |
+
"loss": 0.0599,
|
| 75 |
+
"step": 1100
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"epoch": 0.27,
|
| 79 |
+
"learning_rate": 4.547081990691014e-05,
|
| 80 |
+
"loss": 0.054,
|
| 81 |
+
"step": 1200
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.29,
|
| 85 |
+
"learning_rate": 4.487408998687194e-05,
|
| 86 |
+
"loss": 0.0655,
|
| 87 |
+
"step": 1300
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.32,
|
| 91 |
+
"learning_rate": 4.4277360066833754e-05,
|
| 92 |
+
"loss": 0.0838,
|
| 93 |
+
"step": 1400
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.34,
|
| 97 |
+
"learning_rate": 4.3680630146795565e-05,
|
| 98 |
+
"loss": 0.0633,
|
| 99 |
+
"step": 1500
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"epoch": 0.36,
|
| 103 |
+
"learning_rate": 4.308390022675737e-05,
|
| 104 |
+
"loss": 0.0608,
|
| 105 |
+
"step": 1600
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.39,
|
| 109 |
+
"learning_rate": 4.248717030671918e-05,
|
| 110 |
+
"loss": 0.0577,
|
| 111 |
+
"step": 1700
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"epoch": 0.41,
|
| 115 |
+
"learning_rate": 4.1890440386680994e-05,
|
| 116 |
+
"loss": 0.0543,
|
| 117 |
+
"step": 1800
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 0.43,
|
| 121 |
+
"learning_rate": 4.12937104666428e-05,
|
| 122 |
+
"loss": 0.0464,
|
| 123 |
+
"step": 1900
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.45,
|
| 127 |
+
"learning_rate": 4.069698054660461e-05,
|
| 128 |
+
"loss": 0.0422,
|
| 129 |
+
"step": 2000
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.48,
|
| 133 |
+
"learning_rate": 4.0100250626566415e-05,
|
| 134 |
+
"loss": 0.0642,
|
| 135 |
+
"step": 2100
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.5,
|
| 139 |
+
"learning_rate": 3.950352070652823e-05,
|
| 140 |
+
"loss": 0.0528,
|
| 141 |
+
"step": 2200
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.52,
|
| 145 |
+
"learning_rate": 3.890679078649004e-05,
|
| 146 |
+
"loss": 0.0511,
|
| 147 |
+
"step": 2300
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0.54,
|
| 151 |
+
"learning_rate": 3.831006086645185e-05,
|
| 152 |
+
"loss": 0.0706,
|
| 153 |
+
"step": 2400
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.57,
|
| 157 |
+
"learning_rate": 3.7713330946413655e-05,
|
| 158 |
+
"loss": 0.0474,
|
| 159 |
+
"step": 2500
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"epoch": 0.59,
|
| 163 |
+
"learning_rate": 3.711660102637547e-05,
|
| 164 |
+
"loss": 0.0566,
|
| 165 |
+
"step": 2600
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.61,
|
| 169 |
+
"learning_rate": 3.651987110633727e-05,
|
| 170 |
+
"loss": 0.0557,
|
| 171 |
+
"step": 2700
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.63,
|
| 175 |
+
"learning_rate": 3.592314118629908e-05,
|
| 176 |
+
"loss": 0.0537,
|
| 177 |
+
"step": 2800
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.66,
|
| 181 |
+
"learning_rate": 3.532641126626089e-05,
|
| 182 |
+
"loss": 0.0646,
|
| 183 |
+
"step": 2900
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"epoch": 0.68,
|
| 187 |
+
"learning_rate": 3.4729681346222707e-05,
|
| 188 |
+
"loss": 0.07,
|
| 189 |
+
"step": 3000
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.7,
|
| 193 |
+
"learning_rate": 3.413295142618451e-05,
|
| 194 |
+
"loss": 0.0508,
|
| 195 |
+
"step": 3100
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.73,
|
| 199 |
+
"learning_rate": 3.353622150614632e-05,
|
| 200 |
+
"loss": 0.0521,
|
| 201 |
+
"step": 3200
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.75,
|
| 205 |
+
"learning_rate": 3.293949158610813e-05,
|
| 206 |
+
"loss": 0.0636,
|
| 207 |
+
"step": 3300
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.77,
|
| 211 |
+
"learning_rate": 3.234276166606994e-05,
|
| 212 |
+
"loss": 0.0657,
|
| 213 |
+
"step": 3400
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.79,
|
| 217 |
+
"learning_rate": 3.1746031746031745e-05,
|
| 218 |
+
"loss": 0.0532,
|
| 219 |
+
"step": 3500
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.82,
|
| 223 |
+
"learning_rate": 3.1149301825993556e-05,
|
| 224 |
+
"loss": 0.0574,
|
| 225 |
+
"step": 3600
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.84,
|
| 229 |
+
"learning_rate": 3.055257190595537e-05,
|
| 230 |
+
"loss": 0.0425,
|
| 231 |
+
"step": 3700
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 0.86,
|
| 235 |
+
"learning_rate": 2.9955841985917176e-05,
|
| 236 |
+
"loss": 0.0545,
|
| 237 |
+
"step": 3800
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.88,
|
| 241 |
+
"learning_rate": 2.9359112065878985e-05,
|
| 242 |
+
"loss": 0.0624,
|
| 243 |
+
"step": 3900
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.91,
|
| 247 |
+
"learning_rate": 2.8762382145840793e-05,
|
| 248 |
+
"loss": 0.0488,
|
| 249 |
+
"step": 4000
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.93,
|
| 253 |
+
"learning_rate": 2.81656522258026e-05,
|
| 254 |
+
"loss": 0.0462,
|
| 255 |
+
"step": 4100
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.95,
|
| 259 |
+
"learning_rate": 2.756892230576441e-05,
|
| 260 |
+
"loss": 0.0531,
|
| 261 |
+
"step": 4200
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.98,
|
| 265 |
+
"learning_rate": 2.6972192385726218e-05,
|
| 266 |
+
"loss": 0.0476,
|
| 267 |
+
"step": 4300
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 1.0,
|
| 271 |
+
"learning_rate": 2.6375462465688033e-05,
|
| 272 |
+
"loss": 0.0537,
|
| 273 |
+
"step": 4400
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"epoch": 1.0,
|
| 277 |
+
"eval_f1_1": {
|
| 278 |
+
"f1": 0.9362880886426593
|
| 279 |
+
},
|
| 280 |
+
"eval_f1_2": {
|
| 281 |
+
"f1": 0.9555555555555556
|
| 282 |
+
},
|
| 283 |
+
"eval_loss": 0.04831862449645996,
|
| 284 |
+
"eval_precision_1": {
|
| 285 |
+
"precision": 0.9548022598870056
|
| 286 |
+
},
|
| 287 |
+
"eval_precision_2": {
|
| 288 |
+
"precision": 0.9666424945612763
|
| 289 |
+
},
|
| 290 |
+
"eval_recall_1": {
|
| 291 |
+
"recall": 0.9184782608695652
|
| 292 |
+
},
|
| 293 |
+
"eval_recall_2": {
|
| 294 |
+
"recall": 0.9447200566973778
|
| 295 |
+
},
|
| 296 |
+
"eval_runtime": 173.0776,
|
| 297 |
+
"eval_samples_per_second": 58.24,
|
| 298 |
+
"eval_steps_per_second": 3.64,
|
| 299 |
+
"step": 4410
|
| 300 |
+
}
|
| 301 |
+
],
|
| 302 |
+
"logging_steps": 100,
|
| 303 |
+
"max_steps": 8820,
|
| 304 |
+
"num_train_epochs": 2,
|
| 305 |
+
"save_steps": 500,
|
| 306 |
+
"total_flos": 0.0,
|
| 307 |
+
"trial_name": null,
|
| 308 |
+
"trial_params": null
|
| 309 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|