--- license: mit --- Source: https://www.youtube.com/@visualaccent/videos All rights belong to the original dataset creator. # VADA-AVSR: an audio-visual dataset of non-native English ("accents") and English varieties ("dialects") We preprocessed the Visual Accent and Dialect Archive (https://archive.mith.umd.edu/mith-2020/vada/index.html) for audio-visual speech recognition (AVSR), speech recognition (ASR), and visual speech recognition/lip-reading (VSR). This version currently only contains read speech, specifically, readings of the Rainbow Passage, which contains every sound in English. ## Citation: ``` @misc{vada, title = {{Visual Accent and Dialect Archive}}, author = {Leigh Wilson Smiley}, year = {2019}, note = {Accessed on October 11, 2025 at \url{https://web.archive.org/web/20230203145410/https://visualaccentdialectarchive.com/}}, } @misc{vada_avsr, title = {VADA-AVSR: Audio-Visual Speech Recognition with Non-Standard Speech}, author = {Anya Ji and Kalvin Chang and David Chan and Alane Suhr}, year = {2025}, note = {Accessed on DATE at \url{https://huggingface.co/datasets/Berkeley-NLP/visual_accent_dialect_archive}}, } ``` ## Loading the dataset (example) ```python from huggingface_hub import snapshot_download from datasets import load_dataset, Audio, Video repo = "Berkeley-NLP/visual_accent_dialect_archive" # 1) Materialize the repo locally (cached by HF) root = snapshot_download(repo_id=repo, repo_type="dataset") print(root) # 2) Load the split CSV from the snapshot ds = load_dataset("csv", data_files={"test": f"{root}/test.csv"}, split="test") print(ds) # 3) Convert repo-relative paths -> absolute local paths def absolutize(ex): ex["audio_segment_path"] = f"{root}/" + ex["audio_segment_path"] ex["video_noaudio_segment_path"] = f"{root}/" + ex["video_noaudio_segment_path"] ex["video_withaudio_segment_path"] = f"{root}/" + ex["video_withaudio_segment_path"] return ex ds = ds.map(absolutize) ex = ds[0] print(ex) # 4) Decode with HF decoders (Optional) # ds= ds.rename_columns({ # "audio_segment_path": "audio", # "video_noaudio_segment_path": "video_no_audio", # "video_withaudio_segment_path": "video_with_audio", # }) # ds = ds.cast_column("audio", Audio()) # ds = ds.cast_column("video_no_audio", Video()) # ds = ds.cast_column("video_with_audio", Video()) # ex = ds[0] # print(ex["audio"]["sampling_rate"], ex["audio"]["array"].shape) # video = ex["video_no_audio"] # frame0 = next(iter(video)) # print(frame0.shape) ```