Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
conversational-qa
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ShARC: A Conversational Question Answering dataset focussing on question answering from texts containing rules.""" | |
| import json | |
| import os | |
| import datasets | |
| _CITATION = """\ | |
| @misc{saeidi2018interpretation, | |
| title={Interpretation of Natural Language Rules in Conversational Machine Reading}, | |
| author={Marzieh Saeidi and Max Bartolo and Patrick Lewis and Sameer Singh and Tim Rocktäschel and Mike Sheldon and Guillaume Bouchard and Sebastian Riedel}, | |
| year={2018}, | |
| eprint={1809.01494}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| """ | |
| _DESCRIPTION = """\ | |
| ShARC is a Conversational Question Answering dataset focussing on question answering from texts containing rules. \ | |
| The goal is to answer questions by possibly asking follow-up questions first. It is assumed assume that the question is often underspecified, \ | |
| in the sense that the question does not provide enough information to be answered directly. However, an agent can use the supporting rule text to \ | |
| infer what needs to be asked in order to determine the final answer. | |
| """ | |
| _URL = "https://sharc-data.github.io/data/sharc1-official.zip" | |
| class Sharc(datasets.GeneratorBasedBuilder): | |
| """ShARC: A Conversational Question Answering dataset focussing on question answering from texts containing rules.""" | |
| VERSION = datasets.Version("1.0.1") | |
| BUILDER_CONFIGS = [ | |
| datasets.BuilderConfig(name="sharc", version=datasets.Version("1.0.1")), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "utterance_id": datasets.Value("string"), | |
| "source_url": datasets.Value("string"), | |
| "snippet": datasets.Value("string"), | |
| "question": datasets.Value("string"), | |
| "scenario": datasets.Value("string"), | |
| "history": [ | |
| {"follow_up_question": datasets.Value("string"), "follow_up_answer": datasets.Value("string")} | |
| ], | |
| "evidence": [ | |
| {"follow_up_question": datasets.Value("string"), "follow_up_answer": datasets.Value("string")} | |
| ], | |
| "answer": datasets.Value("string"), | |
| "negative_question": datasets.Value("bool_"), | |
| "negative_scenario": datasets.Value("bool_"), | |
| } | |
| ), | |
| supervised_keys=None, | |
| homepage="https://sharc-data.github.io/index.html", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| extracted_path = dl_manager.download_and_extract(_URL) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "train"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "dev"}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"data_dir": os.path.join(extracted_path, "sharc1-official"), "split": "test"}, | |
| ), | |
| ] | |
| def _generate_examples(self, data_dir, split): | |
| with open( | |
| os.path.join(data_dir, "negative_sample_utterance_ids", "sharc_negative_scenario_utterance_ids.txt"), | |
| encoding="utf-8", | |
| ) as f: | |
| negative_scenario_ids = f.readlines() | |
| negative_scenario_ids = [id_.strip() for id_ in negative_scenario_ids] | |
| with open( | |
| os.path.join(data_dir, "negative_sample_utterance_ids", "sharc_negative_question_utterance_ids.txt"), | |
| encoding="utf-8", | |
| ) as f: | |
| negative_question_ids = f.readlines() | |
| negative_question_ids = [id_.strip() for id_ in negative_question_ids] | |
| data_file = os.path.join(data_dir, "json", f"sharc_{split}.json") | |
| with open(data_file, encoding="utf-8") as f: | |
| examples = json.load(f) | |
| for i, example in enumerate(examples): | |
| example.pop("tree_id") | |
| example["negative_question"] = example["utterance_id"] in negative_question_ids | |
| example["negative_scenario"] = example["utterance_id"] in negative_scenario_ids | |
| example["id"] = example["utterance_id"] | |
| # the keys are misspelled for one of the example in dev set | |
| # fix it here | |
| for evidence in example["evidence"]: | |
| if evidence.get("followup_answer") is not None: | |
| evidence["follow_up_answer"] = evidence.pop("followup_answer") | |
| if evidence.get("followup_question") is not None: | |
| evidence["follow_up_question"] = evidence.pop("followup_question") | |
| yield example["id"], example | |