--- license: other language: - en --- # ScanObjectNN `scanobjectnn_PB_T50_RS_h5.zip` contains h5 files for the hard variant of the ScanObjectNN benchmark. Dataset can be loaded as follows: ```python import os.path as osp import os import torch import h5py import torch_geometric.transforms as T from torch_geometric.datasets import ModelNet from torch_geometric.data import InMemoryDataset, download_url, extract_zip, Data class ScanObjectNN(InMemoryDataset): url = 'https://huggingface.co/datasets/cminst/ScanObjectNN/resolve/main/scanobjectnn_PB_T50_RS_h5.zip' def __init__(self, root, train=True, transform=None, pre_transform=None, pre_filter=None): self.train = train super().__init__(root, transform, pre_transform, pre_filter) path = self.processed_paths[0] if train else self.processed_paths[1] self.load(path) @property def raw_file_names(self): return [ osp.join('main_split', 'training_objectdataset_augmentedrot_scale75.h5'), osp.join('main_split', 'test_objectdataset_augmentedrot_scale75.h5') ] @property def processed_file_names(self): return ['training.pt', 'test.pt'] def download(self): path = download_url(self.url, self.raw_dir) extract_zip(path, self.raw_dir) os.unlink(path) def process(self): self.save(self.process_set('training'), self.processed_paths[0]) self.save(self.process_set('test'), self.processed_paths[1]) def process_set(self, split): filename = f'{split}_objectdataset_augmentedrot_scale75.h5' h5_path = osp.join(self.raw_dir, 'main_split', filename) with h5py.File(h5_path, 'r') as f: data = f['data'][:].astype('float32') labels = f['label'][:].astype('int64') data_list = [] for i in range(data.shape[0]): pos = torch.from_numpy(data[i]) y = torch.tensor(labels[i]).view(1) d = Data(pos=pos, y=y) data_list.append(d) if self.pre_filter is not None: data_list = [d for d in data_list if self.pre_filter(d)] if self.pre_transform is not None: data_list = [self.pre_transform(d) for d in data_list] return data_list if __name__ == '__main__': dataset = ScanObjectNN(root='data/ScanObjectNN', train=True) print(f'Dataset: {dataset}') print(f'First graph: {dataset[0]}') ```