feat:add TextRCNN
Browse files- TextRCNN-THUCNews/Classification/README.md +110 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/class.txt +10 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/dev.txt +0 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/embedding_SougouNews.npz +3 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/embedding_Tencent.npz +3 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/test.txt +0 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/train.txt +0 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/data/vocab.pkl +3 -0
- TextRCNN-THUCNews/Classification/dataset/THUCNews/saved_dict/model.ckpt +0 -0
- TextRCNN-THUCNews/Classification/dataset/index.json +0 -0
- TextRCNN-THUCNews/Classification/dataset/info.json +15 -0
- TextRCNN-THUCNews/Classification/dataset/labels.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_1/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_1/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_1/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_10/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_10/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_10/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_11/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_11/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_11/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_2/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_2/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_2/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_3/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_3/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_3/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_4/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_4/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_4/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_5/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_5/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_5/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_6/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_6/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_6/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_7/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_7/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_7/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_8/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_8/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_8/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_9/embeddings.npy +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_9/model.pt +3 -0
- TextRCNN-THUCNews/Classification/epochs/epoch_9/predictions.npy +3 -0
- TextRCNN-THUCNews/Classification/scripts/dataset_utils.py +144 -0
- TextRCNN-THUCNews/Classification/scripts/get_label.py +86 -0
- TextRCNN-THUCNews/Classification/scripts/model.py +105 -0
- TextRCNN-THUCNews/Classification/scripts/train.py +357 -0
- TextRCNN-THUCNews/Classification/scripts/train.yaml +31 -0
TextRCNN-THUCNews/Classification/README.md
ADDED
|
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TextRNN 可视化实验脚本
|
| 2 |
+
|
| 3 |
+
基于原始 Chinese-Text-Classification-Pytorch 仓库重构的 TextRNN 训练脚本,专门用于可视化实验。
|
| 4 |
+
|
| 5 |
+
## 目录结构
|
| 6 |
+
|
| 7 |
+
```
|
| 8 |
+
Classification/
|
| 9 |
+
├── scripts/ # 脚本文件
|
| 10 |
+
│ ├── model.py # 模型定义,包含feature、get_prediction、prediction函数
|
| 11 |
+
│ ├── train.py # 训练脚本,支持多卡训练
|
| 12 |
+
│ ├── train.yaml # 训练配置文件
|
| 13 |
+
│ ├── dataset_utils.py # 数据集处理工具
|
| 14 |
+
│ └── get_label.py # 标签提取脚本
|
| 15 |
+
├── dataset/ # 数据集文件
|
| 16 |
+
│ ├── train.txt # 训练数据
|
| 17 |
+
│ ├── dev.txt # 验证数据
|
| 18 |
+
│ ├── test.txt # 测试数据
|
| 19 |
+
│ ├── class.txt # 类别列表
|
| 20 |
+
│ ├── vocab.pkl # 词汇表
|
| 21 |
+
│ └── labels.npy # 提取的标签
|
| 22 |
+
└── epochs/ # 按epoch存放模型文件和特征向量
|
| 23 |
+
├── epoch_1/
|
| 24 |
+
│ ├── model.pt # 模型权重
|
| 25 |
+
│ ├── embeddings.npy # 特征向量
|
| 26 |
+
│ └── predictions.npy # 预测值
|
| 27 |
+
└── epoch_2/
|
| 28 |
+
└── ...
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## 功能说明
|
| 32 |
+
|
| 33 |
+
### 1. model.py
|
| 34 |
+
- **Model类**: TextRNN模型实现
|
| 35 |
+
- **feature()**: 提取中间层特征向量(dropout层输出),用于可视化
|
| 36 |
+
- **get_prediction()**: 获取模型最终层输出向量(logits)
|
| 37 |
+
- **prediction()**: 根据中间特征向量预测结果
|
| 38 |
+
|
| 39 |
+
### 2. train.py
|
| 40 |
+
- 支持多GPU训练
|
| 41 |
+
- 每个epoch自动保存模型、特征向量、预测值到 `epochs/epoch_N/`
|
| 42 |
+
- 支持配置文件驱动训练
|
| 43 |
+
- 实时显示训练进度和验证结果
|
| 44 |
+
|
| 45 |
+
### 3. dataset_utils.py
|
| 46 |
+
- 数据集加载和预处理
|
| 47 |
+
- 词汇表构建
|
| 48 |
+
- 数据迭代器实现
|
| 49 |
+
|
| 50 |
+
### 4. get_label.py
|
| 51 |
+
- 提取数据集标签并保存为 `labels.npy`
|
| 52 |
+
- 生成类别名称映射文件
|
| 53 |
+
|
| 54 |
+
## 使用方法
|
| 55 |
+
|
| 56 |
+
### 1. 准备数据集
|
| 57 |
+
将THUCNews数据集放入 `dataset/` 目录:
|
| 58 |
+
```bash
|
| 59 |
+
# 数据格式:每行一个样本,用tab分隔文本和标签
|
| 60 |
+
text1\t0
|
| 61 |
+
text2\t1
|
| 62 |
+
...
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
### 2. 提取标签
|
| 66 |
+
```bash
|
| 67 |
+
cd scripts
|
| 68 |
+
python get_label.py --config train.yaml --output ../dataset
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
### 3. 训练模型
|
| 72 |
+
```bash
|
| 73 |
+
cd scripts
|
| 74 |
+
python train.py --config train.yaml
|
| 75 |
+
```
|
| 76 |
+
|
| 77 |
+
### 4. 配置文件说明
|
| 78 |
+
编辑 `scripts/train.yaml` 来调整训练参数:
|
| 79 |
+
```yaml
|
| 80 |
+
dataset_path: "../dataset" # 数据集路径
|
| 81 |
+
num_epochs: 20 # 训练轮数
|
| 82 |
+
batch_size: 128 # 批次大小
|
| 83 |
+
learning_rate: 0.001 # 学习率
|
| 84 |
+
use_word: false # false=字符级,true=词级
|
| 85 |
+
epochs_dir: "../epochs" # 模型保存路径
|
| 86 |
+
```
|
| 87 |
+
|
| 88 |
+
## 可视化数据
|
| 89 |
+
|
| 90 |
+
训练完成后,每个epoch的数据保存在 `epochs/epoch_N/` 中:
|
| 91 |
+
- `model.pt`: 模型权重文件
|
| 92 |
+
- `embeddings.npy`: 特征向量矩阵 (N_samples, feature_dim)
|
| 93 |
+
- `predictions.npy`: 预测值矩阵 (N_samples, num_classes)
|
| 94 |
+
|
| 95 |
+
这些数据可以直接用于可视化分析,如t-SNE降维、特征分布分析等。
|
| 96 |
+
|
| 97 |
+
## 多GPU训练
|
| 98 |
+
|
| 99 |
+
脚本自动检测可用GPU数量并启用多GPU训练:
|
| 100 |
+
```python
|
| 101 |
+
# 自动使用所有可用GPU
|
| 102 |
+
if torch.cuda.device_count() > 1:
|
| 103 |
+
model = nn.DataParallel(model)
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
## 依赖要求
|
| 107 |
+
|
| 108 |
+
```bash
|
| 109 |
+
pip install torch numpy scikit-learn tqdm pyyaml
|
| 110 |
+
```
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/class.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
finance
|
| 2 |
+
realty
|
| 3 |
+
stocks
|
| 4 |
+
education
|
| 5 |
+
science
|
| 6 |
+
society
|
| 7 |
+
politics
|
| 8 |
+
sports
|
| 9 |
+
game
|
| 10 |
+
entertainment
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/dev.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/embedding_SougouNews.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:529917fbfd438697be8019befe41eb12e2b818815cac568a2fb5703782daa198
|
| 3 |
+
size 6339482
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/embedding_Tencent.npz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c3d59d109f48f119a3e04bddd7b8ac4c11245d11c57335f6be2de7ba7130b28
|
| 3 |
+
size 4148151
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/test.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/train.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/data/vocab.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:512b4100ae5e0063c8c5bfe44c85d2b1062b89d5abbdab6c2f76d80b2803cfd4
|
| 3 |
+
size 75018
|
TextRCNN-THUCNews/Classification/dataset/THUCNews/saved_dict/model.ckpt
ADDED
|
File without changes
|
TextRCNN-THUCNews/Classification/dataset/index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
TextRCNN-THUCNews/Classification/dataset/info.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": "TextRCNN",
|
| 3 |
+
"classes": [
|
| 4 |
+
"finance",
|
| 5 |
+
"realty",
|
| 6 |
+
"stocks",
|
| 7 |
+
"education",
|
| 8 |
+
"science",
|
| 9 |
+
"society",
|
| 10 |
+
"politics",
|
| 11 |
+
"sports",
|
| 12 |
+
"game",
|
| 13 |
+
"entertainment"
|
| 14 |
+
]
|
| 15 |
+
}
|
TextRCNN-THUCNews/Classification/dataset/labels.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e892bdf6c821c255196e0fe5685ee33b556a721fdd539da3a1dd6f9feec0d63a
|
| 3 |
+
size 1600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_1/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:841a50bcf5ed1fe40407e2f22fbbc96bccc8d3176931c7699e997914cc6cc773
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_1/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ccd57f2aa6d6a9be1adc27358d9636803f6a596ac515784fcabcd2c6ea846c3
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_1/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7e8100a77b77f2406b596707ffa98c06e37eee60e179a6f5cbdf6191c4f3c9a
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_10/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:01847c0b84210cfd31780e583e0be61e74ba3e450244b6e462631d58428e8814
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_10/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:172db9bef5f3c0b56f11c5319a98c759c0274aeea0b56661207880e0686f86e7
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_10/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a9847ffe9ccb90947e63d5cdba3a1b7aaddf1171c8f5de000f66cd0e1a748d04
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_11/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c166ee059e7715eb0ee3eaa9795d591e22601886b1b85b49546d5a001a34e07
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_11/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2bed570c7953562c0a8da7a1d78819f3e488d9b62455b4b96612bc03579027a6
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_11/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59211e554149c6568c5d2e2b3596f04b34e1ed98796d1439737a48a60f70984b
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_2/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5cd45566ec4431436972cc3ecd73a1633bb53b1a83150c28e589005ccd6cc860
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_2/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f8fe067ccb2ee10d46138f1ca7b9059e146be8d3f971e3d7e05e834c360a975
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_2/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:43a7ec079a8ce7d221f7f92588c453aaa7c7aada0be233fe7544555ca526f4ba
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_3/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c00dec5ddcd62dc02e9d1cef99d1171a6c0673926189f61eec641f2ef7c4f6b
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_3/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f25271b956269f129056f99afc596cd82f9725552b66562388109be02a2355ec
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_3/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:342c15acbca4c37a847a590f50ac73ce4e679d50108b6d7e74b5c070032d10cb
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_4/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3355853ff880a4fe05448a01dd887d58499b0e17cc467257d5240322844ff58e
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_4/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2256bc7d80cb1b9fdaf483fcb134e2365f6a2f90322ba6eab77e85f1b5f85f26
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_4/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4317fde7c2b65e779759d4fb292bbbc8973976e525a1ca375714e9db1d0d1ca7
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_5/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:44ce8b6468692238f8c17189cb7d11b13e2997f403629b5fc5450b933d2780bb
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_5/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:36721c0c4497013bfef8b933888772e33c8a0b546edce504b505721ce21fa60f
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_5/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ac5dd0966a73fbbc236305d6903fa42ac6c68f15d432dcd59bca58e2dd2a956
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_6/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:381d3ca4b36842ba06d44f8c01a7d87c9a7b241fb2264959b55f5ac6e5005879
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_6/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:566b27ee647745d0110d1ff5f895564d850637d5667cf6ac842e624ad96fd721
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_6/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8474ea600a9abca18216b3925c6deb88cd991d26bebd6820f819abf079319e00
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_7/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:093f82031939aa4915ef23b186bc77807b799ede80ea8adf01c9693a9b200c5c
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_7/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb576aafab6aa12b11e4666e63adeb4340bb0f587d617c1bcc4b44dc7e56898b
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_7/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6661f2ca53f659bce8328f4c726fb83978a988378ca7135094750b4df253aadf
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_8/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5054271d9ac47af7ad2088e91dd123d1c6fe0e9c178d809683c6ffa0dfbada6a
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_8/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66eef42bbe4d93c9092aed16a32b6e47b844ad791c4790a726842dafc11cc260
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_8/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff47bb039003d302a7847f8aeaacfba4bc8d38f4dd56391c6ae1714be269641a
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/epochs/epoch_9/embeddings.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:546a61799487184b041b228c9fc12f5ae24a594e479c7932ffaf6d0e4b2e4d21
|
| 3 |
+
size 649600128
|
TextRCNN-THUCNews/Classification/epochs/epoch_9/model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85ae164b9b7454d07d0d2ddae4e22cb4589266ae605d2b36c92cc41ad098e050
|
| 3 |
+
size 10320704
|
TextRCNN-THUCNews/Classification/epochs/epoch_9/predictions.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b86a1ae652d2505aee214a64792c0ca8a65bf3f0b3ec0467318d13bd2273641c
|
| 3 |
+
size 8000128
|
TextRCNN-THUCNews/Classification/scripts/dataset_utils.py
ADDED
|
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: UTF-8
|
| 2 |
+
import os
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
import pickle as pkl
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
import time
|
| 8 |
+
from datetime import timedelta
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
MAX_VOCAB_SIZE = 10000 # 词表长度限制
|
| 12 |
+
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def build_vocab(file_path, tokenizer, max_size, min_freq):
|
| 16 |
+
"""构建词汇表"""
|
| 17 |
+
vocab_dic = {}
|
| 18 |
+
with open(file_path, 'r', encoding='UTF-8') as f:
|
| 19 |
+
for line in tqdm(f):
|
| 20 |
+
lin = line.strip()
|
| 21 |
+
if not lin:
|
| 22 |
+
continue
|
| 23 |
+
content = lin.split('\t')[0]
|
| 24 |
+
for word in tokenizer(content):
|
| 25 |
+
vocab_dic[word] = vocab_dic.get(word, 0) + 1
|
| 26 |
+
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size]
|
| 27 |
+
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
|
| 28 |
+
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
|
| 29 |
+
return vocab_dic
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def load_dataset(path, vocab, tokenizer, pad_size=32):
|
| 33 |
+
"""加载数据集"""
|
| 34 |
+
contents = []
|
| 35 |
+
with open(path, 'r', encoding='UTF-8') as f:
|
| 36 |
+
for line in tqdm(f, desc=f"Loading {os.path.basename(path)}"):
|
| 37 |
+
lin = line.strip()
|
| 38 |
+
if not lin:
|
| 39 |
+
continue
|
| 40 |
+
content, label = lin.split('\t')
|
| 41 |
+
words_line = []
|
| 42 |
+
token = tokenizer(content)
|
| 43 |
+
seq_len = len(token)
|
| 44 |
+
if pad_size:
|
| 45 |
+
if len(token) < pad_size:
|
| 46 |
+
token.extend([PAD] * (pad_size - len(token)))
|
| 47 |
+
else:
|
| 48 |
+
token = token[:pad_size]
|
| 49 |
+
seq_len = pad_size
|
| 50 |
+
# word to id
|
| 51 |
+
for word in token:
|
| 52 |
+
words_line.append(vocab.get(word, vocab.get(UNK)))
|
| 53 |
+
contents.append((words_line, int(label), seq_len))
|
| 54 |
+
return contents
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def build_dataset(config, use_word=False):
|
| 58 |
+
"""构建数据集"""
|
| 59 |
+
if use_word:
|
| 60 |
+
def tokenizer(x):
|
| 61 |
+
return x.split(' ') # 以空格隔开,word-level
|
| 62 |
+
else:
|
| 63 |
+
def tokenizer(x):
|
| 64 |
+
return [y for y in x] # char-level
|
| 65 |
+
|
| 66 |
+
if os.path.exists(config.vocab_path):
|
| 67 |
+
vocab = pkl.load(open(config.vocab_path, 'rb'))
|
| 68 |
+
else:
|
| 69 |
+
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
|
| 70 |
+
pkl.dump(vocab, open(config.vocab_path, 'wb'))
|
| 71 |
+
|
| 72 |
+
print(f"词汇表大小: {len(vocab)}")
|
| 73 |
+
|
| 74 |
+
train = load_dataset(config.train_path, vocab, tokenizer, config.pad_size)
|
| 75 |
+
dev = load_dataset(config.dev_path, vocab, tokenizer, config.pad_size)
|
| 76 |
+
test = load_dataset(config.test_path, vocab, tokenizer, config.pad_size)
|
| 77 |
+
|
| 78 |
+
return vocab, train, dev, test
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class DatasetIterator(object):
|
| 82 |
+
"""数据集迭代器"""
|
| 83 |
+
def __init__(self, batches, batch_size, device):
|
| 84 |
+
self.batch_size = batch_size
|
| 85 |
+
self.batches = batches
|
| 86 |
+
self.n_batches = len(batches) // batch_size
|
| 87 |
+
self.residue = False # 记录batch数量是否为整数
|
| 88 |
+
if len(batches) % self.n_batches != 0:
|
| 89 |
+
self.residue = True
|
| 90 |
+
self.index = 0
|
| 91 |
+
self.device = device
|
| 92 |
+
|
| 93 |
+
def _to_tensor(self, datas):
|
| 94 |
+
x = torch.LongTensor([_[0] for _ in datas]).to(self.device)
|
| 95 |
+
y = torch.LongTensor([_[1] for _ in datas]).to(self.device)
|
| 96 |
+
# pad前的长度(超过pad_size的设为pad_size)
|
| 97 |
+
seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device)
|
| 98 |
+
return (x, seq_len), y
|
| 99 |
+
|
| 100 |
+
def __next__(self):
|
| 101 |
+
if self.residue and self.index == self.n_batches:
|
| 102 |
+
batches = self.batches[self.index * self.batch_size: len(self.batches)]
|
| 103 |
+
self.index += 1
|
| 104 |
+
batches = self._to_tensor(batches)
|
| 105 |
+
return batches
|
| 106 |
+
|
| 107 |
+
elif self.index >= self.n_batches:
|
| 108 |
+
self.index = 0
|
| 109 |
+
raise StopIteration
|
| 110 |
+
else:
|
| 111 |
+
batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size]
|
| 112 |
+
self.index += 1
|
| 113 |
+
batches = self._to_tensor(batches)
|
| 114 |
+
return batches
|
| 115 |
+
|
| 116 |
+
def __iter__(self):
|
| 117 |
+
return self
|
| 118 |
+
|
| 119 |
+
def __len__(self):
|
| 120 |
+
if self.residue:
|
| 121 |
+
return self.n_batches + 1
|
| 122 |
+
else:
|
| 123 |
+
return self.n_batches
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def build_iterator(dataset, config):
|
| 127 |
+
"""构建数据迭代器"""
|
| 128 |
+
iterator = DatasetIterator(dataset, config.batch_size, config.device)
|
| 129 |
+
return iterator
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def get_time_dif(start_time):
|
| 133 |
+
"""获取已使用时间"""
|
| 134 |
+
end_time = time.time()
|
| 135 |
+
time_dif = end_time - start_time
|
| 136 |
+
return timedelta(seconds=int(round(time_dif)))
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def get_labels_from_dataset(dataset):
|
| 140 |
+
"""从数据集中提取标签"""
|
| 141 |
+
labels = []
|
| 142 |
+
for _, label, _ in dataset:
|
| 143 |
+
labels.append(label)
|
| 144 |
+
return np.array(labels)
|
TextRCNN-THUCNews/Classification/scripts/get_label.py
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: UTF-8
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import numpy as np
|
| 5 |
+
import yaml
|
| 6 |
+
import argparse
|
| 7 |
+
|
| 8 |
+
# 添加当前目录到路径
|
| 9 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 10 |
+
|
| 11 |
+
from model import Config
|
| 12 |
+
from dataset_utils import build_dataset, get_labels_from_dataset
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def extract_labels(config_path, output_dir):
|
| 16 |
+
"""
|
| 17 |
+
提取数据集标签并保存
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
config_path: 配置文件路径
|
| 21 |
+
output_dir: 输出目录
|
| 22 |
+
"""
|
| 23 |
+
# 加载配置
|
| 24 |
+
with open(config_path, 'r', encoding='utf-8') as f:
|
| 25 |
+
train_config = yaml.safe_load(f)
|
| 26 |
+
|
| 27 |
+
# 初始化配置
|
| 28 |
+
config = Config(train_config['dataset_path'], train_config.get('embedding', 'random'))
|
| 29 |
+
|
| 30 |
+
# 构建数据集
|
| 31 |
+
print("正在构建数据集...")
|
| 32 |
+
vocab, train_data, dev_data, test_data = build_dataset(config, train_config.get('use_word', False))
|
| 33 |
+
|
| 34 |
+
# 提取标签
|
| 35 |
+
print("正在提取标签...")
|
| 36 |
+
train_labels = get_labels_from_dataset(train_data)
|
| 37 |
+
dev_labels = get_labels_from_dataset(dev_data)
|
| 38 |
+
test_labels = get_labels_from_dataset(test_data)
|
| 39 |
+
|
| 40 |
+
# 合并所有标签(按训练、验证、测试的顺序)
|
| 41 |
+
all_labels = np.concatenate([train_labels, dev_labels, test_labels])
|
| 42 |
+
|
| 43 |
+
# 确保输出目录存在
|
| 44 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 45 |
+
|
| 46 |
+
# 保存标签
|
| 47 |
+
labels_path = os.path.join(output_dir, 'labels.npy')
|
| 48 |
+
np.save(labels_path, all_labels)
|
| 49 |
+
|
| 50 |
+
# 保存各个数据集的标签(可选)
|
| 51 |
+
np.save(os.path.join(output_dir, 'train_labels.npy'), train_labels)
|
| 52 |
+
np.save(os.path.join(output_dir, 'dev_labels.npy'), dev_labels)
|
| 53 |
+
np.save(os.path.join(output_dir, 'test_labels.npy'), test_labels)
|
| 54 |
+
|
| 55 |
+
# 输出统计信息
|
| 56 |
+
print("标签提取完成!")
|
| 57 |
+
print(f"总标签数量: {len(all_labels)}")
|
| 58 |
+
print(f"训练集标签数量: {len(train_labels)}")
|
| 59 |
+
print(f"验证集标签数量: {len(dev_labels)}")
|
| 60 |
+
print(f"测试集标签数量: {len(test_labels)}")
|
| 61 |
+
print(f"类别数量: {len(np.unique(all_labels))}")
|
| 62 |
+
print(f"类别分布: {np.bincount(all_labels)}")
|
| 63 |
+
print(f"标签已保存到: {labels_path}")
|
| 64 |
+
|
| 65 |
+
# 保存类别名称映射
|
| 66 |
+
class_names_path = os.path.join(output_dir, 'class_names.txt')
|
| 67 |
+
with open(class_names_path, 'w', encoding='utf-8') as f:
|
| 68 |
+
for i, class_name in enumerate(config.class_list):
|
| 69 |
+
f.write(f"{i}\t{class_name}\n")
|
| 70 |
+
print(f"类别名称映射已保存到: {class_names_path}")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def main():
|
| 74 |
+
parser = argparse.ArgumentParser(description='提取数据集标签')
|
| 75 |
+
parser.add_argument('--config', type=str, default='train.yaml',
|
| 76 |
+
help='训练配置文件路径')
|
| 77 |
+
parser.add_argument('--output', type=str, default='../dataset',
|
| 78 |
+
help='输出目录')
|
| 79 |
+
|
| 80 |
+
args = parser.parse_args()
|
| 81 |
+
|
| 82 |
+
extract_labels(args.config, args.output)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
if __name__ == '__main__':
|
| 86 |
+
main()
|
TextRCNN-THUCNews/Classification/scripts/model.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: UTF-8
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class Config(object):
|
| 9 |
+
|
| 10 |
+
"""配置参数"""
|
| 11 |
+
def __init__(self, dataset, embedding):
|
| 12 |
+
self.model_name = 'TextRCNN'
|
| 13 |
+
self.train_path = dataset + '/data/train.txt' # 训练集
|
| 14 |
+
self.dev_path = dataset + '/data/dev.txt' # 验证集
|
| 15 |
+
self.test_path = dataset + '/data/test.txt' # 测试集
|
| 16 |
+
self.class_list = [x.strip() for x in open(
|
| 17 |
+
dataset + '/data/class.txt', encoding='utf-8').readlines()] # 类别名单
|
| 18 |
+
self.vocab_path = dataset + '/data/vocab.pkl' # 词表
|
| 19 |
+
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果
|
| 20 |
+
self.log_path = dataset + '/log/' + self.model_name
|
| 21 |
+
self.embedding_pretrained = torch.tensor(
|
| 22 |
+
np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
|
| 23 |
+
if embedding != 'random' else None # 预训练词向量
|
| 24 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
|
| 25 |
+
|
| 26 |
+
self.dropout = 0.5 # 随机失活
|
| 27 |
+
self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练
|
| 28 |
+
self.num_classes = len(self.class_list) # 类别数
|
| 29 |
+
self.n_vocab = 0 # 词表大小,在运行时赋值
|
| 30 |
+
self.num_epochs = 10 # epoch数
|
| 31 |
+
self.batch_size = 128 # mini-batch大小
|
| 32 |
+
self.pad_size = 32 # 每句话处理成的长度(短填长切)
|
| 33 |
+
self.learning_rate = 1e-3 # 学习率
|
| 34 |
+
self.embed = self.embedding_pretrained.size(1)\
|
| 35 |
+
if self.embedding_pretrained is not None else 300 # 字向量维度, 若使用了预训练词向量,则维度统一
|
| 36 |
+
self.hidden_size = 256 # lstm隐藏层
|
| 37 |
+
self.num_layers = 1 # lstm层数
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
'''Recurrent Convolutional Neural Networks for Text Classification'''
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class TextRCNN(nn.Module):
|
| 44 |
+
def __init__(self, config):
|
| 45 |
+
super(TextRCNN, self).__init__()
|
| 46 |
+
if config.embedding_pretrained is not None:
|
| 47 |
+
self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
|
| 48 |
+
else:
|
| 49 |
+
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
|
| 50 |
+
self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers,
|
| 51 |
+
bidirectional=True, batch_first=True,
|
| 52 |
+
dropout=config.dropout if config.num_layers > 1 else 0)
|
| 53 |
+
self.maxpool = nn.MaxPool1d(config.pad_size)
|
| 54 |
+
self.fc = nn.Linear(config.hidden_size * 2 + config.embed, config.num_classes)
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
x, _ = x
|
| 58 |
+
embed = self.embedding(x) # [batch_size, seq_len, embeding]=[64, 32, 64]
|
| 59 |
+
out, _ = self.lstm(embed)
|
| 60 |
+
out = torch.cat((embed, out), 2)
|
| 61 |
+
out = F.relu(out)
|
| 62 |
+
out = out.permute(0, 2, 1)
|
| 63 |
+
out = self.maxpool(out).squeeze()
|
| 64 |
+
out = self.fc(out)
|
| 65 |
+
return out
|
| 66 |
+
|
| 67 |
+
def feature(self, x):
|
| 68 |
+
"""
|
| 69 |
+
提取中间层特征向量,用于可视化
|
| 70 |
+
返回maxpool层的输出(全连接层前面的那一层)
|
| 71 |
+
"""
|
| 72 |
+
with torch.no_grad():
|
| 73 |
+
x, _ = x
|
| 74 |
+
embed = self.embedding(x) # [batch_size, seq_len, embeding]
|
| 75 |
+
out, _ = self.lstm(embed) # [batch_size, seq_len, hidden_size * 2]
|
| 76 |
+
out = torch.cat((embed, out), 2) # [batch_size, seq_len, hidden_size * 2 + embed]
|
| 77 |
+
out = F.relu(out)
|
| 78 |
+
out = out.permute(0, 2, 1) # [batch_size, hidden_size * 2 + embed, seq_len]
|
| 79 |
+
features = self.maxpool(out).squeeze() # [batch_size, hidden_size * 2 + embed]
|
| 80 |
+
return features.cpu().numpy()
|
| 81 |
+
|
| 82 |
+
def get_prediction(self, x):
|
| 83 |
+
"""
|
| 84 |
+
获取模型最终层输出向量(logits)
|
| 85 |
+
"""
|
| 86 |
+
with torch.no_grad():
|
| 87 |
+
x, _ = x
|
| 88 |
+
embed = self.embedding(x)
|
| 89 |
+
out, _ = self.lstm(embed)
|
| 90 |
+
out = torch.cat((embed, out), 2)
|
| 91 |
+
out = F.relu(out)
|
| 92 |
+
out = out.permute(0, 2, 1)
|
| 93 |
+
out = self.maxpool(out).squeeze()
|
| 94 |
+
predictions = self.fc(out) # [batch_size, num_classes]
|
| 95 |
+
return predictions.cpu().numpy()
|
| 96 |
+
|
| 97 |
+
def prediction(self, features):
|
| 98 |
+
"""
|
| 99 |
+
根据中间特征向量预测结果
|
| 100 |
+
features: 来自feature()函数的输出 [batch_size, hidden_size * 2 + embed]
|
| 101 |
+
"""
|
| 102 |
+
with torch.no_grad():
|
| 103 |
+
features_tensor = torch.tensor(features, dtype=torch.float32).to(next(self.parameters()).device)
|
| 104 |
+
predictions = self.fc(features_tensor) # 直接通过最后的分类层
|
| 105 |
+
return predictions.cpu().numpy()
|
TextRCNN-THUCNews/Classification/scripts/train.py
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: UTF-8
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import numpy as np
|
| 8 |
+
import yaml
|
| 9 |
+
import json
|
| 10 |
+
from sklearn import metrics
|
| 11 |
+
import time
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import argparse
|
| 14 |
+
|
| 15 |
+
# 添加当前目录到路径
|
| 16 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 17 |
+
|
| 18 |
+
from model import TextRCNN as Model, Config
|
| 19 |
+
from dataset_utils import build_dataset, build_iterator, get_time_dif
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def init_network(model, method='xavier', exclude='embedding', seed=123):
|
| 23 |
+
"""权重初始化,默认xavier"""
|
| 24 |
+
for name, w in model.named_parameters():
|
| 25 |
+
if exclude not in name:
|
| 26 |
+
if 'weight' in name:
|
| 27 |
+
if method == 'xavier':
|
| 28 |
+
nn.init.xavier_normal_(w)
|
| 29 |
+
elif method == 'kaiming':
|
| 30 |
+
nn.init.kaiming_normal_(w)
|
| 31 |
+
else:
|
| 32 |
+
nn.init.normal_(w)
|
| 33 |
+
elif 'bias' in name:
|
| 34 |
+
nn.init.constant_(w, 0)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def evaluate(model, data_iter, device):
|
| 38 |
+
"""评估函数"""
|
| 39 |
+
model.eval()
|
| 40 |
+
loss_total = 0
|
| 41 |
+
predict_all = np.array([], dtype=int)
|
| 42 |
+
labels_all = np.array([], dtype=int)
|
| 43 |
+
with torch.no_grad():
|
| 44 |
+
for texts, labels in data_iter:
|
| 45 |
+
outputs = model(texts)
|
| 46 |
+
loss = F.cross_entropy(outputs, labels)
|
| 47 |
+
loss_total += loss
|
| 48 |
+
labels = labels.data.cpu().numpy()
|
| 49 |
+
predic = torch.max(outputs.data, 1)[1].cpu().numpy()
|
| 50 |
+
labels_all = np.append(labels_all, labels)
|
| 51 |
+
predict_all = np.append(predict_all, predic)
|
| 52 |
+
|
| 53 |
+
acc = metrics.accuracy_score(labels_all, predict_all)
|
| 54 |
+
return acc, loss_total / len(data_iter)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def save_epoch_data(model, train_data, dev_data, test_data, config, epoch, save_dir, device):
|
| 58 |
+
"""保存每个epoch的模型、特征向量和预测值
|
| 59 |
+
按顺序保存train_data、dev_data、test_data的特征向量
|
| 60 |
+
|
| 61 |
+
Args:
|
| 62 |
+
model: 训练好的模型
|
| 63 |
+
train_data: 原始训练数据集
|
| 64 |
+
dev_data: 原始验证数据集
|
| 65 |
+
test_data: 原始测试数据集
|
| 66 |
+
config: 配置对象
|
| 67 |
+
epoch: 当前epoch数
|
| 68 |
+
save_dir: 保存目录
|
| 69 |
+
device: 设备
|
| 70 |
+
"""
|
| 71 |
+
epoch_dir = os.path.join(save_dir, f'epoch_{epoch}')
|
| 72 |
+
os.makedirs(epoch_dir, exist_ok=True)
|
| 73 |
+
|
| 74 |
+
# 保存模型
|
| 75 |
+
model_path = os.path.join(epoch_dir, 'model.pt')
|
| 76 |
+
if hasattr(model, 'module'): # 多GPU情况
|
| 77 |
+
torch.save(model.module.state_dict(), model_path)
|
| 78 |
+
else:
|
| 79 |
+
torch.save(model.state_dict(), model_path)
|
| 80 |
+
|
| 81 |
+
# 重新创建数据迭代器以保证顺序一致
|
| 82 |
+
from dataset_utils import build_iterator
|
| 83 |
+
|
| 84 |
+
# 按顺序处理三个数据集
|
| 85 |
+
datasets = [
|
| 86 |
+
('train', train_data),
|
| 87 |
+
('dev', dev_data),
|
| 88 |
+
('test', test_data)
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
model.eval()
|
| 92 |
+
all_features = []
|
| 93 |
+
all_predictions = []
|
| 94 |
+
|
| 95 |
+
if epoch == 1:
|
| 96 |
+
# 保存数据集索引信息 index.json
|
| 97 |
+
index_data = {}
|
| 98 |
+
start_idx = 0
|
| 99 |
+
for name,dataset in datasets:
|
| 100 |
+
# 生成该数据集在embedding中的索引列表
|
| 101 |
+
indices = list(range(start_idx, start_idx + len(dataset)))
|
| 102 |
+
index_data[name] = indices
|
| 103 |
+
start_idx += len(dataset)
|
| 104 |
+
|
| 105 |
+
with open(os.path.join("../dataset", "index.json"), "w", encoding="utf-8") as f:
|
| 106 |
+
json.dump(index_data, f, ensure_ascii=False, indent=2)
|
| 107 |
+
|
| 108 |
+
# 保存模型信息 info.json
|
| 109 |
+
info_data = {
|
| 110 |
+
"model": "TextRCNN",
|
| 111 |
+
"classes": config.class_list
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
with open(os.path.join("../dataset", 'info.json'), 'w', encoding='utf-8') as f:
|
| 115 |
+
json.dump(info_data, f, ensure_ascii=False, indent=2)
|
| 116 |
+
|
| 117 |
+
print(" - ✓ 已保存 index.json 和 info.json")
|
| 118 |
+
print(" index.json: 包含各数据集的索引映射")
|
| 119 |
+
print(f" info.json: 模型={info_data['model']}, 类别数={len(info_data['classes'])}")
|
| 120 |
+
|
| 121 |
+
print(f"正在提取epoch {epoch}的特征向量(按train/dev/test顺序)...")
|
| 122 |
+
|
| 123 |
+
with torch.no_grad():
|
| 124 |
+
for dataset_name, dataset in datasets:
|
| 125 |
+
print(f" 正在处理 {dataset_name} 数据集 ({len(dataset)} 个样本)...")
|
| 126 |
+
|
| 127 |
+
# 为每个数据集创建新的迭代器
|
| 128 |
+
data_iter = build_iterator(dataset, config)
|
| 129 |
+
|
| 130 |
+
dataset_features = []
|
| 131 |
+
dataset_predictions = []
|
| 132 |
+
|
| 133 |
+
for batch_idx, (texts, labels) in enumerate(tqdm(data_iter, desc=f"提取{dataset_name}特征")):
|
| 134 |
+
# 获取特征向量
|
| 135 |
+
if hasattr(model, 'module'):
|
| 136 |
+
features = model.module.feature(texts)
|
| 137 |
+
predictions = model.module.get_prediction(texts)
|
| 138 |
+
else:
|
| 139 |
+
features = model.feature(texts)
|
| 140 |
+
predictions = model.get_prediction(texts)
|
| 141 |
+
|
| 142 |
+
dataset_features.append(features)
|
| 143 |
+
dataset_predictions.append(predictions)
|
| 144 |
+
|
| 145 |
+
# 合并当前数据集的特征
|
| 146 |
+
if dataset_features: # 检查是否为空
|
| 147 |
+
dataset_embeddings = np.vstack(dataset_features)
|
| 148 |
+
dataset_preds = np.vstack(dataset_predictions)
|
| 149 |
+
|
| 150 |
+
all_features.append(dataset_embeddings)
|
| 151 |
+
all_predictions.append(dataset_preds)
|
| 152 |
+
|
| 153 |
+
print(f" {dataset_name} 特征形状: {dataset_embeddings.shape}")
|
| 154 |
+
|
| 155 |
+
# 合并所有数据集的特征
|
| 156 |
+
if all_features:
|
| 157 |
+
embeddings = np.vstack(all_features)
|
| 158 |
+
predictions = np.vstack(all_predictions)
|
| 159 |
+
|
| 160 |
+
# 保存特征向量和预测值
|
| 161 |
+
np.save(os.path.join(epoch_dir, 'embeddings.npy'), embeddings)
|
| 162 |
+
np.save(os.path.join(epoch_dir, 'predictions.npy'), predictions)
|
| 163 |
+
|
| 164 |
+
print(f"Epoch {epoch} 数据已保存到 {epoch_dir}")
|
| 165 |
+
print(f" - 特征向量形状: {embeddings.shape}")
|
| 166 |
+
print(f" - 输出向量形状: {predictions.shape}")
|
| 167 |
+
else:
|
| 168 |
+
print("警告:没有提取到任何特征数据")
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def train(config_path):
|
| 172 |
+
"""训练主函数"""
|
| 173 |
+
# 加载配置
|
| 174 |
+
with open(config_path, 'r', encoding='utf-8') as f:
|
| 175 |
+
train_config = yaml.safe_load(f)
|
| 176 |
+
|
| 177 |
+
# 设置GPU设备
|
| 178 |
+
gpu_ids = train_config.get('gpu_ids', [0])
|
| 179 |
+
if not isinstance(gpu_ids, list):
|
| 180 |
+
gpu_ids = [gpu_ids]
|
| 181 |
+
|
| 182 |
+
# 检查GPU可用性
|
| 183 |
+
if not torch.cuda.is_available():
|
| 184 |
+
print("CUDA不可用,使用CPU")
|
| 185 |
+
device = torch.device('cpu')
|
| 186 |
+
gpu_ids = []
|
| 187 |
+
else:
|
| 188 |
+
available_gpus = torch.cuda.device_count()
|
| 189 |
+
print(f"可用GPU数量: {available_gpus}")
|
| 190 |
+
|
| 191 |
+
# 验证指定的GPU ID是否有效
|
| 192 |
+
valid_gpu_ids = [gpu_id for gpu_id in gpu_ids if 0 <= gpu_id < available_gpus]
|
| 193 |
+
if not valid_gpu_ids:
|
| 194 |
+
print(f"警告:指定的GPU ID {gpu_ids} 无效,使用GPU 0")
|
| 195 |
+
valid_gpu_ids = [0]
|
| 196 |
+
|
| 197 |
+
gpu_ids = valid_gpu_ids
|
| 198 |
+
device = torch.device(f'cuda:{gpu_ids[0]}')
|
| 199 |
+
|
| 200 |
+
print(f"使用设备: {device}")
|
| 201 |
+
print(f"指定GPU ID: {gpu_ids}")
|
| 202 |
+
|
| 203 |
+
# 初始化配置
|
| 204 |
+
config = Config(train_config['dataset_path'], train_config.get('embedding', 'random'))
|
| 205 |
+
config.num_epochs = train_config.get('num_epochs', 20)
|
| 206 |
+
config.batch_size = train_config.get('batch_size', 128)
|
| 207 |
+
config.learning_rate = train_config.get('learning_rate', 1e-3)
|
| 208 |
+
|
| 209 |
+
# 构建数据集
|
| 210 |
+
print("构建数据集...")
|
| 211 |
+
vocab, train_data, dev_data, test_data = build_dataset(config, train_config.get('use_word', False))
|
| 212 |
+
config.n_vocab = len(vocab)
|
| 213 |
+
|
| 214 |
+
# 更新设备配置
|
| 215 |
+
config.device = device
|
| 216 |
+
|
| 217 |
+
# 构建数据迭代器
|
| 218 |
+
train_iter = build_iterator(train_data, config)
|
| 219 |
+
dev_iter = build_iterator(dev_data, config)
|
| 220 |
+
test_iter = build_iterator(test_data, config)
|
| 221 |
+
|
| 222 |
+
# 初始化模型
|
| 223 |
+
model = Model(config)
|
| 224 |
+
|
| 225 |
+
# GPU训练设置
|
| 226 |
+
if len(gpu_ids) > 1 and torch.cuda.is_available():
|
| 227 |
+
try:
|
| 228 |
+
print(f"尝试使用多GPU训练: {gpu_ids}")
|
| 229 |
+
model = nn.DataParallel(model, device_ids=gpu_ids)
|
| 230 |
+
print("✓ 多GPU训练模式已启用")
|
| 231 |
+
except Exception as e:
|
| 232 |
+
print(f"⚠️ 多GPU初始化失败: {e}")
|
| 233 |
+
print("回退到单GPU训练模式")
|
| 234 |
+
# 回退到单GPU
|
| 235 |
+
model = model.to(device)
|
| 236 |
+
elif len(gpu_ids) == 1 and torch.cuda.is_available():
|
| 237 |
+
print(f"使用单GPU训练模式: GPU {gpu_ids[0]}")
|
| 238 |
+
model = model.to(device)
|
| 239 |
+
else:
|
| 240 |
+
print("使用CPU训练模式")
|
| 241 |
+
model = model.to(device)
|
| 242 |
+
|
| 243 |
+
# 初始化网络权重
|
| 244 |
+
init_network(model)
|
| 245 |
+
|
| 246 |
+
# 优化器
|
| 247 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
|
| 248 |
+
|
| 249 |
+
# 训练
|
| 250 |
+
print("开始训练...")
|
| 251 |
+
start_time = time.time()
|
| 252 |
+
total_batch = 0
|
| 253 |
+
dev_best_loss = float('inf')
|
| 254 |
+
# 早停
|
| 255 |
+
# last_improve = 0
|
| 256 |
+
# flag = False
|
| 257 |
+
|
| 258 |
+
epochs_dir = train_config.get('epochs_dir', '../epochs')
|
| 259 |
+
|
| 260 |
+
for epoch in range(config.num_epochs):
|
| 261 |
+
print(f'Epoch [{epoch + 1}/{config.num_epochs}]')
|
| 262 |
+
model.train()
|
| 263 |
+
|
| 264 |
+
epoch_loss = 0
|
| 265 |
+
epoch_acc = 0
|
| 266 |
+
batch_count = 0
|
| 267 |
+
|
| 268 |
+
for i, (trains, labels) in enumerate(tqdm(train_iter, desc=f"训练 Epoch {epoch+1}")):
|
| 269 |
+
try:
|
| 270 |
+
outputs = model(trains)
|
| 271 |
+
model.zero_grad()
|
| 272 |
+
loss = F.cross_entropy(outputs, labels)
|
| 273 |
+
loss.backward()
|
| 274 |
+
optimizer.step()
|
| 275 |
+
except RuntimeError as e:
|
| 276 |
+
if "NCCL" in str(e) or "cuda" in str(e).lower():
|
| 277 |
+
print(f"\n❌ 多GPU训练错误: {e}")
|
| 278 |
+
print("建议在配置文件中设置 force_single_gpu: true")
|
| 279 |
+
return
|
| 280 |
+
else:
|
| 281 |
+
raise e
|
| 282 |
+
|
| 283 |
+
epoch_loss += loss.item()
|
| 284 |
+
|
| 285 |
+
# 计算准确率
|
| 286 |
+
true = labels.data.cpu()
|
| 287 |
+
predic = torch.max(outputs.data, 1)[1].cpu()
|
| 288 |
+
train_acc = metrics.accuracy_score(true, predic)
|
| 289 |
+
epoch_acc += train_acc
|
| 290 |
+
batch_count += 1
|
| 291 |
+
|
| 292 |
+
if total_batch % 100 == 0:
|
| 293 |
+
# 每100轮输出在训练集和验证集上的效果
|
| 294 |
+
try:
|
| 295 |
+
dev_acc, dev_loss = evaluate(model, dev_iter, device)
|
| 296 |
+
except RuntimeError as e:
|
| 297 |
+
if "NCCL" in str(e) or "cuda" in str(e).lower():
|
| 298 |
+
print(f"\n❌ 验证过程多GPU错误: {e}")
|
| 299 |
+
print("建议在配置文件中设置 force_single_gpu: true")
|
| 300 |
+
return
|
| 301 |
+
else:
|
| 302 |
+
raise e
|
| 303 |
+
if dev_loss < dev_best_loss:
|
| 304 |
+
dev_best_loss = dev_loss
|
| 305 |
+
improve = '*'
|
| 306 |
+
# last_improve = total_batch
|
| 307 |
+
else:
|
| 308 |
+
improve = ''
|
| 309 |
+
|
| 310 |
+
time_dif = get_time_dif(start_time)
|
| 311 |
+
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}'
|
| 312 |
+
print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
|
| 313 |
+
model.train()
|
| 314 |
+
|
| 315 |
+
total_batch += 1
|
| 316 |
+
# if total_batch - last_improve > config.require_improvement:
|
| 317 |
+
# print("长时间无改进,提前停止训练...")
|
| 318 |
+
# flag = True
|
| 319 |
+
# break
|
| 320 |
+
|
| 321 |
+
# if flag:
|
| 322 |
+
# break
|
| 323 |
+
|
| 324 |
+
# 每个epoch结束后保存数据
|
| 325 |
+
print(f"保存 Epoch {epoch+1} 的数据...")
|
| 326 |
+
try:
|
| 327 |
+
# 顺序保存train_data、dev_data、test_data
|
| 328 |
+
save_epoch_data(model, train_data, dev_data, test_data, config, epoch+1, epochs_dir, device)
|
| 329 |
+
except RuntimeError as e:
|
| 330 |
+
if "NCCL" in str(e) or "cuda" in str(e).lower():
|
| 331 |
+
print(f"\n❌ 保存数据时多GPU错误: {e}")
|
| 332 |
+
print("建议在配置文件中设置 gpu_ids: [0]")
|
| 333 |
+
return
|
| 334 |
+
else:
|
| 335 |
+
raise e
|
| 336 |
+
|
| 337 |
+
# 输出epoch统计信息
|
| 338 |
+
avg_loss = epoch_loss / batch_count
|
| 339 |
+
avg_acc = epoch_acc / batch_count
|
| 340 |
+
print(f"Epoch {epoch+1} - 平均损失: {avg_loss:.4f}, 平均准确率: {avg_acc:.4f}")
|
| 341 |
+
|
| 342 |
+
# 最终测试
|
| 343 |
+
print("进行最终测试...")
|
| 344 |
+
model.eval()
|
| 345 |
+
test_acc, test_loss = evaluate(model, test_iter, device)
|
| 346 |
+
print(f"最终测试结果 - 损失: {test_loss:.4f}, 准确率: {test_acc:.4f}")
|
| 347 |
+
|
| 348 |
+
total_time = get_time_dif(start_time)
|
| 349 |
+
print(f"总训练时间: {total_time}")
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
if __name__ == '__main__':
|
| 353 |
+
parser = argparse.ArgumentParser(description="TextRCNN训练脚本")
|
| 354 |
+
parser.add_argument('--config', type=str, default='train.yaml', help='训练配置文件路径')
|
| 355 |
+
args = parser.parse_args()
|
| 356 |
+
|
| 357 |
+
train(args.config)
|
TextRCNN-THUCNews/Classification/scripts/train.yaml
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TextRCNN训练配置文件
|
| 2 |
+
|
| 3 |
+
# 数据集路径
|
| 4 |
+
dataset_path: "../dataset/THUCNews"
|
| 5 |
+
|
| 6 |
+
# 词向量设置
|
| 7 |
+
embedding: "random" # 可以是 "random" 或预训练词向量文件名
|
| 8 |
+
|
| 9 |
+
# 训练参数
|
| 10 |
+
num_epochs: 20
|
| 11 |
+
batch_size: 128
|
| 12 |
+
learning_rate: 0.001
|
| 13 |
+
|
| 14 |
+
# 数据处理
|
| 15 |
+
use_word: false # false为字符级,true为词级
|
| 16 |
+
|
| 17 |
+
# 保存路径
|
| 18 |
+
epochs_dir: "../epochs"
|
| 19 |
+
|
| 20 |
+
# 模型参数
|
| 21 |
+
dropout: 0.5
|
| 22 |
+
pad_size: 32
|
| 23 |
+
hidden_size: 256 # LSTM隐藏层大小
|
| 24 |
+
num_layers: 1 # LSTM层数
|
| 25 |
+
embed_dim: 300
|
| 26 |
+
|
| 27 |
+
# 早停参数
|
| 28 |
+
require_improvement: 1000
|
| 29 |
+
|
| 30 |
+
# GPU设置
|
| 31 |
+
gpu_ids: [6] # 指定使用的GPU ID列表,例如 [0] 为单GPU,[0,1,2,3] 为多GPU
|