You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Overview

This dataset provides full, machine-generated transcriptions for the entire audio-v2 dataset, containing >20k hours of Hebrew audio, all licensed under the ivrit.ai v1 license. It was released on May 18th, 2025.

You can find the full list of sources in this dataset under the audio-v2 dataset's sources.txt. All files were transcribed using the process.py pipeline, performing:

  • Frame-level VAD
  • Machine transcription using ivrit.ai's whisper-large-v3-turbo engine with the 2025.04.03 label

The VAD operation is used to reduce hallucinations in long silence durations.

Fetching the data

Use git to fetch the data. You will be asked for your username/password multiple times; use yoru token for both.

Command:

git clone https://huggingface.co/datasets/ivrit-ai/audio-v2-transcripts

Repository layout

Each episode contains two files:

  • full_transcript.json.gz: full transcript of source audio, including segment information, timestamps, avg_logprob etc.
  • speech_probs.frame.gz: speech probability per time period.

and in graphical form:

repository/
└── top/
    β”œβ”€β”€ podcast1/
    β”‚   β”œβ”€β”€ episode1/
    β”‚   β”‚   β”œβ”€β”€ full_transcript.json.gz
    β”‚   β”‚   └── speech_probs.frame.gz
    β”‚   β”œβ”€β”€ episode2/
    β”‚   β”‚   β”œβ”€β”€ full_transcript.json.gz
    β”‚   β”‚   └── speech_probs.frame.gz
    β”‚   └── ...
    β”œβ”€β”€ podcast2/
    β”‚   β”œβ”€β”€ episode1/
    β”‚   β”‚   β”œβ”€β”€ full_transcript.json.gz
    β”‚   β”‚   └── speech_probs.frame.gz
    β”‚   β”œβ”€β”€ episode2/
    β”‚   β”‚   β”œβ”€β”€ full_transcript.json.gz
    β”‚   β”‚   └── speech_probs.frame.gz
    β”‚   └── ...
    └── ...

Source audio is available under the audio-v2 repository, under podcast/episode.mp3 or podcast/episode.m4a.

Data usage

The full_transcript.json.gz contains, among others:

  • Full text transcript ('text' key).
  • Text segments ('segments'). Each segment contains start/end times, text, and other data provided by Whisper per-segment.
  • Original data prior to stable-ts based alignment ('ori_dict').

You can access it as follows:

import json
import gzip

>>> transcript = json.load(gzip.GzipFile('Χ’Χ™Χ§Χ•Χ Χ•ΧžΧ™/2024.12.18 Χ€Χ¨Χ§ #982 - Χ€Χ¨Χ•Χ€Χ³ ΧΧ™Χ™Χœ Χ–Χ™Χ‘Χ¨ Χ•Χ‘Χ•Χ¨Χ™Χ”/full_transcript.json.gz'))
))
>>>
>>> len(transcript['text'])
57372
>>> len(transcript['segments'])
2183
>>> print(transcript['segments'][0])
{'start': 0.26, 'end': 2.18, 'text': ' Χ’Χ™Χ§Χ•Χ Χ•ΧžΧ™ Χ”-16 Χ‘Χ“Χ¦ΧžΧ‘Χ¨,', 'seek': 2674, 'tokens': [], 'temperature': 0.0, 'avg_logprob': -0.09050864100139192, 'compression_ratio': 2.0642857142857145, 'no_speech_prob': 0.0, 'words': [{'word': ' Χ’Χ™Χ§Χ•Χ Χ•ΧžΧ™', 'start': 0.26, 'end': 0.88, 'probability': 0.92158203125, 'tokens': None}, {'word': ' Χ”', 'start': 0.88, 'end': 1.02, 'probability': 0.5625, 'tokens': None}, {'word': '-16', 'start': 1.06, 'end': 1.36, 'probability': 0.997314453125, 'tokens': None}, {'word': ' Χ‘Χ“Χ¦ΧžΧ‘Χ¨,', 'start': 1.36, 'end': 2.18, 'probability': 0.99990234375, 'tokens': None}]}

Credits

Paper: https://arxiv.org/abs/2307.08720

If you use our datasets, the following quote is preferable:

@misc{marmor2023ivritai,
      title={ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development}, 
      author={Yanir Marmor and Kinneret Misgav and Yair Lifshitz},
      year={2023},
      eprint={2307.08720},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

License

The dataset is released under the ivrit.ai License, which enables broad research and commercial use.

Downloads last month
329