Datasets:
Overview
This dataset provides full, machine-generated transcriptions for the entire audio-v2 dataset, containing >20k hours of Hebrew audio, all licensed under the ivrit.ai v1 license. It was released on May 18th, 2025.
You can find the full list of sources in this dataset under the audio-v2 dataset's sources.txt. All files were transcribed using the process.py pipeline, performing:
- Frame-level VAD
- Machine transcription using ivrit.ai's whisper-large-v3-turbo engine with the 2025.04.03 label
The VAD operation is used to reduce hallucinations in long silence durations.
Fetching the data
Use git to fetch the data. You will be asked for your username/password multiple times; use yoru token for both.
Command:
git clone https://huggingface.co/datasets/ivrit-ai/audio-v2-transcripts
Repository layout
Each episode contains two files:
- full_transcript.json.gz: full transcript of source audio, including segment information, timestamps, avg_logprob etc.
- speech_probs.frame.gz: speech probability per time period.
and in graphical form:
repository/
βββ top/
βββ podcast1/
β βββ episode1/
β β βββ full_transcript.json.gz
β β βββ speech_probs.frame.gz
β βββ episode2/
β β βββ full_transcript.json.gz
β β βββ speech_probs.frame.gz
β βββ ...
βββ podcast2/
β βββ episode1/
β β βββ full_transcript.json.gz
β β βββ speech_probs.frame.gz
β βββ episode2/
β β βββ full_transcript.json.gz
β β βββ speech_probs.frame.gz
β βββ ...
βββ ...
Source audio is available under the audio-v2 repository, under podcast/episode.mp3 or podcast/episode.m4a.
Data usage
The full_transcript.json.gz contains, among others:
- Full text transcript ('text' key).
- Text segments ('segments'). Each segment contains start/end times, text, and other data provided by Whisper per-segment.
- Original data prior to stable-ts based alignment ('ori_dict').
You can access it as follows:
import json
import gzip
>>> transcript = json.load(gzip.GzipFile('ΧΧΧ§ΧΧ ΧΧΧ/2024.12.18 Χ€Χ¨Χ§ #982 - Χ€Χ¨ΧΧ€Χ³ ΧΧΧΧ ΧΧΧ‘Χ¨ ΧΧ‘ΧΧ¨ΧΧ/full_transcript.json.gz'))
))
>>>
>>> len(transcript['text'])
57372
>>> len(transcript['segments'])
2183
>>> print(transcript['segments'][0])
{'start': 0.26, 'end': 2.18, 'text': ' ΧΧΧ§ΧΧ ΧΧΧ Χ-16 ΧΧΧ¦ΧΧΧ¨,', 'seek': 2674, 'tokens': [], 'temperature': 0.0, 'avg_logprob': -0.09050864100139192, 'compression_ratio': 2.0642857142857145, 'no_speech_prob': 0.0, 'words': [{'word': ' ΧΧΧ§ΧΧ ΧΧΧ', 'start': 0.26, 'end': 0.88, 'probability': 0.92158203125, 'tokens': None}, {'word': ' Χ', 'start': 0.88, 'end': 1.02, 'probability': 0.5625, 'tokens': None}, {'word': '-16', 'start': 1.06, 'end': 1.36, 'probability': 0.997314453125, 'tokens': None}, {'word': ' ΧΧΧ¦ΧΧΧ¨,', 'start': 1.36, 'end': 2.18, 'probability': 0.99990234375, 'tokens': None}]}
Credits
Paper: https://arxiv.org/abs/2307.08720
If you use our datasets, the following quote is preferable:
@misc{marmor2023ivritai,
title={ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development},
author={Yanir Marmor and Kinneret Misgav and Yair Lifshitz},
year={2023},
eprint={2307.08720},
archivePrefix={arXiv},
primaryClass={eess.AS}
}
License
The dataset is released under the ivrit.ai License, which enables broad research and commercial use.
- Full license: https://www.ivrit.ai/en/the-license/
- FAQs: https://www.ivrit.ai/en/license-faqs/
- Downloads last month
- 329