# BFCL-Hi Evaluation ## Overview BFCL-Hi (Berkeley Function-Calling Leaderboard - Hindi) is a Hindi adaptation of the BFCL benchmark, designed to evaluate the function-calling capabilities of Large Language Models in Hindi. This benchmark assesses models' ability to understand function descriptions and generate appropriate function calls based on natural language instructions. ## Evaluation Workflow BFCL-Hi follows the **BFCL v2 evaluation methodology** from the original GitHub repository, utilizing the same framework for assessing function-calling capabilities. ### Evaluation Steps 1. **Load the dataset** (see important note below about dataset loading) 2. **Generate model responses** with function calls based on the prompts 3. **Evaluate function-calling accuracy** using the BFCL v2 evaluation scripts 4. **Obtain metrics** including execution accuracy, structural correctness, and other BFCL metrics ## Important: Dataset Loading ⚠️ **DO NOT use the HuggingFace `load_dataset` method** to load the BFCL-Hi dataset. The dataset files are hosted on HuggingFace but are **not compatible** with the HuggingFace datasets package. This is consistent with the English version of the dataset. **Recommended Approach:** - Download the JSON files directly from the HuggingFace repository - Load them manually using standard JSON loading methods - Follow the BFCL v2 repository's data loading methodology ## Implementation Please follow the **same methodology as BFCL v2 (English)** as documented in the official resources below. ## Setup and Usage ### Step 1: Installation Clone the Gorilla repository and install dependencies: ```bash git clone https://github.com/ShishirPatil/gorilla.git cd gorilla/berkeley-function-call-leaderboard pip install -r requirements.txt ``` ### Step 2: Prepare Your Dataset - Place your dataset files in the appropriate directory - Follow the data format specifications from the English BFCL v2 ### Step 3: Generate Model Responses Run inference to generate function calls from your model: ```bash python openfunctions_evaluation.py \ --model \ --test-category \ --num-gpus ``` **Key Parameters:** - `--model`: Your model name or path - `--test-category`: Category to test (e.g., `all`, `simple`, `multiple`, `parallel`, etc.) - `--num-gpus`: Number of GPUs to use **For Hindi (BFCL-Hi):** - Ensure you load the Hindi version of the dataset - Modify the inference code according to your model and hosted inference framework **Available Test Categories in BFCL-Hi:** - `simple`: Single function calls - `multiple`: Multiple function calls - `parallel`: Parallel function calls - `parallel_multiple`: Combination of parallel and multiple function calls - `relevance`: Testing function relevance detection - `irrelevance`: Testing irrelevant function call handling ### Step 4: Evaluate Results Evaluate the generated function calls against ground truth: ```bash python eval_runner.py \ --model \ --test-category ``` This will: - Parse the generated function calls - Compare with ground truth - Calculate accuracy metrics - Generate detailed error analysis ### Step 5: View Results Results will be saved in the output directory with metrics including: - **Execution Accuracy**: Whether the function call executes correctly - **Structural Correctness**: Whether the function call structure is valid - **Argument Accuracy**: Whether arguments are correctly formatted - **Overall Score**: Aggregated performance metric You can also create custome Evaluation Script based on the above for more control over the evaluation process. ### Official BFCL v2 Resources - **GitHub Repository**: [Berkeley Function-Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard) - Complete evaluation framework and scripts - Dataset loading instructions - Evaluation metrics implementation - **BFCL v2 Documentation**: [BFCL v2 Release](https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html) - Overview of v2 improvements and methodology - **Gorilla Project**: [https://gorilla.cs.berkeley.edu/](https://gorilla.cs.berkeley.edu/) - Main project page with additional resources - **Research Paper**: [Gorilla: Large Language Model Connected with Massive APIs](https://arxiv.org/abs/2305.15334) - Patil et al., arXiv:2305.15334 (2023)