mihirma commited on
Commit
55f5a90
·
verified ·
1 Parent(s): e9a2d02

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. 05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-19062f93-c43f-40da-a8e7-aee672713bd11750887279735-2025_06_25-23.35.33.315/source.csv +0 -0
  2. 05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-9ff54a43-2a59-41a8-96bc-f7e46d5244651750887279734-2025_06_25-23.36.32.560/source.csv +3 -0
  3. 05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-cb92c7b2-f6e4-4d49-91cb-88397630081c1750964172563-2025_06_26-20.56.24.104/source.csv +0 -0
  4. 05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-cf821b01-6b29-41b7-8f83-b619919a05b21750839417809-2025_06_25-10.17.13.417/source.csv +0 -0
  5. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-106a30cc-3f72-45f3-9927-7b65fe48a1281767368581712-2026_01_02-16.43.12.537/source.csv +0 -0
  6. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-1a879c19-f454-4c6d-ab47-63d2934123911767867211896-2026_01_08-11.14.30.646/source.csv +0 -0
  7. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-1e45f155-81cc-410e-818b-93e33f5637c71767610593907-2026_01_05-11.56.49.330/source.csv +0 -0
  8. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-2512f40f-958c-4b3c-9d8f-16c4a1d22b551767694549505-2026_01_06-11.16.10.387/source.csv +0 -0
  9. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-26ae656d-f995-4b35-a709-1f5ab8f828a11767630468773-2026_01_05-17.28.30.525/source.csv +0 -0
  10. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-495b78a3-8c04-4965-88fa-979c320df6561767630491949-2026_01_05-17.28.24.506/source.csv +3 -0
  11. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-76c4fb2d-2203-42b8-92ab-0caa4cb609801767555314125-2026_01_04-20.35.48.386/source.csv +0 -0
  12. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-805359c7-8c4e-40bd-8498-d35dee25aba61767776424373-2026_01_07-10.01.10.541/source.csv +0 -0
  13. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-886b09eb-c0c8-475a-a603-3035b8c283c31767617997118-2026_01_05-14.00.32.126/source.csv +0 -0
  14. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-908d3d62-c6b7-4344-9d22-e32a888120bb1767803103606-2026_01_07-17.25.13.88/source.csv +0 -0
  15. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-9c8a2990-0ff1-494a-9fe7-635f887f66211767803500134-2026_01_07-17.32.14.102/source.csv +0 -0
  16. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-9ec11139-792c-4543-b766-eaf97004d3091767717466518-2026_01_06-17.38.21.548/source.csv +0 -0
  17. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-c9ffd4ad-ae84-4e96-99d2-7212edb4dcc21767023143212-2025_12_29-16.46.49.639/source.csv +0 -0
  18. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-df110f6f-a3c9-4641-90da-f30934c027e01767707463233-2026_01_06-14.51.27.372/source.csv +64 -0
  19. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-e69fee36-85ea-4c2a-bf7e-90b6490333df1767532068697-2026_01_04-14.08.44.100/source.csv +0 -0
  20. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-f4bf9883-3801-446a-98c6-413295d94c701767091439743-2025_12_30-11.44.46.167/source.csv +360 -0
  21. 58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-f9c548ba-e7ae-418f-bcd9-3b3e771f5fa01767372765713-2026_01_02-17.53.20.698/source.csv +0 -0
  22. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-08cafcbe-d0e5-4505-ac95-8b9050d84d731759228460178-2025_09_30-12.34.56.10/source.csv +0 -0
  23. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-10196e97-c322-40bf-836a-16ee811908931758807420822-2025_09_25-15.37.22.442/source.csv +0 -0
  24. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-1e70ca6b-f2dc-4f0c-81bb-b7d403b4df271752242192153-2025_07_11-15.56.51.266/source.csv +0 -0
  25. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-1f51b8ea-81c1-4db7-8702-1416f8c1c0cc1751376377945-2025_07_01-15.27.44.831/source.csv +0 -0
  26. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-242fa472-b5db-492d-8b66-f482468772b21757500459062-2025_09_10-12.34.42.52/source.csv +4 -0
  27. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-27fd9e5e-b562-49ba-9321-8ed11ebad94f1756718814603-2025_09_01-11.27.16.489/source.csv +0 -0
  28. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2b01d9ad-2c11-4b6b-bc1b-f335a6c7dd4a1750840473876-2025_06_25-10.34.49.55/source.csv +0 -0
  29. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2cce3a90-32a5-4d8b-8cb0-10445a2ee7a71754054463184-2025_08_01-15.21.32.127/source.csv +0 -0
  30. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2e25d757-859b-4fde-ba77-792b0eb397df1759579674644-2025_10_04-14.09.15.386/source.csv +0 -0
  31. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2f4869ae-f0d3-4e60-80d2-8655e52f1ea31751064760332-2025_06_28-00.52.51.957/source.csv +0 -0
  32. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-3ba207b9-2f18-4919-a6bb-bebae1f850441758203079280-2025_09_18-15.45.09.509/source.csv +0 -0
  33. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-3ebbac58-2f0e-41b5-a15d-9a2b6b0c20ab1758725119572-2025_09_24-16.46.25.34/source.csv +0 -0
  34. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-411c0b26-1d5f-4194-8163-38afd5728d3d1756886238975-2025_09_03-09.59.08.217/source.csv +0 -0
  35. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-43fbfe2e-f9a4-4bb4-acf4-2bdbf37810851757006149083-2025_09_04-19.16.32.851/source.csv +0 -0
  36. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-4b6051ce-1cfc-4dca-874b-0d0d7270d33f1753454394749-2025_07_25-16.42.21.379/source.csv +125 -0
  37. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-50d32311-0df8-4235-b597-7d69f06b72151752666637262-2025_07_16-13.50.55.636/source.csv +143 -0
  38. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-527e6f79-68be-4672-b584-2b15b1cf78281754060417734-2025_08_01-17.00.27.872/source.csv +1141 -0
  39. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-5e6eb49e-ed8b-4688-9226-2f7ce3bdd3501759657457038-2025_10_05-11.44.58.692/source.csv +0 -0
  40. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-614215de-0f98-45e4-a49e-9e7d7e57cff91757422920029-2025_09_09-15.02.34.03/source.csv +198 -0
  41. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-629e4b25-2201-4663-a7f2-936116295b151757499356136-2025_09_10-12.16.59.652/source.csv +3 -0
  42. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-6488ed25-a64b-4b96-ae90-de59d09eaf2d1759672300294-2025_10_05-15.52.33.721/source.csv +0 -0
  43. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-65955a28-c516-4123-abaf-6681358bdea31753192468219-2025_07_22-15.55.21.96/source.csv +0 -0
  44. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-6aec90c8-8d95-4bad-afcb-92c28c6ff5241753889052956-2025_07_30-17.24.41.914/source.csv +33 -0
  45. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-761e4728-7320-4c5d-bc55-ad231839bb781753709851371-2025_07_28-15.39.08.844/source.csv +0 -0
  46. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-76d20b24-d9be-4730-bca0-3f5c7d0460a01758996810958-2025_09_27-20.14.06.310/source.csv +0 -0
  47. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-7c8743a1-f55a-4e45-b7aa-0b3df3c9f3c91752835699286-2025_07_18-12.49.02.294/source.csv +394 -0
  48. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-7ec41ffb-ddad-4e1d-b171-0513171669281757061617849-2025_09_05-10.41.46.448/source.csv +44 -0
  49. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-92e279fe-1f26-4694-b71c-d8f950b76bd11757499356165-2025_09_10-12.16.58.191/source.csv +463 -0
  50. 927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-9c2d9ac2-2076-4ff2-8381-5264acd089541759350296590-2025_10_01-22.25.31.836/source.csv +8 -0
05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-19062f93-c43f-40da-a8e7-aee672713bd11750887279735-2025_06_25-23.35.33.315/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-9ff54a43-2a59-41a8-96bc-f7e46d5244651750887279734-2025_06_25-23.36.32.560/source.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,18,"scripts/file_duplicate_checker.py",0,0,"import os\nfrom collections import defaultdict\nfrom tqdm import tqdm\n\ndef find_duplicate_filenames(root_dir):\n filenames = defaultdict(list)\n file_count = 0\n\n # Use tqdm with manual update and no percentage/ETA bar\n pbar = tqdm(desc=""Files scanned"", unit=""file"", dynamic_ncols=True, bar_format=""{desc}: {n_fmt}"")\n\n # Walk the directory recursively\n for dirpath, _, files in os.walk(root_dir):\n for file in files:\n full_path = os.path.join(dirpath, file)\n if os.path.isfile(full_path):\n filenames[file].append(full_path)\n file_count += 1\n pbar.update(1)\n\n pbar.close()\n\n # Print duplicates\n duplicates = {name: paths for name, paths in filenames.items() if len(paths) > 1}\n if duplicates:\n print(""\nDuplicate filenames found:\n"")\n for name, paths in duplicates.items():\n print(f""Filename: {name}"")\n for path in paths:\n print(f"" - {path}"")\n print()\n else:\n print(""\nNo duplicate filenames found."")\n\nif __name__ == ""__main__"":\n import sys\n if len(sys.argv) < 2:\n print(""Usage: python find_duplicates.py <directory_path>"")\n else:\n find_duplicate_filenames(sys.argv[1])\n\n",python,tab
3
+ 2,521,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"11:36:32 PM [info] Activating crowd-code\n11:36:32 PM [info] Welcome back tum_ind3695. Your user-id is '507ab0ec0dfe0c18ad7778dd15e072f92367194c94623114de802c8ed9c52e20'. Happy coding!\n11:36:32 PM [info] Recording started\n",Log,tab
05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-cb92c7b2-f6e4-4d49-91cb-88397630081c1750964172563-2025_06_26-20.56.24.104/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
05d9d5da933137c5402a176a469b618685c7e9142aa8972616ca5cdf0f6e53d1/crowd-code-cf821b01-6b29-41b7-8f83-b619919a05b21750839417809-2025_06_25-10.17.13.417/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-106a30cc-3f72-45f3-9927-7b65fe48a1281767368581712-2026_01_02-16.43.12.537/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-1a879c19-f454-4c6d-ab47-63d2934123911767867211896-2026_01_08-11.14.30.646/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-1e45f155-81cc-410e-818b-93e33f5637c71767610593907-2026_01_05-11.56.49.330/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-2512f40f-958c-4b3c-9d8f-16c4a1d22b551767694549505-2026_01_06-11.16.10.387/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-26ae656d-f995-4b35-a709-1f5ab8f828a11767630468773-2026_01_05-17.28.30.525/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-495b78a3-8c04-4965-88fa-979c320df6561767630491949-2026_01_05-17.28.24.506/source.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,464,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"5:28:24 PM [info] Activating crowd-code\n5:28:24 PM [info] Recording started\n5:28:24 PM [info] Initializing git provider using file system watchers...\n5:28:24 PM [error] Not a git repository: EntryNotFound (FileSystemError): Error: ENOENT: no such file or directory, stat '/fast/project/HFMI_SynergyUnit/tab_model/data/qwen/.git'\n",Log,tab
3
+ 3,2064,"extension-output-pdoom-org.crowd-code-#1-crowd-code",329,0,"5:28:26 PM [info] Retrying git provider initialization...\n5:28:26 PM [error] Not a git repository: EntryNotFound (FileSystemError): Error: ENOENT: no such file or directory, stat '/fast/project/HFMI_SynergyUnit/tab_model/data/qwen/.git'\n",Log,content
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-76c4fb2d-2203-42b8-92ab-0caa4cb609801767555314125-2026_01_04-20.35.48.386/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-805359c7-8c4e-40bd-8498-d35dee25aba61767776424373-2026_01_07-10.01.10.541/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-886b09eb-c0c8-475a-a603-3035b8c283c31767617997118-2026_01_05-14.00.32.126/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-908d3d62-c6b7-4344-9d22-e32a888120bb1767803103606-2026_01_07-17.25.13.88/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-9c8a2990-0ff1-494a-9fe7-635f887f66211767803500134-2026_01_07-17.32.14.102/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-9ec11139-792c-4543-b766-eaf97004d3091767717466518-2026_01_06-17.38.21.548/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-c9ffd4ad-ae84-4e96-99d2-7212edb4dcc21767023143212-2025_12_29-16.46.49.639/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-df110f6f-a3c9-4641-90da-f30934c027e01767707463233-2026_01_06-14.51.27.372/source.csv ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,4,"tab-model-eval/src/evaluation/sglang_eval.py",0,0,"import asyncio\nimport json\nimport os\nimport sys\nimport subprocess\nimport time\nimport wandb\nfrom dataclasses import dataclass, field\nfrom typing import Dict, Any, List, Optional\n\nimport httpx\nimport tyro\nfrom openai import AsyncOpenAI, BadRequestError\nfrom tqdm.asyncio import tqdm_asyncio\n\nclass LocalLogger:\n """"""A simple local logger that saves metrics to JSON files for later sync to wandb.""""""\n \n def __init__(self, log_dir: str, run_id: str, run_name: str, project: str, config: dict = None, tags: list = None):\n self.log_dir = os.path.join(log_dir, run_id)\n os.makedirs(self.log_dir, exist_ok=True)\n self.run_id = run_id\n self.run_name = run_name\n self.project = project\n self.config = config or {}\n self.tags = tags or []\n self.metrics_file = os.path.join(self.log_dir, ""metrics.jsonl"")\n \n # Save run metadata\n metadata_file = os.path.join(self.log_dir, ""metadata.json"")\n with open(metadata_file, ""w"") as f:\n json.dump({\n ""run_id"": run_id,\n ""run_name"": run_name,\n ""project"": project,\n ""config"": config,\n ""tags"": tags,\n ""created_at"": time.strftime(""%Y-%m-%dT%H:%M:%S"")\n }, f, indent=2)\n \n print(f""LocalLogger initialized. Logs will be saved to: {self.log_dir}"")\n \n def log(self, metrics: dict):\n """"""Append metrics to the JSONL file.""""""\n metrics_with_timestamp = {\n ""timestamp"": time.strftime(""%Y-%m-%dT%H:%M:%S""),\n **metrics\n }\n with open(self.metrics_file, ""a"") as f:\n f.write(json.dumps(metrics_with_timestamp) + ""\n"")\n print(f""Logged metrics to {self.metrics_file}: eval_step={metrics.get('eval_step', 'N/A')}"")\n \n def finish(self):\n """"""Called when logging is complete.""""""\n print(f""LocalLogger finished. All logs saved to: {self.log_dir}"")\n\n\n# ----------------------------\n# Argument definitions\n# ----------------------------\n@dataclass\nclass Args:\n # Eval-related\n wandb_project: str = ""llm-coding-agent""\n wandb_name: str = ""validation_set_eval""\n wandb_eval_type: str = ""next_action_validation_set""\n wandb_tags: list[str] = field(default_factory=lambda: [""val_mini"", ""judge_eval""])\n wandb_id: str | None = None\n wandb_group: str = ""debug""\n \n # Single-file mode (backward compatible)\n generations_file: str = """"\n evaluations_file: str = """"\n eval_step: int = 0\n \n # Batch mode: comma-separated lists of files and steps\n # When these are provided, they take precedence over single-file args\n generations_files: str = """" # Comma-separated list of generation files\n evaluations_files: str = """" # Comma-separated list of evaluation output files\n eval_steps: str = """" # Comma-separated list of eval steps (integers)\n \n limit: int = -1\n system_prompt_file: str = ""data/prompts/judge_system_prompt_v2.md""\n judge_name: str = ""default""\n judge_prompt_file: str = ""data/prompts/judge_prompt_v2.md""\n judge_prompt_file_with_context: str = ""data/prompts/judge_prompt_v2_with_context.md""\n\n # Local logging for offline mode\n use_local_logger: bool = False\n local_log_dir: str = ""data/eval/local_logs""\n\n # Server-related (sglang)\n judge_model_path: str = ""Qwen/Qwen3-Coder-30B-A3B-Instruct""\n server_host: str = ""0.0.0.0""\n server_port: int = 30000\n context_length: int = 40960\n problem_length: int = 40960\n api_key: str = ""EMPTY"" # sglang's OpenAI-compatible server ignores this value\n mem_fraction_static: float = 0.95\n tp_size: int = 1\n\n # Client-related\n temperature: float = 0.7\n top_p: float = 0.8\n presence_penalty: float = 1.5\n top_k: int = 20\n min_p: float = 0.0\n enable_thinking: bool = True\n\n # HTTP / client config\n concurrency: int = 16\n max_connections: int = 256\n keepalive: int = 60\n max_attempts: int = 6\n timeout: float = 30.0\n\n # Control whether to launch server from this script\n launch_server: bool = True\n # Extra args passed to `sglang.launch_server` if needed\n extra_server_args: Optional[List[str]] = None\n \n def get_eval_jobs(self) -> List[tuple[str, str, int]]:\n """"""\n Returns a list of (generations_file, evaluations_file, eval_step) tuples.\n If batch mode args are provided, uses those. Otherwise falls back to single-file mode.\n """"""\n if self.generations_files and self.evaluations_files and self.eval_steps:\n # Batch mode\n gen_files = [f.strip() for f in self.generations_files.split("","") if f.strip()]\n eval_files = [f.strip() for f in self.evaluations_files.split("","") if f.strip()]\n steps = [int(s.strip()) for s in self.eval_steps.split("","") if s.strip()]\n \n if not (len(gen_files) == len(eval_files) == len(steps)):\n raise ValueError(\n f""Batch mode requires equal-length lists for generations_files ({len(gen_files)}), ""\n f""evaluations_files ({len(eval_files)}), and eval_steps ({len(steps)})""\n )\n \n return list(zip(gen_files, eval_files, steps))\n elif self.generations_file and self.evaluations_file:\n # Single-file mode (backward compatible)\n return [(self.generations_file, self.evaluations_file, self.eval_step)]\n else:\n raise ValueError(\n ""Either provide single-file args (generations_file, evaluations_file) ""\n ""or batch args (generations_files, evaluations_files, eval_steps)""\n )\n\n\n# ----------------------------\n# Dataset helpers\n# ----------------------------\ndef load_dataset(filepath):\n with open(filepath, ""r"") as f:\n return json.loads(f.read())\n\n\ndef estimate_token_count(messages: List[Dict[str, str]]) -> int:\n """"""\n Rough estimate of token count for a list of messages.\n Assumes ~3 characters per token as a conservative estimate.\n """"""\n total_chars = sum(len(msg.get(""content"", """")) for msg in messages)\n return total_chars // 3\n\n\ndef filter_tasks_by_context_length(\n test_cases: List[Dict[str, Any]],\n system_prompt: str,\n prompt_template: str,\n max_context_length: int = 40960,\n problem_length: int = 40960,\n buffer_tokens: int = 512, # Reserve space for response\n include_context: bool = False,\n) -> tuple[List[Dict[str, Any]], List[Dict[str, Any]]]:\n """"""\n Filter out test cases whose context would exceed the model's context length.\n Returns (valid_cases, skipped_cases)\n """"""\n valid_cases = []\n skipped_cases = []\n\n for tc in test_cases:\n # Estimate tokens for system prompt + context\n messages = [{""role"": ""system"", ""content"": system_prompt}]\n if include_context:\n messages.extend(tc[""context""])\n messages.append({""role"": ""user"", ""content"": prompt_template})\n estimated_tokens = estimate_token_count(messages)\n\n length = estimated_tokens + buffer_tokens\n if length <= max_context_length and length <= problem_length:\n valid_cases.append(tc)\n else:\n print(\n f""Skipping {tc['task_id']}: estimated {estimated_tokens} tokens (limit: {max_context_length}, problem_length: {problem_length})""\n )\n skipped_cases.append(\n {\n ""task_id"": tc[""task_id""],\n ""estimated_tokens"": estimated_tokens,\n ""reason"": ""context_too_long"",\n }\n )\n\n return valid_cases, skipped_cases\n\n\n# ----------------------------\n# Eval logic\n# ----------------------------\nasync def evaluate_generated_command(\n client: AsyncOpenAI,\n sem: asyncio.Semaphore,\n test_case: Dict[str, Any],\n args: Args,\n system_prompt: str,\n prompt_template: str,\n include_context: bool,\n) -> Dict[str, Any]:\n """"""\n Handles a single evaluation task with concurrency control and retries.\n """"""\n async with sem:\n delay = 0.25\n\n if test_case.get(""error"", None) is not None:\n print(f""Returning failure object for task {test_case['task_id']} due to error"")\n return {\n ""task_id"": test_case[""task_id""],\n ""error"": test_case[""error""],\n ""is_correct"": 0,\n ""average_score"": 0.0,\n }\n\n samples = test_case.get(""samples"", [])\n if not samples:\n print(f""Returning failure object for task {test_case['task_id']} due to no samples"")\n return {\n ""task_id"": test_case[""task_id""],\n ""error"": ""No samples"",\n ""is_correct"": 0,\n ""average_score"": 0.0,\n }\n\n sample_results = []\n for sample in samples:\n for attempt in range(args.max_attempts):\n try:\n format_dict = {\n ""expected"": test_case[""expected_command""],\n ""generated"": sample[""generated_command""],\n }\n if include_context:\n format_dict[""context""] = json.dumps(test_case[""context""], indent=2)\n prompt = prompt_template.format(**format_dict)\n\n messages = [\n {\n ""role"": ""system"",\n ""content"": system_prompt,\n },\n {""role"": ""user"", ""content"": prompt},\n ]\n\n resp = await client.chat.completions.create(\n model=args.judge_name,\n messages=messages,\n temperature=args.temperature,\n top_p=args.top_p,\n presence_penalty=args.presence_penalty,\n response_format={""type"": ""json_object""},\n extra_body={\n ""top_k"": args.top_k,\n },\n )\n\n thinking_trace = getattr(resp.choices[0].message, ""reasoning_content"", """")\n result = json.loads(resp.choices[0].message.content)\n equivalent = result.get(""equivalent"", 0)\n\n sample_results.append(\n {\n ""generated_command"": sample[""generated_command""],\n ""thinking_trace"": thinking_trace,\n ""evaluation_results"": result,\n ""equivalent"": equivalent,\n ""exact_match"": sample[""exact_match""],\n }\n )\n break\n\n except BadRequestError as e:\n print(\n f""Returning failure object for task {test_case['task_id']} due to BadRequestError: {e}""\n )\n sample_results.append(\n {\n ""task_id"": test_case[""task_id""],\n ""error"": str(e),\n ""equivalent"": 0,\n ""exact_match"": 0,\n }\n )\n break\n\n except Exception as e:\n print(f""Error on task {test_case['task_id']}: {e}"")\n if attempt == args.max_attempts - 1:\n print(f""Returning failure object for task {test_case['task_id']}"")\n sample_results.append(\n {\n ""task_id"": test_case[""task_id""],\n ""error"": str(e),\n ""equivalent"": 0,\n }\n )\n await asyncio.sleep(delay)\n delay *= 2\n\n # Compute avg@n and pass@n\n num_judge_matches = sum(s.get(""equivalent"", 0) for s in sample_results)\n judge_avg_at_n = num_judge_matches / len(sample_results)\n judge_pass_at_n = int(num_judge_matches > 0)\n num_exact_matches = test_case.get(""num_exact_matches"", 0)\n\n return {\n ""task_id"": test_case[""task_id""],\n ""context"": test_case[""context""],\n ""expected_command"": test_case[""expected_command""],\n ""sample_evaluations"": sample_results,\n ""num_samples"": len(sample_results),\n ""num_judge_matches"": num_judge_matches,\n ""judge_avg_at_n"": judge_avg_at_n,\n ""judge_pass_at_n"": judge_pass_at_n,\n ""num_exact_matches"": num_exact_matches,\n }\n\n\nasync def run_single_eval(\n args: Args,\n generations_file: str,\n evaluations_file: str,\n eval_step: int,\n client: AsyncOpenAI,\n sem: asyncio.Semaphore,\n system_prompt: str,\n prompt_template: str,\n include_context: bool,\n logger: Optional[LocalLogger] = None,\n) -> Dict[str, Any]:\n """"""\n Evaluate a single generations file and write results to evaluations file.\n Uses shared client and semaphore for efficiency in batch mode.\n Returns the evaluation scores dictionary.\n """"""\n print(f""\n{'='*60}"")\n print(f""Evaluating: {generations_file}"")\n print(f""Output: {evaluations_file}"")\n print(f""Step: {eval_step}"")\n print(f""{'='*60}"")\n \n loaded_data = load_dataset(generations_file)\n test_cases = loaded_data[""generation_results""]\n\n config_generations = loaded_data[""config_generations""]\n config_evaluations = args.__dict__\n metadata = {\n ""config_generations"": config_generations,\n ""config_evaluations"": config_evaluations,\n }\n\n if args.limit > 0:\n test_cases = test_cases[: args.limit]\n\n # Filter out tasks with context that's too long\n test_cases, skipped_cases = filter_tasks_by_context_length(\n test_cases,\n system_prompt=system_prompt,\n prompt_template=prompt_template,\n max_context_length=args.context_length,\n problem_length=args.problem_length,\n buffer_tokens=512,\n include_context=include_context,\n )\n\n print(f""\nFiltered dataset:"")\n print(f"" Valid test cases: {len(test_cases)}"")\n print(f"" Skipped (too long): {len(skipped_cases)}"")\n print()\n\n # Clean output\n if os.path.exists(evaluations_file):\n os.remove(evaluations_file)\n\n tasks = [\n evaluate_generated_command(\n client, sem, tc, args, system_prompt, prompt_template, include_context\n )\n for tc in test_cases\n ]\n\n print(f""Running {len(test_cases)} test cases with concurrency={args.concurrency} ..."")\n results: List[Dict[str, Any]] = []\n\n # progress bar over async tasks\n for coro in tqdm_asyncio.as_completed(tasks, total=len(tasks)):\n results.append(await coro)\n\n # sort the results by task_id\n results.sort(key=lambda x: x[""task_id""])\n\n os.makedirs(os.path.dirname(evaluations_file), exist_ok=True)\n total_judge_avg_at_n = sum(r.get(""judge_avg_at_n"", 0) for r in results) / len(results)\n total_judge_pass_at_n = sum(r.get(""judge_pass_at_n"", 0) for r in results)\n\n total_exact_match_avg_at_n = loaded_data[""generation_scores""][""total_exact_match_avg_at_n""]\n total_exact_match_pass_at_n = loaded_data[""generation_scores""][""total_exact_match_pass_at_n""]\n\n # Prepare metrics to log\n metrics_to_log = {\n ""eval_step"": eval_step,\n f""{args.wandb_eval_type}/total_test_cases"": len(test_cases),\n f""{args.wandb_eval_type}/num_samples_per_task"": loaded_data[""config_generations""][\n ""num_samples""\n ],\n f""{args.wandb_eval_type}/total_judge_avg_at_n"": total_judge_avg_at_n,\n f""{args.wandb_eval_type}/total_judge_pass_at_n"": total_judge_pass_at_n,\n f""{args.wandb_eval_type}/total_exact_match_avg_at_n"": total_exact_match_avg_at_n,\n f""{args.wandb_eval_type}/total_exact_match_pass_at_n"": total_exact_match_pass_at_n,\n }\n \n # Log metrics using appropriate logger\n if args.use_local_logger:\n logger.log(metrics_to_log)\n else:\n wandb.log(metrics_to_log)\n\n with open(evaluations_file, ""w"") as f:\n json.dump(\n {\n ""metadata"": metadata,\n ""evaluation_scores"": {\n ""total_test_cases"": len(test_cases),\n ""num_samples_per_task"": loaded_data[""config_generations""][""num_samples""],\n ""total_judge_avg_at_n"": total_judge_avg_at_n,\n ""total_judge_pass_at_n"": total_judge_pass_at_n,\n ""total_exact_match_avg_at_n"": total_exact_match_avg_at_n,\n ""total_exact_match_pass_at_n"": total_exact_match_pass_at_n,\n ""max_attempts"": args.max_attempts,\n },\n ""generation_results"": results,\n },\n f,\n indent=2,\n )\n\n print(""\n"" + ""="" * 50)\n print(f""--- Evaluation Complete (step {eval_step}) ---"")\n print(""="" * 50)\n print(f""Total Test Cases: {len(test_cases)}"")\n print(f""Total Judge Pass At N: {total_judge_pass_at_n}"")\n print(f""Total Judge Avg At N: {total_judge_avg_at_n * 100:.2f}%"")\n print(f""Total Exact Match Pass At N: {total_exact_match_pass_at_n}"")\n print(f""Total Exact Match Avg At N: {total_exact_match_avg_at_n * 100:.2f}%"")\n print(f""Evaluations output file: {evaluations_file}"")\n\n return {\n ""eval_step"": eval_step,\n ""generations_file"": generations_file,\n ""evaluations_file"": evaluations_file,\n ""total_test_cases"": len(test_cases),\n ""total_judge_avg_at_n"": total_judge_avg_at_n,\n ""total_judge_pass_at_n"": total_judge_pass_at_n,\n ""total_exact_match_avg_at_n"": total_exact_match_avg_at_n,\n ""total_exact_match_pass_at_n"": total_exact_match_pass_at_n,\n }\n\n\nasync def run_batch_eval(args: Args, base_url: str):\n """"""\n Run evaluation on multiple generation files with a single model load.\n This avoids the overhead of loading/unloading the judge model for each checkpoint.\n """"""\n eval_jobs = args.get_eval_jobs()\n \n print(f""\n{'#'*60}"")\n print(f""# BATCH EVALUATION MODE"")\n print(f""# Processing {len(eval_jobs)} evaluation job(s)"")\n print(f""{'#'*60}\n"")\n \n for i, (gen_file, eval_file, step) in enumerate(eval_jobs):\n print(f"" [{i+1}/{len(eval_jobs)}] Step {step}: {gen_file}"")\n print()\n \n # Load prompts once (shared across all evaluations)\n with open(args.system_prompt_file, ""r"") as f:\n system_prompt = f.read()\n\n include_context = bool(args.judge_prompt_file_with_context)\n judge_prompt_file = args.judge_prompt_file_with_context or args.judge_prompt_file\n\n with open(judge_prompt_file, ""r"") as f:\n prompt_template = f.read()\n\n # Initialize logger (local or wandb) - shared across all evaluations\n logger = None\n if args.use_local_logger:\n run_id = args.wandb_id or args.wandb_name\n logger = LocalLogger(\n log_dir=args.local_log_dir,\n run_id=run_id,\n run_name=args.wandb_name,\n project=args.wandb_project,\n config={""batch_mode"": True, ""num_jobs"": len(eval_jobs)},\n tags=args.wandb_tags,\n )\n else:\n wandb_init_kwargs = {\n ""project"": args.wandb_project,\n ""name"": args.wandb_name,\n ""tags"": args.wandb_tags,\n ""group"": args.wandb_group,\n ""config"": {""batch_mode"": True, ""num_jobs"": len(eval_jobs)},\n }\n\n if args.wandb_id:\n wandb_dir = os.path.join(os.getcwd(), ""eval_logs"", args.wandb_id)\n os.makedirs(wandb_dir, exist_ok=True)\n os.environ[""WANDB_DIR""] = wandb_dir\n os.environ[""WANDB_RESUME""] = ""allow""\n \n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n ""dir"": wandb_dir,\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n # Reuse a single HTTP/2 client with a large pool (shared across all evaluations)\n http = httpx.AsyncClient(\n http2=True,\n timeout=httpx.Timeout(args.timeout, connect=10.0, read=args.timeout),\n limits=httpx.Limits(\n max_connections=args.max_connections,\n max_keepalive_connections=args.max_connections,\n keepalive_expiry=args.keepalive,\n ),\n headers={""Connection"": ""keep-alive""},\n )\n client = AsyncOpenAI(\n base_url=base_url,\n api_key=args.api_key,\n http_client=http,\n )\n sem = asyncio.Semaphore(args.concurrency)\n\n # Process each evaluation job sequentially\n all_results = []\n for i, (gen_file, eval_file, step) in enumerate(eval_jobs):\n print(f""\n[{i+1}/{len(eval_jobs)}] Processing step {step}..."")\n \n result = await run_single_eval(\n args=args,\n generations_file=gen_file,\n evaluations_file=eval_file,\n eval_step=step,\n client=client,\n sem=sem,\n system_prompt=system_prompt,\n prompt_template=prompt_template,\n include_context=include_context,\n logger=logger,\n )\n all_results.append(result)\n\n await http.aclose()\n \n # Finish logging\n if args.use_local_logger:\n logger.finish()\n else:\n wandb.finish()\n\n # Print summary\n print(""\n"" + ""#"" * 60)\n print(""# BATCH EVALUATION SUMMARY"")\n print(""#"" * 60)\n for r in all_results:\n print(f"" Step {r['eval_step']:>5}: Judge Avg@N = {r['total_judge_avg_at_n']*100:5.2f}%, ""\n f""Pass@N = {r['total_judge_pass_at_n']}, ""\n f""Exact Avg@N = {r['total_exact_match_avg_at_n']*100:5.2f}%"")\n print(""#"" * 60)\n\n\n# ----------------------------\n# Server launch + waiting\n# ----------------------------\nasync def wait_for_server(base_url: str, timeout: float = 600.0) -> None:\n """"""\n Poll the server's OpenAI-compatible endpoint until it responds or timeout.\n We'll try a lightweight call to /models.\n """"""\n print(f""Waiting for server at {base_url} ..."")\n deadline = asyncio.get_event_loop().time() + timeout\n\n async with httpx.AsyncClient() as client:\n while True:\n now = asyncio.get_event_loop().time()\n if now > deadline:\n raise RuntimeError(\n f""Server at {base_url} did not become ready within {timeout} seconds.""\n )\n try:\n resp = await client.get(f""{base_url}/v1/models"", timeout=5.0)\n if resp.status_code == 200:\n print(""Server is up."")\n return\n else:\n print(f""Server not ready yet (status {resp.status_code}); retrying..."")\n except Exception as e:\n print(f""Server not ready yet ({e}); retrying..."")\n await asyncio.sleep(10.0)\n\n\ndef launch_sglang_server(args: Args) -> subprocess.Popen:\n """"""\n Launch sglang server as a subprocess.\n You should have `module load CUDA/12.8` and `source .venv/bin/activate`\n done in your shell before running this script.\n """"""\n cmd = [\n sys.executable,\n ""-m"",\n ""sglang.launch_server"",\n ""--model-path"",\n args.judge_model_path,\n ""--host"",\n args.server_host,\n ""--port"",\n str(args.server_port),\n ""--context-length"",\n str(args.context_length),\n ""--mem-fraction-static"",\n str(args.mem_fraction_static),\n ""--tp-size"",\n str(args.tp_size),\n ]\n\n if args.extra_server_args:\n cmd.extend(args.extra_server_args)\n\n print(""Launching sglang server:"")\n print("" "" + "" "".join(cmd))\n\n env = os.environ.copy()\n proc = subprocess.Popen(\n cmd,\n env=env,\n stdout=sys.stdout,\n stderr=sys.stderr,\n )\n return proc\n\n\n# ----------------------------\n# Main\n# ----------------------------\nasync def amain(args: Args):\n base_url = f""http://{args.server_host}:{args.server_port}/v1""\n print(f""Using server at {base_url}"")\n\n server_proc: Optional[subprocess.Popen] = None\n try:\n if args.launch_server:\n server_proc = launch_sglang_server(args)\n await wait_for_server(f""http://{args.server_host}:{args.server_port}"")\n\n await run_batch_eval(args, base_url=base_url)\n\n finally:\n if server_proc is not None:\n print(""Shutting down sglang server ..."")\n server_proc.terminate()\n try:\n server_proc.wait(timeout=30)\n except subprocess.TimeoutExpired:\n print(""Server did not exit in time; killing."")\n server_proc.kill()\n\n\nif __name__ == ""__main__"":\n args = tyro.cli(Args)\n asyncio.run(amain(args))\n print(""Done"")\n",python,tab
3
+ 2,237,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"2:51:27 PM [info] Activating crowd-code\n2:51:27 PM [info] Recording started\n2:51:27 PM [info] Initializing git provider using file system watchers...\n2:51:27 PM [info] Git repository found\n2:51:27 PM [info] Git provider initialized successfully\n2:51:27 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 3,1773,"tab-model-eval/src/evaluation/sglang_eval.py",0,0,"",python,tab
5
+ 4,142831,"TERMINAL",0,0,"git diff",,terminal_command
6
+ 5,142985,"TERMINAL",0,0,"]633;C[?1h=\rdiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n:",,terminal_output
7
+ 6,144565,"TERMINAL",0,0,"...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n:",,terminal_output
8
+ 7,144746,"TERMINAL",0,0,"...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n:...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n:...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n- # allocate the GPUs\r\n- pgs = create_placement_groups(args)\r\n- init_tracking(args)\r\n-\r\n- # create the rollout manager, with sglang engines inside.\r\n- # need to initialize rollout manager first to calculate num_rollout\r\n- rollout_manager, num_rollout_per_epoch = create_rollout_manager(args, pgs[""rollout""])\r\n-\r\n- # create the actor and critic models\r\n- actor_model, critic_model = create_training_models(args, pgs, rollout_manager)\r\n-\r\n- if args.offload_rollout:\r\n- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_WEIGHTS]))\r\n:...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n- # allocate the GPUs\r\n- pgs = create_placement_groups(args)\r\n- init_tracking(args)\r\n-\r\n- # create the rollout manager, with sglang engines inside.\r\n- # need to initialize rollout manager first to calculate num_rollout\r\n- rollout_manager, num_rollout_per_epoch = create_rollout_manager(args, pgs[""rollout""])\r\n-\r\n- # create the actor and critic models\r\n- actor_model, critic_model = create_training_models(args, pgs, rollout_manager)\r\n-\r\n- if args.offload_rollout:\r\n- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_WEIGHTS]))\r\n-\r\n- # always update weight first so that sglang has the loaded weights from training.\r\n- actor_model.update_weights()\r\n-\r\n:...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n- # allocate the GPUs\r\n- pgs = create_placement_groups(args)\r\n- init_tracking(args)\r\n-\r\n- # create the rollout manager, with sglang engines inside.\r\n- # need to initialize rollout manager first to calculate num_rollout\r\n- rollout_manager, num_rollout_per_epoch = create_rollout_manager(args, pgs[""rollout""])\r\n-\r\n- # create the actor and critic models\r\n- actor_model, critic_model = create_training_models(args, pgs, rollout_manager)\r\n-\r\n- if args.offload_rollout:\r\n- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_WEIGHTS]))\r\n-\r\n- # always update weight first so that sglang has the loaded weights from training.\r\n- actor_model.update_weights()\r\n-\r\n- if args.check_weight_update_equal:\r\n- ray.get(rollout_manager.check_weights.remote(action=""compare""))\r\n:...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n- # allocate the GPUs\r\n- pgs = create_placement_groups(args)\r\n- init_tracking(args)\r\n-\r\n- # create the rollout manager, with sglang engines inside.\r\n- # need to initialize rollout manager first to calculate num_rollout\r\n- rollout_manager, num_rollout_per_epoch = create_rollout_manager(args, pgs[""rollout""])\r\n-\r\n- # create the actor and critic models\r\n- actor_model, critic_model = create_training_models(args, pgs, rollout_manager)\r\n-\r\n- if args.offload_rollout:\r\n- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_WEIGHTS]))\r\n-\r\n- # always update weight first so that sglang has the loaded weights from training.\r\n- actor_model.update_weights()\r\n-\r\n- if args.check_weight_update_equal:\r\n- ray.get(rollout_manager.check_weights.remote(action=""compare""))\r\n-\r\n:...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n- # allocate the GPUs\r\n- pgs = create_placement_groups(args)\r\n- init_tracking(args)\r\n-\r\n- # create the rollout manager, with sglang engines inside.\r\n- # need to initialize rollout manager first to calculate num_rollout\r\n- rollout_manager, num_rollout_per_epoch = create_rollout_manager(args, pgs[""rollout""])\r\n-\r\n- # create the actor and critic models\r\n- actor_model, critic_model = create_training_models(args, pgs, rollout_manager)\r\n-\r\n- if args.offload_rollout:\r\n- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_WEIGHTS]))\r\n-\r\n- # always update weight first so that sglang has the loaded weights from training.\r\n- actor_model.update_weights()\r\n-\r\n- if args.check_weight_update_equal:\r\n- ray.get(rollout_manager.check_weights.remote(action=""compare""))\r\n-\r\n- if args.offload_rollout:\r\n:",,terminal_output
9
+ 8,144862,"TERMINAL",0,0,"...skipping...\r\ndiff --git a/train.py b/train.py\r\ndeleted file mode 100644\r\nindex 9fb480e..0000000\r\n--- a/train.py\r\n+++ /dev/null\r\n@@ -1,106 +0,0 @@\r\n-import ray\r\n-from sglang.srt.constants import GPU_MEMORY_TYPE_KV_CACHE, GPU_MEMORY_TYPE_WEIGHTS\r\n-\r\n-try:\r\n- from sglang.srt.constants import GPU_MEMORY_TYPE_CUDA_GRAPH\r\n-except ImportError:\r\n- GPU_MEMORY_TYPE_CUDA_GRAPH = None\r\n-\r\n-from miles.ray.placement_group import create_placement_groups, create_rollout_manager, create_training_models\r\n-from miles.utils.arguments import parse_args\r\n-from miles.utils.logging_utils import configure_logger\r\n-from miles.utils.misc import should_run_periodic_action\r\n-from miles.utils.tracking_utils import init_tracking\r\n-\r\n-\r\n-def train(args):\r\n- configure_logger()\r\n- # allocate the GPUs\r\n- pgs = create_placement_groups(args)\r\n- init_tracking(args)\r\n-\r\n- # create the rollout manager, with sglang engines inside.\r\n- # need to initialize rollout manager first to calculate num_rollout\r\n- rollout_manager, num_rollout_per_epoch = create_rollout_manager(args, pgs[""rollout""])\r\n-\r\n- # create the actor and critic models\r\n- actor_model, critic_model = create_training_models(args, pgs, rollout_manager)\r\n-\r\n- if args.offload_rollout:\r\n- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_WEIGHTS]))\r\n-\r\n- # always update weight first so that sglang has the loaded weights from training.\r\n- actor_model.update_weights()\r\n-\r\n- if args.check_weight_update_equal:\r\n- ray.get(rollout_manager.check_weights.remote(action=""compare""))\r\n-\r\n- if args.offload_rollout:\r\n- if GPU_MEMORY_TYPE_CUDA_GRAPH is not None:\r\n:",,terminal_output
10
+ 9,145349,"TERMINAL",0,0,"\r- ray.get(rollout_manager.onload.remote(tags=[GPU_MEMORY_TYPE_CUDA_GRAPH]))\r\n:",,terminal_output
11
+ 10,146004,"TERMINAL",0,0,"\rMdiff --git a/train.py b/train.py\r\n\r:",,terminal_output
12
+ 11,146352,"TERMINAL",0,0,"\r\r:",,terminal_output
13
+ 12,146548,"TERMINAL",0,0,"\r\r:",,terminal_output
14
+ 13,146884,"TERMINAL",0,0,"\r\r:",,terminal_output
15
+ 14,148417,"TERMINAL",0,0,"\r[?1l>]0;mahajan1@jwlogin21:~/projects/envcomp/miles",,terminal_output
16
+ 15,154778,"TERMINAL",0,0,"cd tab-model-eval/",,terminal_command
17
+ 16,154781,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin21:~/projects/envcomp/miles/tab-model-eval",,terminal_output
18
+ 17,156747,"TERMINAL",0,0,"git diff",,terminal_command
19
+ 18,156780,"TERMINAL",0,0,"]633;C[?1h=\rdiff --git a/src/evaluation/sglang_generations.py b/src/evaluation/sglang_generations.py\r\nindex 554e563..822a89b 100644\r\n--- a/src/evaluation/sglang_generations.py\r\n+++ b/src/evaluation/sglang_generations.py\r\n@@ -39,10 +39,11 @@ class Args:\r\n # Model-related\r\n temperature: float = 0.7\r\n top_p: float = 0.8\r\n- presence_penalty: float = 1.5\r\n+ presence_penalty: float = 0.0\r\n top_k: int = 20\r\n min_p: float = 0.0\r\n num_samples: int = 5\r\n+ max_new_tokens: int = 5000\r\n \r\n # HTTP / client config\r\n concurrency: int = 16\r\n@@ -144,6 +145,7 @@ async def generate_next_command(\r\n top_p=args.top_p,\r\n presence_penalty=args.presence_penalty,\r\n n=args.num_samples,\r\n+ max_tokens=args.max_new_tokens,\r\n extra_body={\r\n ""top_k"": args.top_k,\r\n },\r\ndiff --git a/src/evaluation/sync_local_logs_to_wandb.py b/src/evaluation/sync_local_logs_to_wandb.py\r\nindex 50f9f10..c765579 100644\r\n--- a/src/evaluation/sync_local_logs_to_wandb.py\r\n+++ b/src/evaluation/sync_local_logs_to_wandb.py\r\n@@ -84,7 +84,7 @@ def sync_single_run(log_dir: str, dry_run: bool = False) -> bool:\r\n run = wandb.init(\r\n project=metadata[""project""],\r\n name=metadata[""run_name""],\r\n- id=metadata[""run_id""],\r\n+ id=f""evaluate_{metadata[""run_id""]}"",\r\n config=metadata.get(""config"", {}),\r\n tags=metadata.get(""tags"", []),\r\n resume=""allow"", # Resume if exists, create if not\r\n\r[?1l>]0;mahajan1@jwlogin21:~/projects/envcomp/miles/tab-model-eval",,terminal_output
20
+ 19,173057,"TERMINAL",0,0,"git diff",,terminal_command
21
+ 20,173060,"TERMINAL",0,0,"]633;C[?1h=\rdiff --git a/src/evaluation/sglang_generations.py b/src/evaluation/sglang_generations.py\r\nindex 554e563..822a89b 100644\r\n--- a/src/evaluation/sglang_generations.py\r\n+++ b/src/evaluation/sglang_generations.py\r\n@@ -39,10 +39,11 @@ class Args:\r\n # Model-related\r\n temperature: float = 0.7\r\n top_p: float = 0.8\r\n- presence_penalty: float = 1.5\r\n+ presence_penalty: float = 0.0\r\n top_k: int = 20\r\n min_p: float = 0.0\r\n num_samples: int = 5\r\n+ max_new_tokens: int = 5000\r\n \r\n # HTTP / client config\r\n concurrency: int = 16\r\n@@ -144,6 +145,7 @@ async def generate_next_command(\r\n top_p=args.top_p,\r\n presence_penalty=args.presence_penalty,\r\n n=args.num_samples,\r\n+ max_tokens=args.max_new_tokens,\r\n extra_body={\r\n ""top_k"": args.top_k,\r\n },\r\ndiff --git a/src/evaluation/sync_local_logs_to_wandb.py b/src/evaluation/sync_local_logs_to_wandb.py\r\nindex 50f9f10..c765579 100644\r\n--- a/src/evaluation/sync_local_logs_to_wandb.py\r\n+++ b/src/evaluation/sync_local_logs_to_wandb.py\r\n@@ -84,7 +84,7 @@ def sync_single_run(log_dir: str, dry_run: bool = False) -> bool:\r\n run = wandb.init(\r\n project=metadata[""project""],\r\n name=metadata[""run_name""],\r\n- id=metadata[""run_id""],\r\n+ id=f""evaluate_{metadata[""run_id""]}"",\r\n config=metadata.get(""config"", {}),\r\n tags=metadata.get(""tags"", []),\r\n resume=""allow"", # Resume if exists, create if not\r\n\r[?1l>]0;mahajan1@jwlogin21:~/projects/envcomp/miles/tab-model-eval",,terminal_output
22
+ 21,594981,"tab-model-eval/src/evaluation/sglang_eval.py",13453,0,"",python,selection_mouse
23
+ 22,594997,"tab-model-eval/src/evaluation/sglang_eval.py",13452,0,"",python,selection_command
24
+ 23,1090903,"tab-model-eval/src/evaluation/sglang_eval.py",13559,0,"",python,selection_mouse
25
+ 24,1217328,"tab-model-eval/src/evaluation/sglang_eval.py",13780,0,"",python,selection_mouse
26
+ 25,1217335,"tab-model-eval/src/evaluation/sglang_eval.py",13779,0,"",python,selection_command
27
+ 26,1217859,"tab-model-eval/src/evaluation/sglang_eval.py",13781,0,"",python,selection_mouse
28
+ 27,1219273,"tab-model-eval/src/evaluation/sglang_eval.py",13559,0,"",python,selection_mouse
29
+ 28,1220768,"tab-model-eval/src/evaluation/sglang_eval.py",13458,0,"",python,selection_mouse
30
+ 29,1220789,"tab-model-eval/src/evaluation/sglang_eval.py",13457,0,"",python,selection_command
31
+ 30,1222704,"tab-model-eval/src/evaluation/sglang_eval.py",13851,0,"",python,selection_mouse
32
+ 31,1224544,"tab-model-eval/src/evaluation/sglang_eval.py",14232,0,"",python,selection_mouse
33
+ 32,1226368,"tab-model-eval/src/evaluation/sglang_eval.py",14388,0,"",python,selection_mouse
34
+ 33,1227193,"tab-model-eval/src/evaluation/sglang_eval.py",14387,0,"",python,selection_mouse
35
+ 34,1227197,"tab-model-eval/src/evaluation/sglang_eval.py",14386,0,"",python,selection_command
36
+ 35,1227966,"tab-model-eval/src/evaluation/sglang_eval.py",14232,0,"",python,selection_mouse
37
+ 36,1228911,"tab-model-eval/src/evaluation/sglang_eval.py",13851,0,"",python,selection_mouse
38
+ 37,1230211,"tab-model-eval/src/evaluation/sglang_eval.py",13780,0,"",python,selection_mouse
39
+ 38,1230232,"tab-model-eval/src/evaluation/sglang_eval.py",13779,0,"",python,selection_command
40
+ 39,1230687,"tab-model-eval/src/evaluation/sglang_eval.py",13781,0,"",python,selection_mouse
41
+ 40,1231859,"tab-model-eval/src/evaluation/sglang_eval.py",13559,0,"",python,selection_mouse
42
+ 41,1285609,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",0,0,"#!/usr/bin/env python3\n""""""\nSync local evaluation logs to wandb.\n\nThis script reads local logs created by sglang_eval.py when using --use_local_logger\nand uploads them to wandb as a single run with all data points.\n\nUsage:\n python sync_local_logs_to_wandb.py --log_dir data/eval/local_logs/eval_<RUN_ID>\n \nOr to sync all runs in a directory:\n python sync_local_logs_to_wandb.py --log_dir data/eval/local_logs --sync_all\n""""""\n\nimport argparse\nimport json\nimport os\nimport sys\nfrom pathlib import Path\n\nimport wandb\n\n\ndef load_metadata(log_dir: str) -> dict:\n """"""Load run metadata from the log directory.""""""\n metadata_file = os.path.join(log_dir, ""metadata.json"")\n if not os.path.exists(metadata_file):\n raise FileNotFoundError(f""Metadata file not found: {metadata_file}"")\n \n with open(metadata_file, ""r"") as f:\n return json.load(f)\n\n\ndef load_metrics(log_dir: str) -> list:\n """"""Load all metrics from the JSONL file.""""""\n metrics_file = os.path.join(log_dir, ""metrics.jsonl"")\n if not os.path.exists(metrics_file):\n raise FileNotFoundError(f""Metrics file not found: {metrics_file}"")\n \n metrics = []\n with open(metrics_file, ""r"") as f:\n for line in f:\n line = line.strip()\n if line:\n metrics.append(json.loads(line))\n \n return metrics\n\n\ndef sync_single_run(log_dir: str, dry_run: bool = False) -> bool:\n """"""\n Sync a single run's local logs to wandb.\n \n Returns True if successful, False otherwise.\n """"""\n print(f""\n{'='*60}"")\n print(f""Syncing: {log_dir}"")\n print(f""{'='*60}"")\n \n try:\n # Load metadata and metrics\n metadata = load_metadata(log_dir)\n metrics = load_metrics(log_dir)\n \n if not metrics:\n print(f"" Warning: No metrics found in {log_dir}"")\n return False\n \n # Sort metrics by eval_step\n metrics.sort(key=lambda x: x.get(""eval_step"", 0))\n \n print(f"" Run ID: {metadata['run_id']}"")\n print(f"" Run Name: {metadata['run_name']}"")\n print(f"" Project: {metadata['project']}"")\n print(f"" Tags: {metadata.get('tags', [])}"")\n print(f"" Data points: {len(metrics)}"")\n print(f"" Steps: {[m.get('eval_step', 'N/A') for m in metrics]}"")\n \n if dry_run:\n print("" [DRY RUN] Would upload to wandb"")\n return True\n \n # Initialize wandb run\n run = wandb.init(\n project=metadata[""project""],\n name=metadata[""run_name""],\n id=f""evaluate_{metadata[""run_id""]}"",\n config=metadata.get(""config"", {}),\n tags=metadata.get(""tags"", []),\n resume=""allow"", # Resume if exists, create if not\n )\n \n # Log each metric with its step\n for metric_entry in metrics:\n # Remove timestamp for wandb logging\n entry = {k: v for k, v in metric_entry.items() if k != ""timestamp""}\n wandb.log(entry)\n \n wandb.finish()\n print(f"" ✓ Successfully synced to wandb!"")\n return True\n \n except Exception as e:\n print(f"" ✗ Error syncing {log_dir}: {e}"")\n return False\n\n\ndef find_run_dirs(base_dir: str) -> list:\n """"""Find all run directories in the base directory.""""""\n run_dirs = []\n \n for item in os.listdir(base_dir):\n item_path = os.path.join(base_dir, item)\n if os.path.isdir(item_path):\n # Check if it's a valid run directory (has metadata.json)\n metadata_file = os.path.join(item_path, ""metadata.json"")\n if os.path.exists(metadata_file):\n run_dirs.append(item_path)\n \n return sorted(run_dirs)\n\n\ndef main():\n parser = argparse.ArgumentParser(\n description=""Sync local evaluation logs to wandb"",\n formatter_class=argparse.RawDescriptionHelpFormatter,\n epilog=""""""\nExamples:\n # Sync a single run\n python sync_local_logs_to_wandb.py --log_dir data/eval/local_logs/eval_13032805\n \n # Sync all runs in a directory\n python sync_local_logs_to_wandb.py --log_dir data/eval/local_logs --sync_all\n \n # Dry run to see what would be synced\n python sync_local_logs_to_wandb.py --log_dir data/eval/local_logs --sync_all --dry_run\n""""""\n )\n \n parser.add_argument(\n ""--log_dir"",\n type=str,\n required=True,\n help=""Path to the log directory (single run) or parent directory (with --sync_all)""\n )\n parser.add_argument(\n ""--sync_all"",\n action=""store_true"",\n help=""Sync all runs found in the log_dir""\n )\n parser.add_argument(\n ""--dry_run"",\n action=""store_true"",\n help=""Show what would be synced without actually uploading""\n )\n \n args = parser.parse_args()\n \n if not os.path.exists(args.log_dir):\n print(f""Error: Log directory not found: {args.log_dir}"")\n sys.exit(1)\n \n if args.sync_all:\n # Sync all runs in the directory\n run_dirs = find_run_dirs(args.log_dir)\n \n if not run_dirs:\n print(f""No valid run directories found in {args.log_dir}"")\n sys.exit(1)\n \n print(f""Found {len(run_dirs)} run(s) to sync:"")\n for d in run_dirs:\n print(f"" - {os.path.basename(d)}"")\n \n success_count = 0\n for run_dir in run_dirs:\n if sync_single_run(run_dir, dry_run=args.dry_run):\n success_count += 1\n \n print(f""\n{'='*60}"")\n print(f""Sync complete: {success_count}/{len(run_dirs)} runs synced successfully"")\n print(f""{'='*60}"")\n \n else:\n # Sync single run\n # Check if log_dir is the run directory or contains metadata.json\n if os.path.exists(os.path.join(args.log_dir, ""metadata.json"")):\n sync_single_run(args.log_dir, dry_run=args.dry_run)\n else:\n print(f""Error: {args.log_dir} does not appear to be a valid run directory"")\n print("" (missing metadata.json)"")\n print(""\nHint: Use --sync_all to sync all runs in a parent directory"")\n sys.exit(1)\n\n\nif __name__ == ""__main__"":\n main()\n",python,tab
43
+ 42,1285723,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2122,0,"",python,selection_mouse
44
+ 43,1285723,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2121,0,"",python,selection_command
45
+ 44,1287340,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2172,0,"",python,selection_command
46
+ 45,1287668,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2222,0,"",python,selection_command
47
+ 46,1287669,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2273,0,"",python,selection_command
48
+ 47,1287845,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2305,0,"",python,selection_command
49
+ 48,1288024,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2325,0,"",python,selection_command
50
+ 49,1288200,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2376,0,"",python,selection_command
51
+ 50,1288227,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2404,0,"",python,selection_command
52
+ 51,1288380,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2413,0,"",python,selection_command
53
+ 52,1288508,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2444,0,"",python,selection_command
54
+ 53,1288705,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2470,0,"",python,selection_command
55
+ 54,1288886,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2511,0,"",python,selection_command
56
+ 55,1288959,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2550,0,"",python,selection_command
57
+ 56,1289067,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2599,0,"",python,selection_command
58
+ 57,1289281,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2646,0,"",python,selection_command
59
+ 58,1289664,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2599,0,"",python,selection_command
60
+ 59,1290744,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2618,0,"",python,selection_command
61
+ 60,1290929,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2619,0,"",python,selection_command
62
+ 61,1292519,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2570,0,"",python,selection_command
63
+ 62,1294253,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2552,49,"",python,content
64
+ 63,1294259,"tab-model-eval/src/evaluation/sync_local_logs_to_wandb.py",2564,0,"",python,selection_command
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-e69fee36-85ea-4c2a-bf7e-90b6490333df1767532068697-2026_01_04-14.08.44.100/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-f4bf9883-3801-446a-98c6-413295d94c701767091439743-2025_12_30-11.44.46.167/source.csv ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,266,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"11:44:45 AM [info] Activating crowd-code\n11:44:46 AM [info] Recording started\n11:44:46 AM [info] Initializing git provider using file system watchers...\n11:44:46 AM [info] Git repository found\n11:44:46 AM [info] Git provider initialized successfully\n11:44:46 AM [info] Initial git state: [object Object]\n",Log,tab
3
+ 3,32786,"TERMINAL",0,0,"watch -n1 squeue --me",,terminal_command
4
+ 4,32830,"TERMINAL",0,0,"]633;C",,terminal_output
5
+ 5,33102,"TERMINAL",0,0,"[?1049h(B[?7hEvery 1.0s: squeue --mejwlogin23.juwels: Tue Dec 30 11:45:18 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)13032808 booster qwen_32b mahajan1 PD\t0:00 64 (Resources)13032806 booster qwen_32b mahajan1 R 8:12:30 64 jwb[0200-0204,0213-0217,0219-0224,0226-0236,0245-0264,0266-0268,0277-0285,0287-0291]",,terminal_output
6
+ 6,34350,"TERMINAL",0,0,"201",,terminal_output
7
+ 7,35610,"TERMINAL",0,0,"12",,terminal_output
8
+ 8,36722,"TERMINAL",0,0,"[?1049l\r[?1l>]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
9
+ 9,37647,"TERMINAL",0,0,"squeue --me -o ""%.10i %.16P %.60j %.8u %.8T %.10M %.9l %.6D %R""",,terminal_command
10
+ 10,37695,"TERMINAL",0,0,"]633;C",,terminal_output
11
+ 11,37896,"TERMINAL",0,0," JOBID PARTITION NAME USER STATE TIME TIME_LIMI NODES NODELIST(REASON)\r\n 13032808 booster qwen_32b_no_lora_bs_32 mahajan1 PENDING 0:00 1-00:00:00 64 (Resources)\r\n 13032806 booster qwen_32b_lora_bs_32 mahajan1 RUNNING 8:12:35 1-00:00:00 64 jwb[0200-0204,0213-0217,0219-0224,0226-0236,0245-0264,0266-0268,0277-0285,0287-0291]\r\n]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
12
+ 12,58404,"TERMINAL",0,0,"bash",,terminal_focus
13
+ 13,58830,"TERMINAL",0,0,"bash",,terminal_focus
14
+ 14,59615,"TERMINAL",0,0,"scancel 13032808",,terminal_command
15
+ 15,59662,"TERMINAL",0,0,"]633;C",,terminal_output
16
+ 16,59854,"TERMINAL",0,0,"]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
17
+ 17,68172,"TERMINAL",0,0,"sacct --format=""JobID%15,JobName%30,Partition%16,AllocCPUS%3,State%12,Elapsed%10,Timelimit%10"" --starttime $(date -d ""last week"" +%Y-%m-%d)",,terminal_command
18
+ 18,68218,"TERMINAL",0,0,"]633;C",,terminal_output
19
+ 19,68474,"TERMINAL",0,0," JobID JobName Partition All State Elapsed Timelimit \r\n--------------- ------------------------------ ---------------- --- ------------ ---------- ---------- \r\n 13024059.0 sh 16 FAILED 00:00:22 \r\n 13024059.1 sh 16 FAILED 00:01:49 \r\n 13024059.2 sh 16 FAILED 00:03:59 \r\n 13024095.0 torchrun 16 FAILED 00:00:15 \r\n 13024095.2 sh 16 COMPLETED 00:00:03 \r\n 13024095.4 sh 16 FAILED 00:06:09 \r\n 13024095.7 sh 16 FAILED 00:00:35 \r\n 13024209.0 sh 16 FAILED 00:03:47 \r\n 13024229 qwen_1.7b_lora_bs_8 booster 0 FAILED 00:00:00 1-00:00:00 \r\n 13024250 qwen_1.7b_lora_bs_16 booster 192 FAILED 00:15:49 1-00:00:00 \r\n 13024250.0 sh 20 FAILED 00:15:27 \r\n 13024251 qwen_1.7b_lora_bs_32 booster 192 FAILED 00:08:02 1-00:00:00 \r\n 13024251.0 sh 20 FAILED 00:07:41 \r\n 13024252 qwen_1.7b_lora_bs_8 booster 192 FAILED 00:15:38 1-00:00:00 \r\n 13024252.0 sh 20 FAILED 00:15:17 \r\n 13024253 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 06:02:31 1-00:00:00 \r\n 13024253.0 sh 20 COMPLETED 06:02:09 \r\n 13024254 qwen_1.7b_lora_bs_32 booster 192 FAILED 00:06:09 1-00:00:00 \r\n 13024254.0 sh 20 FAILED 00:05:48 \r\n 13024255 qwen_1.7b_lora_bs_8 booster 192 FAILED 00:01:48 1-00:00:00 \r\n 13024255.0 sh 20 FAILED 00:01:27 \r\n 13024256 qwen_4b_lora_bs_16 booster 384 FAILED 00:15:39 1-00:00:00 \r\n 13024256.0 sh 40 FAILED 00:15:17 \r\n 13024257 qwen_4b_lora_bs_32 booster 384 FAILED 00:06:48 1-00:00:00 \r\n 13024257.0 sh 40 FAILED 00:06:26 \r\n 13024258 qwen_4b_lora_bs_8 booster 384 FAILED 00:03:43 1-00:00:00 \r\n 13024258.0 sh 40 FAILED 00:03:21 \r\n 13024259 qwen_4b_lora_bs_16 booster 384 FAILED 00:05:27 1-00:00:00 \r\n 13024259.0 sh 40 FAILED 00:05:05 \r\n 13024260 qwen_4b_lora_bs_32 booster 384 FAILED 00:06:27 1-00:00:00 \r\n 13024260.0 sh 40 FAILED 00:06:06 \r\n 13024261 qwen_4b_lora_bs_8 booster 384 FAILED 00:04:01 1-00:00:00 \r\n 13024261.0 sh 40 FAILED 00:03:39 \r\n 13025339 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 04:13:45 1-00:00:00 \r\n 13025339.0 sh 20 COMPLETED 04:13:21 \r\n 13025340 qwen_1.7b_lora_bs_32 booster 192 FAILED 00:07:09 1-00:00:00 \r\n 13025340.0 sh 20 FAILED 00:06:47 \r\n 13025341 qwen_1.7b_lora_bs_8 booster 192 COMPLETED 04:18:27 1-00:00:00 \r\n 13025341.0 sh 20 COMPLETED 04:18:04 \r\n 13025342 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 05:58:27 1-00:00:00 \r\n 13025342.0 sh 20 COMPLETED 05:58:04 \r\n 13025343 qwen_1.7b_lora_bs_32 booster 192 FAILED 00:05:17 1-00:00:00 \r\n 13025343.0 sh 20 FAILED 00:04:55 \r\n 13025344 qwen_1.7b_lora_bs_8 booster 192 FAILED 00:00:49 1-00:00:00 \r\n 13025344.0 sh 20 FAILED 00:00:27 \r\n 13025345 qwen_4b_lora_bs_16 booster 384 FAILED 00:32:33 1-00:00:00 \r\n 13025345.0 sh 40 FAILED 00:32:11 \r\n 13025346 qwen_4b_lora_bs_32 booster 384 FAILED 00:05:49 1-00:00:00 \r\n 13025346.0 sh 40 FAILED 00:05:26 \r\n 13025347 qwen_4b_lora_bs_8 booster 384 FAILED 00:02:41 1-00:00:00 \r\n 13025347.0 sh 40 FAILED 00:02:19 \r\n 13025348 qwen_4b_lora_bs_16 booster 384 FAILED 00:04:21 1-00:00:00 \r\n 13025348.0 sh 40 FAILED 00:03:59 \r\n 13025349 qwen_4b_lora_bs_32 booster 384 FAILED 00:05:28 1-00:00:00 \r\n 13025349.0 sh 40 FAILED 00:05:05 \r\n 13025350 qwen_4b_lora_bs_8 booster 384 FAILED 00:02:59 1-00:00:00 \r\n 13025350.0 sh 40 FAILED 00:02:37 \r\n 13025365 qwen_1.7b_lora_bs_8 booster 192 COMPLETED 04:20:44 1-00:00:00 \r\n 13025365.0 sh 20 COMPLETED 04:20:20 \r\n 13030348.0 sh 16 FAILED 00:06:31 \r\n 13030348.3 sh 16 FAILED 00:03:42 \r\n 13030386 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 03:52:07 1-00:00:00 \r\n 13030386.0 sh 20 COMPLETED 03:51:44 \r\n 13030387 qwen_1.7b_lora_bs_32 booster 384 COMPLETED 04:40:04 1-00:00:00 \r\n 13030387.0 sh 40 COMPLETED 04:39:40 \r\n 13030388 qwen_1.7b_lora_bs_8 booster 192 COMPLETED 04:01:53 1-00:00:00 \r\n 13030388.0 sh 20 COMPLETED 04:01:31 \r\n 13030389 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 05:40:57 1-00:00:00 \r\n 13030389.0 sh 20 COMPLETED 05:40:33 \r\n 13030390 qwen_1.7b_lora_bs_32 booster 384 COMPLETED 03:42:05 1-00:00:00 \r\n 13030390.0 sh 40 COMPLETED 03:41:41 \r\n 13030391 qwen_1.7b_lora_bs_8 booster 192 COMPLETED 05:55:16 1-00:00:00 \r\n 13030391.0 sh 20 COMPLETED 05:54:52 \r\n 13030392 qwen_4b_lora_bs_16 booster 384 COMPLETED 04:41:52 1-00:00:00 \r\n 13030392.0 sh 40 COMPLETED 04:41:31 \r\n 13030393 qwen_4b_lora_bs_32 booster 768 COMPLETED 03:11:49 1-00:00:00 \r\n 13030393.0 sh 80 COMPLETED 03:11:27 \r\n 13030394 qwen_4b_lora_bs_8 booster 192 COMPLETED 07:12:58 1-00:00:00 \r\n 13030394.0 sh 20 COMPLETED 07:12:37 \r\n 13030395 qwen_4b_lora_bs_16 booster 384 COMPLETED 07:03:11 1-00:00:00 \r\n 13030395.0 sh 40 COMPLETED 07:02:50 \r\n 13030396 qwen_4b_lora_bs_32 booster 768 COMPLETED 04:35:42 1-00:00:00 \r\n 13030396.0 sh 80 COMPLETED 04:35:20 \r\n 13030397 qwen_4b_lora_bs_8 booster 192 COMPLETED 14:08:39 1-00:00:00 \r\n 13030397.0 sh 20 COMPLETED 14:08:18 \r\n 13030398 qwen_8b_lora_bs_16 booster 384 COMPLETED 07:15:28 1-00:00:00 \r\n 13030398.0 sh 40 COMPLETED 07:15:06 \r\n 13030399 qwen_8b_lora_bs_32 booster 768 COMPLETED 04:40:58 1-00:00:00 \r\n 13030399.0 sh 80 COMPLETED 04:40:36 \r\n 13030400 qwen_8b_lora_bs_8 booster 192 COMPLETED 11:59:57 1-00:00:00 \r\n 13030400.0 sh 20 COMPLETED 11:59:36 \r\n 13030401 qwen_8b_lora_bs_16 booster 384 FAILED 00:06:33 1-00:00:00 \r\n 13030401.0 sh 40 FAILED 00:06:12 \r\n 13030402 qwen_8b_lora_bs_32 booster 768 FAILED 00:05:45 1-00:00:00 \r\n 13030402.0 sh 80 FAILED 00:05:23 \r\n 13030403 qwen_8b_lora_bs_8 booster 192 FAILED 00:06:14 1-00:00:00 \r\n 13030403.0 sh 20 FAILED 00:05:52 \r\n 13031068.0 sh 16 FAILED 00:04:00 \r\n 13031068.1 sh 16 FAILED 00:02:57 \r\n 13031068.2 sh 16 FAILED 00:02:54 \r\n 13031093.1 sh 32 FAILED 00:00:52 \r\n 13031093.2 sh 32 FAILED 00:00:51 \r\n 13031093.3 sh 32 FAILED 00:00:49 \r\n 13031093.4 sh 32 FAILED 00:00:48 \r\n 13031854.0 sh 40 FAILED 00:52:06 \r\n 13031856.0 sh 160 FAILED 00:17:59 \r\n 13031902.4 sh 32 FAILED 00:04:16 \r\n 13031978 qwen_8b_no_lora_bs_8 booster 384 FAILED 01:09:06 1-00:00:00 \r\n 13031978.0 sh 40 FAILED 01:08:44 \r\n 13031979 qwen_8b_no_lora_bs_16 booster 768 FAILED 12:08:49 1-00:00:00 \r\n 13031979.0 sh 80 FAILED 12:08:24 \r\n 13031981 qwen_8b_no_lora_bs_32 booster 1536 FAILED 07:43:12 1-00:00:00 \r\n 13031981.0 sh 160 FAILED 07:42:47 \r\n 13031982 qwen_32b_lora_bs_8 booster 768 FAILED 03:27:04 1-00:00:00 \r\n 13031982.0 sh 80 FAILED 03:26:39 \r\n 13032780 qwen_8b_no_lora_bs_8 booster 384 FAILED 17:33:36 1-00:00:00 \r\n 13032780.0 sh 40 FAILED 17:33:12 \r\n 13032800 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 03:54:13 1-00:00:00 \r\n 13032800.0 sh 20 COMPLETED 03:53:47 \r\n 13032801 qwen_1.7b_lora_bs_32 booster 384 COMPLETED 04:40:04 1-00:00:00 \r\n 13032801.0 sh 40 COMPLETED 04:39:41 \r\n 13032802 qwen_1.7b_lora_bs_8 booster 192 COMPLETED 04:04:53 1-00:00:00 \r\n 13032802.0 sh 20 COMPLETED 04:04:28 \r\n 13032803 qwen_1.7b_lora_bs_16 booster 192 COMPLETED 05:39:56 1-00:00:00 \r\n 13032803.0 sh 20 COMPLETED 05:39:30 \r\n 13032804 qwen_1.7b_lora_bs_32 booster 384 COMPLETED 03:43:42 1-00:00:00 \r\n 13032804.0 sh 40 COMPLETED 03:43:18 \r\n 13032805 qwen_1.7b_lora_bs_8 booster 192 COMPLETED 05:56:43 1-00:00:00 \r\n 13032805.0 sh 20 COMPLETED 05:56:19 \r\n 13032806 qwen_32b_lora_bs_32 booster 6144 RUNNING 08:13:05 1-00:00:00 \r\n 13032806.0 sh 640 RUNNING 08:12:42 \r\n 13032807 qwen_32b_lora_bs_8 booster 768 TIMEOUT 1-00:00:30 1-00:00:00 \r\n 13032809 qwen_4b_lora_bs_16 booster 384 COMPLETED 04:47:21 1-00:00:00 \r\n 13032809.0 sh 40 COMPLETED 04:46:57 \r\n 13032810 qwen_4b_lora_bs_32 booster 768 COMPLETED 03:11:21 1-00:00:00 \r\n 13032810.0 sh 80 COMPLETED 03:10:55 \r\n 13032811 qwen_4b_lora_bs_8 booster 192 COMPLETED 07:12:50 1-00:00:00 \r\n 13032811.0 sh 20 COMPLETED 07:12:27 \r\n 13032812 qwen_4b_lora_bs_16 booster 384 COMPLETED 07:06:10 1-00:00:00 \r\n 13032812.0 sh 40 COMPLETED 07:05:47 \r\n 13032813 qwen_4b_lora_bs_32 booster 768 COMPLETED 04:43:02 1-00:00:00 \r\n 13032813.0 sh 80 COMPLETED 04:42:39 \r\n 13032814 qwen_4b_lora_bs_8 booster 192 COMPLETED 13:51:27 1-00:00:00 \r\n 13032814.0 sh 20 COMPLETED 13:51:03 \r\n 13032815 qwen_8b_lora_bs_16 booster 384 COMPLETED 07:21:14 1-00:00:00 \r\n 13032815.0 sh 40 COMPLETED 07:20:52 \r\n 13032816 qwen_8b_lora_bs_32 booster 768 COMPLETED 04:44:36 1-00:00:00 \r\n 13032816.0 sh 80 COMPLETED 04:44:13 \r\n 13032817 qwen_8b_lora_bs_8 booster 192 COMPLETED 12:05:55 1-00:00:00 \r\n 13032817.0 sh 20 COMPLETED 12:05:33 \r\n 13032818 qwen_8b_no_lora_bs_16 booster 768 COMPLETED 08:07:43 1-00:00:00 \r\n 13032818.0 sh 80 COMPLETED 08:07:20 \r\n 13032820 qwen_8b_no_lora_bs_32 booster 1536 COMPLETED 04:46:00 1-00:00:00 \r\n 13032820.0 sh 160 COMPLETED 04:45:35 \r\n 13032821 qwen_8b_no_lora_bs_8 booster 384 COMPLETED 17:30:39 1-00:00:00 \r\n 13032821.0 sh 40 COMPLETED 17:30:13 \r\n 13034357 qwen_8b_no_lora_bs_32 booster 6144 COMPLETED 07:14:13 1-00:00:00 \r\n 13034357.0 sh 640 COMPLETED 07:13:46 \r\n]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
20
+ 20,636927,"TERMINAL",0,0,"git diff",,terminal_command
21
+ 21,637017,"TERMINAL",0,0,"]633;C[?1h=\rdiff --git a/miles/backends/fsdp_utils/actor.py b/miles/backends/fsdp_utils/actor.py\r\nindex f500a88..57cc178 100644\r\n--- a/miles/backends/fsdp_utils/actor.py\r\n+++ b/miles/backends/fsdp_utils/actor.py\r\n@@ -973,7 +973,10 @@ def get_logprob_and_entropy_with_cp(\r\n )\r\n log_probs_full = torch.log_softmax(shifted_logits, dim=-1)\r\n probs = torch.softmax(shifted_logits, dim=-1)\r\n- entropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ # mentropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ p_log_p = probs * log_probs_full\r\n+ p_log_p = torch.nan_to_num(p_log_p, nan=0.0) \r\n+ entropy = -p_log_p.sum(dim=-1)\r\n return local_log_probs, entropy\r\n \r\n chunk_size = logits.shape[0]\r\n@@ -1003,7 +1006,10 @@ def get_logprob_and_entropy_with_cp(\r\n shifted_logits = logits[:-1, :] if cp_rank == cp_size - 1 else logits\r\n log_probs_full = torch.log_softmax(shifted_logits, dim=-1)\r\n probs = torch.softmax(shifted_logits, dim=-1)\r\n- entropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ # entropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ p_log_p = probs * log_probs_full\r\n+ p_log_p = torch.nan_to_num(p_log_p, nan=0.0) \r\n+ entropy = -p_log_p.sum(dim=-1)\r\n \r\n # Pad entropy for the last rank\r\n if cp_rank == cp_size - 1:\r\ndiff --git a/miles/backends/fsdp_utils/checkpoint.py b/miles/backends/fsdp_utils/checkpoint.py\r\nindex 3846bd9..758ccec 100644\r\n--- a/miles/backends/fsdp_utils/checkpoint.py\r\n+++ b/miles/backends/fsdp_utils/checkpoint.py\r\n@@ -25,16 +25,17 @@ class ModelState(Stateful):\r\n self.keys_filter = keys_filter\r\n \r\n def state_dict(self):\r\n- model_state_dict, _ = get_state_dict(self.model, optimizers=[])\r\n+ options = StateDictOptions(full_state_dict=False, cpu_offload=True)\r\n+ model_state_dict, _ = get_state_dict(self.model, optimizers=[], options=options)\r\n if self.keys_filter:\r\n model_state_dict = {k: v for k, v in model_state_dict.items() if self.keys_filter(k)}\r\n return {""model"": model_state_dict}\r\n \r\n:",,terminal_output
22
+ 22,667321,"TERMINAL",0,0,"\r def load_state_dict(self, state_dict):\r\n:",,terminal_output
23
+ 23,667610,"TERMINAL",0,0,"\r- options = None\r\n:",,terminal_output
24
+ 24,667810,"TERMINAL",0,0,"\r+ options = StateDictOptions(cpu_offload=True)\r\n:",,terminal_output
25
+ 25,667947,"TERMINAL",0,0,"\r if self.keys_filter:\r\n:",,terminal_output
26
+ 26,668099,"TERMINAL",0,0,"\r # For filtered loading (e.g., LoRA), use strict=False to allow partial loading\r\n:",,terminal_output
27
+ 27,668262,"TERMINAL",0,0,"\r- options = StateDictOptions(strict=False)\r\n:",,terminal_output
28
+ 28,669549,"TERMINAL",0,0,"\r+ options.strict = False\r\n:",,terminal_output
29
+ 29,671741,"TERMINAL",0,0,"\r/\r probs = torch.softmax(shifted_logits, dim=-1)\r\n- entropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ # mentropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ p_log_p = probs * log_probs_full\r\n+ p_log_p = torch.nan_to_num(p_log_p, nan=0.0) \r\n+ entropy = -p_log_p.sum(dim=-1)\r\n return local_log_probs, entropy\r\n \r\n chunk_size = logits.shape[0]\r\n@@ -1003,7 +1006,10 @@ def get_logprob_and_entropy_with_cp(\r\n shifted_logits = logits[:-1, :] if cp_rank == cp_size - 1 else logits\r\n log_probs_full = torch.log_softmax(shifted_logits, dim=-1)\r\n probs = torch.softmax(shifted_logits, dim=-1)\r\n- entropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ # entropy = -(probs * log_probs_full).sum(dim=-1)\r\n+ p_log_p = probs * log_probs_full\r\n+ p_log_p = torch.nan_to_num(p_log_p, nan=0.0) \r\n+ entropy = -p_log_p.sum(dim=-1)\r\n \r\n # Pad entropy for the last rank\r\n if cp_rank == cp_size - 1:\r\ndiff --git a/miles/backends/fsdp_utils/checkpoint.py b/miles/backends/fsdp_utils/checkpoint.py\r\nindex 3846bd9..758ccec 100644\r\n--- a/miles/backends/fsdp_utils/checkpoint.py\r\n+++ b/miles/backends/fsdp_utils/checkpoint.py\r\n@@ -25,16 +25,17 @@ class ModelState(Stateful):\r\n self.keys_filter = keys_filter\r\n \r\n def state_dict(self):\r\n- model_state_dict, _ = get_state_dict(self.model, optimizers=[])\r\n+ options = StateDictOptions(full_state_dict=False, cpu_offload=True)\r\n+ model_state_dict, _ = get_state_dict(self.model, optimizers=[], options=options)\r\n if self.keys_filter:\r\n model_state_dict = {k: v for k, v in model_state_dict.items() if self.keys_filter(k)}\r\n return {""model"": model_state_dict}\r\n \r\n def load_state_dict(self, state_dict):\r\n- options = None\r\n+ options = StateDictOptions(cpu_offload=True)\r\n if self.keys_filter:\r\n # For filtered loading (e.g., LoRA), use strict=False to allow partial loading\r\n- options = StateDictOptions(strict=False)\r\n+ options.strict = False\r\n set_state_dict(\r\n self.model, optimizers=[], \r\n model_state_dict=state_dict[""model""], \r\n@@ -52,16 +53,17 @@ class OptimizerState(Stateful):\r\n self.keys_filter = keys_filter\r\n \r\n def state_dict(self):\r\n- _, optimizer_state_dict = get_state_dict(self.model, optimizers=self.optimizer)\r\n+ options = StateDictOptions(full_state_dict=False, cpu_offload=True)\r\n+ _, optimizer_state_dict = get_state_dict(self.model, optimizers=self.optimizer, options=options)\r\n if self.keys_filter:\r\n optimizer_state_dict = {k: v for k, v in optimizer_state_dict.items() if self.keys_filter(k)}\r\n return {""optim"": optimizer_state_dict}\r\n \r\n def load_state_dict(self, state_dict):\r\n- options = None\r\n+ options = StateDictOptions(cpu_offload=True)\r\n if self.keys_filter:\r\n # For filtered loading (e.g., LoRA), use strict=False to allow partial loading\r\n- options = StateDictOptions(strict=False)\r\n+ options.strict = False\r\n set_state_dict(\r\n self.model, optimizers=self.optimizer, \r\n model_state_dict=None, \r\n@@ -137,12 +139,14 @@ def load(actor: Any) -> dict[str, Any] | None:\r\n keys_filter = lambda k: ""lora_"" in k\r\n logger.info(""[FSDP] LoRA mode: loading only LoRA weights from checkpoint"")\r\n \r\n+ dp_group = getattr(actor, ""dp_group"", None)\r\n+\r\n:",,terminal_output
30
+ 30,671917,"TERMINAL",0,0,"\r/\r # Load model weights (always)\r\n model_state = ModelState(actor.model, keys_filter=keys_filter)\r\n state_dict = {""model_state"": model_state}\r\n \r\n try:\r\n- dcp.load(state_dict=state_dict, checkpoint_id=str(model_dir))\r\n+ dcp.load(state_dict=state_dict, checkpoint_id=str(model_dir), process_group=dp_group)\r\n logger.info(f""[FSDP] Loaded model from {model_dir}"")\r\n:",,terminal_output
31
+ 31,672882,"TERMINAL",0,0,"\r except Exception as e:\r\n:",,terminal_output
32
+ 32,673068,"TERMINAL",0,0,"\r logger.error(f""[FSDP] Failed to load model from {model_dir}: {e}"")\r\n:",,terminal_output
33
+ 33,673274,"TERMINAL",0,0,"\r@@ -154,7 +158,7 @@ def load(actor: Any) -> dict[str, Any] | None:\r\n:",,terminal_output
34
+ 34,673736,"TERMINAL",0,0,"\r optimizer_state = OptimizerState(actor.model, actor.optimizer, keys_filter=keys_filter)\r\n:",,terminal_output
35
+ 35,673888,"TERMINAL",0,0,"\r optim_state_dict = {""optim_state"": optimizer_state}\r\n:",,terminal_output
36
+ 36,674054,"TERMINAL",0,0,"\rM+ options.strict = False\r\n\r:",,terminal_output
37
+ 37,674195,"TERMINAL",0,0,"\rM- options = StateDictOptions(strict=False)\r\n\r:",,terminal_output
38
+ 38,674369,"TERMINAL",0,0,"\rM # For filtered loading (e.g., LoRA), use strict=False to allow partial loading\r\n\r:",,terminal_output
39
+ 39,674526,"TERMINAL",0,0,"\rM if self.keys_filter:\r\n\r:",,terminal_output
40
+ 40,674685,"TERMINAL",0,0,"\rM+ options = StateDictOptions(cpu_offload=True)\r\n\r:",,terminal_output
41
+ 41,674867,"TERMINAL",0,0,"\rM- options = None\r\n\r:",,terminal_output
42
+ 42,675016,"TERMINAL",0,0,"\rM def load_state_dict(self, state_dict):\r\n\r:",,terminal_output
43
+ 43,675255,"TERMINAL",0,0,"\rM \r\n\r:\r- dcp.load(state_dict=state_dict, checkpoint_id=str(model_dir))\r\n:",,terminal_output
44
+ 44,675356,"TERMINAL",0,0,"\r+ dcp.load(state_dict=state_dict, checkpoint_id=str(model_dir), process_group=dp_group)\r\n:",,terminal_output
45
+ 45,675536,"TERMINAL",0,0,"\r logger.info(f""[FSDP] Loaded model from {model_dir}"")\r\n:",,terminal_output
46
+ 46,675686,"TERMINAL",0,0,"\r except Exception as e:\r\n:",,terminal_output
47
+ 47,675855,"TERMINAL",0,0,"\r logger.error(f""[FSDP] Failed to load model from {model_dir}: {e}"")\r\n:",,terminal_output
48
+ 48,676331,"TERMINAL",0,0,"\r@@ -154,7 +158,7 @@ def load(actor: Any) -> dict[str, Any] | None:\r\n:",,terminal_output
49
+ 49,676333,"TERMINAL",0,0,"\r optimizer_state = OptimizerState(actor.model, actor.optimizer, keys_filter=keys_filter)\r\n:",,terminal_output
50
+ 50,676456,"TERMINAL",0,0,"\r optim_state_dict = {""optim_state"": optimizer_state}\r\n:",,terminal_output
51
+ 51,676528,"TERMINAL",0,0,"\r try:\r\n:",,terminal_output
52
+ 52,678986,"TERMINAL",0,0,"\r- dcp.load(state_dict=optim_state_dict, checkpoint_id=str(optimizer_dir))\r\n:",,terminal_output
53
+ 53,679154,"TERMINAL",0,0,"\r+ dcp.load(state_dict=optim_state_dict, checkpoint_id=str(optimizer_dir), process_group=dp_group)\r\n:",,terminal_output
54
+ 54,679330,"TERMINAL",0,0,"\r logger.info(f""[FSDP] Loaded optimizer from {optimizer_dir}"")\r\n:",,terminal_output
55
+ 55,680566,"TERMINAL",0,0,"\r except Exception as e:\r\n:",,terminal_output
56
+ 56,680751,"TERMINAL",0,0,"\r logger.warning(f""[FSDP] Failed to load optimizer from {optimizer_dir}: {e}"")\r\n:",,terminal_output
57
+ 57,680959,"TERMINAL",0,0,"\r@@ -167,7 +171,7 @@ def load(actor: Any) -> dict[str, Any] | None:\r\n:",,terminal_output
58
+ 58,681132,"TERMINAL",0,0,"\r lr_scheduler_state = LRSchedulerState(actor.lr_scheduler)\r\n:",,terminal_output
59
+ 59,681510,"TERMINAL",0,0,"\r lr_scheduler_state_dict = {""lr_scheduler_state"": lr_scheduler_state}\r\n:",,terminal_output
60
+ 60,681691,"TERMINAL",0,0,"\r try:\r\n:",,terminal_output
61
+ 61,681898,"TERMINAL",0,0,"\r- dcp.load(state_dict=lr_scheduler_state_dict, checkpoint_id=str(lr_scheduler_dir))\r\n:",,terminal_output
62
+ 62,683126,"TERMINAL",0,0,"\r+ dcp.load(state_dict=lr_scheduler_state_dict, checkpoint_id=str(lr_scheduler_dir), process_group=dp_group)\r\n:",,terminal_output
63
+ 63,683584,"TERMINAL",0,0,"\r logger.info(f""[FSDP] Loaded LR scheduler from {lr_scheduler_dir}"")\r\n:",,terminal_output
64
+ 64,684050,"TERMINAL",0,0,"\r except Exception as e:\r\n:",,terminal_output
65
+ 65,689555,"TERMINAL",0,0,"\r logger.warning(f""[FSDP] Failed to load LR scheduler from {lr_scheduler_dir}: {e}"")\r\n:",,terminal_output
66
+ 66,689744,"TERMINAL",0,0,"\r@@ -238,22 +242,29 @@ def save(actor: Any, iteration: int, keys_filter=None) -> None:\r\n:",,terminal_output
67
+ 67,689842,"TERMINAL",0,0,"\r lr_scheduler_dir.mkdir(parents=True, exist_ok=True)\r\n:",,terminal_output
68
+ 68,689991,"TERMINAL",0,0,"\r dist.barrier()\r\n:",,terminal_output
69
+ 69,690170,"TERMINAL",0,0,"\r \r\n:",,terminal_output
70
+ 70,690374,"TERMINAL",0,0,"\r+ cp_size = getattr(actor, ""cp_size"", 1)\r\n:",,terminal_output
71
+ 71,690578,"TERMINAL",0,0,"\r+ cp_rank = getattr(actor, ""cp_rank"", 0)\r\n:",,terminal_output
72
+ 72,690764,"TERMINAL",0,0,"\r+ dp_group = getattr(actor, ""dp_group"", None)\r\n:",,terminal_output
73
+ 73,690910,"TERMINAL",0,0,"\r+\r\n:",,terminal_output
74
+ 74,691091,"TERMINAL",0,0,"\r # Save model weights\r\n:",,terminal_output
75
+ 75,691283,"TERMINAL",0,0,"\r- model_state = ModelState(actor.model, keys_filter=keys_filter)\r\n:",,terminal_output
76
+ 76,691440,"TERMINAL",0,0,"\r- state_dict = {""model_state"": model_state}\r\n:",,terminal_output
77
+ 77,691614,"TERMINAL",0,0,"\r- dcp.save(state_dict, checkpoint_id=str(model_dir))\r\n:",,terminal_output
78
+ 78,691932,"TERMINAL",0,0,"\r+ if cp_rank == 0:\r\n:",,terminal_output
79
+ 79,692156,"TERMINAL",0,0,"\r+ model_state = ModelState(actor.model, keys_filter=keys_filter)\r\n:",,terminal_output
80
+ 80,692216,"TERMINAL",0,0,"\r+ state_dict = {""model_state"": model_state}\r\n:",,terminal_output
81
+ 81,692405,"TERMINAL",0,0,"\r+ dcp.save(state_dict, checkpoint_id=str(model_dir), process_group=dp_group)\r\n:",,terminal_output
82
+ 82,692546,"TERMINAL",0,0,"\r \r\n:",,terminal_output
83
+ 83,692692,"TERMINAL",0,0,"\r # Save optimizer state\r\n:",,terminal_output
84
+ 84,692864,"TERMINAL",0,0,"\r if hasattr(actor, ""optimizer"") and actor.optimizer is not None:\r\n:",,terminal_output
85
+ 85,692992,"TERMINAL",0,0,"\r- optimizer_state = OptimizerState(actor.model, actor.optimizer, keys_filter=keys_filter)\r\n:",,terminal_output
86
+ 86,693163,"TERMINAL",0,0,"\r- optim_state_dict = {""optim_state"": optimizer_state}\r\n:",,terminal_output
87
+ 87,693318,"TERMINAL",0,0,"\r- dcp.save(optim_state_dict, checkpoint_id=str(optimizer_dir))\r\n:",,terminal_output
88
+ 88,693476,"TERMINAL",0,0,"\r+ if cp_rank == 0:\r\n:",,terminal_output
89
+ 89,693632,"TERMINAL",0,0,"\r+ optimizer_state = OptimizerState(actor.model, actor.optimizer, keys_filter=keys_filter)\r\n:",,terminal_output
90
+ 90,693796,"TERMINAL",0,0,"\r+ optim_state_dict = {""optim_state"": optimizer_state}\r\n:",,terminal_output
91
+ 91,693948,"TERMINAL",0,0,"\r+ dcp.save(optim_state_dict, checkpoint_id=str(optimizer_dir), process_group=dp_group)\r\n:",,terminal_output
92
+ 92,694169,"TERMINAL",0,0,"\r \r\n:",,terminal_output
93
+ 93,694342,"TERMINAL",0,0,"\r # Save LR scheduler state\r\n:",,terminal_output
94
+ 94,694546,"TERMINAL",0,0,"\r if hasattr(actor, ""lr_scheduler"") and actor.lr_scheduler is not None:\r\n:",,terminal_output
95
+ 95,694704,"TERMINAL",0,0,"\r- lr_scheduler_state = LRSchedulerState(actor.lr_scheduler)\r\n:",,terminal_output
96
+ 96,694886,"TERMINAL",0,0,"\r- lr_scheduler_state_dict = {""lr_scheduler_state"": lr_scheduler_state}\r\n:",,terminal_output
97
+ 97,695066,"TERMINAL",0,0,"\r- dcp.save(lr_scheduler_state_dict, checkpoint_id=str(lr_scheduler_dir))\r\n:",,terminal_output
98
+ 98,695258,"TERMINAL",0,0,"\r+ if cp_rank == 0:\r\n:",,terminal_output
99
+ 99,695477,"TERMINAL",0,0,"\r+ lr_scheduler_state = LRSchedulerState(actor.lr_scheduler)\r\n:",,terminal_output
100
+ 100,696626,"TERMINAL",0,0,"\r+ lr_scheduler_state_dict = {""lr_scheduler_state"": lr_scheduler_state}\r\n:",,terminal_output
101
+ 101,696810,"TERMINAL",0,0,"\r+ dcp.save(lr_scheduler_state_dict, checkpoint_id=str(lr_scheduler_dir), process_group=dp_group)\r\n:",,terminal_output
102
+ 102,697057,"TERMINAL",0,0,"\r \r\n:",,terminal_output
103
+ 103,697176,"TERMINAL",0,0,"\r if dist.get_rank() == 0:\r\n:",,terminal_output
104
+ 104,697392,"TERMINAL",0,0,"\r rng_state = {""torch"": torch.get_rng_state()}\r\n:",,terminal_output
105
+ 105,697841,"TERMINAL",0,0,"\rM- dcp.load(state_dict=lr_scheduler_state_dict, checkpoint_id=str(lr_scheduler_dir))\r\n\r:",,terminal_output
106
+ 106,698011,"TERMINAL",0,0,"\rM try:\r\n\r:",,terminal_output
107
+ 107,698192,"TERMINAL",0,0,"\rM lr_scheduler_state_dict = {""lr_scheduler_state"": lr_scheduler_state}\r\n\r:",,terminal_output
108
+ 108,698360,"TERMINAL",0,0,"\rM lr_scheduler_state = LRSchedulerState(actor.lr_scheduler)\r\n\r:",,terminal_output
109
+ 109,698514,"TERMINAL",0,0,"\rM@@ -167,7 +171,7 @@ def load(actor: Any) -> dict[str, Any] | None:\r\n\r:",,terminal_output
110
+ 110,698770,"TERMINAL",0,0,"\rM logger.warning(f""[FSDP] Failed to load optimizer from {optimizer_dir}: {e}"")\r\n\r:",,terminal_output
111
+ 111,700540,"TERMINAL",0,0,"\r+ lr_scheduler_state = LRSchedulerState(actor.lr_scheduler)\r\n:",,terminal_output
112
+ 112,700714,"TERMINAL",0,0,"\r+ lr_scheduler_state_dict = {""lr_scheduler_state"": lr_scheduler_state}\r\n:",,terminal_output
113
+ 113,700880,"TERMINAL",0,0,"\r+ dcp.save(lr_scheduler_state_dict, checkpoint_id=str(lr_scheduler_dir), process_group=dp_group)\r\n:",,terminal_output
114
+ 114,701043,"TERMINAL",0,0,"\r \r\n:",,terminal_output
115
+ 115,701235,"TERMINAL",0,0,"\r if dist.get_rank() == 0:\r\n:",,terminal_output
116
+ 116,701443,"TERMINAL",0,0,"\r rng_state = {""torch"": torch.get_rng_state()}\r\n:",,terminal_output
117
+ 117,701578,"TERMINAL",0,0,"\rdiff --git a/train_sft.py b/train_sft.py\r\n:",,terminal_output
118
+ 118,701927,"TERMINAL",0,0,"\rindex e494e0d..1f9422a 100644\r\n:",,terminal_output
119
+ 119,702105,"TERMINAL",0,0,"\r--- a/train_sft.py\r\n:",,terminal_output
120
+ 120,702288,"TERMINAL",0,0,"\r+++ b/train_sft.py\r\n:",,terminal_output
121
+ 121,702489,"TERMINAL",0,0,"\r@@ -536,7 +536,7 @@ class SFTTrainer:\r\n:",,terminal_output
122
+ 122,702811,"TERMINAL",0,0,"\r """"""Execute one training step.""""""\r\n:",,terminal_output
123
+ 123,702969,"TERMINAL",0,0,"\r # Prepare model inputs\r\n:\r model_args = self._get_model_inputs_args(packed_batch)\r\n:",,terminal_output
124
+ 124,703176,"TERMINAL",0,0,"\r- logits = self.model(**model_args).logits.squeeze(0).float()\r\n:",,terminal_output
125
+ 125,703331,"TERMINAL",0,0,"\r+ logits = self.model(**model_args).logits.squeeze(0)\r\n:",,terminal_output
126
+ 126,703528,"TERMINAL",0,0,"\r \r\n:",,terminal_output
127
+ 127,703651,"TERMINAL",0,0,"\r # Compute log probs and entropy (unified for both CP and non-CP modes)\r\n:",,terminal_output
128
+ 128,703831,"TERMINAL",0,0,"\r log_probs, entropy_result = get_logprob_and_entropy_with_cp(\r\n:",,terminal_output
129
+ 129,704083,"TERMINAL",0,0,"\r@@ -662,7 +662,7 @@ class SFTTrainer:\r\n:",,terminal_output
130
+ 130,704199,"TERMINAL",0,0,"\r def _val_step(self, packed_batch):\r\n:",,terminal_output
131
+ 131,704477,"TERMINAL",0,0,"\r model_args = self._get_model_inputs_args(packed_batch)\r\n:",,terminal_output
132
+ 132,704756,"TERMINAL",0,0,"\r with torch.no_grad():\r\n:",,terminal_output
133
+ 133,704855,"TERMINAL",0,0,"\r- logits = self.model(**model_args).logits.squeeze(0).float()\r\n:",,terminal_output
134
+ 134,705001,"TERMINAL",0,0,"\r+ logits = self.model(**model_args).logits.squeeze(0)\r\n:",,terminal_output
135
+ 135,705140,"TERMINAL",0,0,"\r \r\n:",,terminal_output
136
+ 136,705631,"TERMINAL",0,0,"\r # Compute log probs and entropy (unified for both CP and non-CP modes)\r\n:\r log_probs, entropy_result = get_logprob_and_entropy_with_cp(\r\n:\r@@ -718,6 +718,8 @@ class SFTTrainer:\r\n:",,terminal_output
137
+ 137,705803,"TERMINAL",0,0,"\r if should_run_periodic_action(\r\n:",,terminal_output
138
+ 138,705960,"TERMINAL",0,0,"\r rollout_id, self.args.save_interval, self.num_rollout_per_epoch\r\n:",,terminal_output
139
+ 139,706149,"TERMINAL",0,0,"\r ):\r\n:",,terminal_output
140
+ 140,706304,"TERMINAL",0,0,"\r+ torch.cuda.empty_cache() # <--- ADD THIS LINE\r\n:",,terminal_output
141
+ 141,706464,"TERMINAL",0,0,"\r+ torch.distributed.barrier() # <--- ADD THIS LINE (ensures all ranks pause here)\r\n:",,terminal_output
142
+ 142,706632,"TERMINAL",0,0,"\r self.save_model(rollout_id)\r\n:",,terminal_output
143
+ 143,706823,"TERMINAL",0,0,"\r \r\n:",,terminal_output
144
+ 144,707000,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
145
+ 145,707156,"TERMINAL",0,0,"\r\r(END)",,terminal_output
146
+ 146,707327,"TERMINAL",0,0,"\r\r(END)",,terminal_output
147
+ 147,707491,"TERMINAL",0,0,"\r\r(END)",,terminal_output
148
+ 148,707911,"TERMINAL",0,0,"\r\r(END)\r\r(END)",,terminal_output
149
+ 149,708124,"TERMINAL",0,0,"\r\r(END)",,terminal_output
150
+ 150,708223,"TERMINAL",0,0,"\r\r(END)",,terminal_output
151
+ 151,708411,"TERMINAL",0,0,"\r\r(END)",,terminal_output
152
+ 152,708580,"TERMINAL",0,0,"\r\r(END)",,terminal_output
153
+ 153,708763,"TERMINAL",0,0,"\r\r(END)",,terminal_output
154
+ 154,708944,"TERMINAL",0,0,"\r\r(END)",,terminal_output
155
+ 155,709113,"TERMINAL",0,0,"\r\r(END)",,terminal_output
156
+ 156,709281,"TERMINAL",0,0,"\r\r(END)",,terminal_output
157
+ 157,709456,"TERMINAL",0,0,"\r\r(END)",,terminal_output
158
+ 158,709627,"TERMINAL",0,0,"\r\r(END)",,terminal_output
159
+ 159,709793,"TERMINAL",0,0,"\r\r(END)",,terminal_output
160
+ 160,709955,"TERMINAL",0,0,"\r\r(END)",,terminal_output
161
+ 161,710142,"TERMINAL",0,0,"\r\r(END)",,terminal_output
162
+ 162,710310,"TERMINAL",0,0,"\r\r(END)",,terminal_output
163
+ 163,710474,"TERMINAL",0,0,"\r\r(END)",,terminal_output
164
+ 164,710662,"TERMINAL",0,0,"\r\r(END)",,terminal_output
165
+ 165,710847,"TERMINAL",0,0,"\r\r(END)",,terminal_output
166
+ 166,711034,"TERMINAL",0,0,"\r\r(END)",,terminal_output
167
+ 167,711180,"TERMINAL",0,0,"\r\r(END)",,terminal_output
168
+ 168,711340,"TERMINAL",0,0,"\r\r(END)",,terminal_output
169
+ 169,711526,"TERMINAL",0,0,"\r\r(END)",,terminal_output
170
+ 170,711703,"TERMINAL",0,0,"\r\r(END)",,terminal_output
171
+ 171,711880,"TERMINAL",0,0,"\r\r(END)",,terminal_output
172
+ 172,712094,"TERMINAL",0,0,"\r\r(END)",,terminal_output
173
+ 173,712287,"TERMINAL",0,0,"\r\r(END)",,terminal_output
174
+ 174,712502,"TERMINAL",0,0,"\r\r(END)",,terminal_output
175
+ 175,712686,"TERMINAL",0,0,"\r\r(END)",,terminal_output
176
+ 176,712936,"TERMINAL",0,0,"\r\r(END)",,terminal_output
177
+ 177,713827,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
178
+ 178,714201,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
179
+ 179,714621,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
180
+ 180,714822,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
181
+ 181,715054,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
182
+ 182,715224,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
183
+ 183,715416,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
184
+ 184,715542,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
185
+ 185,715703,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
186
+ 186,715845,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
187
+ 187,715987,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
188
+ 188,716103,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
189
+ 189,716246,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
190
+ 190,716320,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
191
+ 191,1085087,"TERMINAL",0,0,"\rM \r\n\r:",,terminal_output
192
+ 192,1085463,"TERMINAL",0,0,"\r # Calculate val loss periodically\r\n(END)",,terminal_output
193
+ 193,1085642,"TERMINAL",0,0,"\r\r(END)",,terminal_output
194
+ 194,1090638,"TERMINAL",0,0,"\r[?1l>]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
195
+ 195,1101278,"TERMINAL",0,0,"cd ${SCRATCH}",,terminal_command
196
+ 196,1101284,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:/p/scratch/envcomp",,terminal_output
197
+ 197,1101627,"TERMINAL",0,0,"ls --color=auto",,terminal_command
198
+ 198,1101648,"TERMINAL",0,0,"]633;Cidm logs mihir nguyen31 yll\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp",,terminal_output
199
+ 199,1115895,"TERMINAL",0,0,"cd mihir/huggingface/shared_data/",,terminal_command
200
+ 200,1115899,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
201
+ 201,1117660,"TERMINAL",0,0,"l",,terminal_command
202
+ 202,1117667,"TERMINAL",0,0,"]633;Cbash: l: command not found\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
203
+ 203,1118314,"TERMINAL",0,0,"ls --color=auto",,terminal_command
204
+ 204,1118319,"TERMINAL",0,0,"]633;C13024253 13025345 13030388 13030392 13030396 13030400 13031982 13032802 13032806 13032811 13032815 13032820\r\n13025339 13025365 13030389 13030393 13030397 13031978 13032780 13032803 13032807 13032812 13032816 13032821\r\n13025341 13030386 13030390 13030394 13030398 13031979 13032800 13032804 13032809 13032813 13032817 13034357\r\n13025342 13030387 13030391 13030395 13030399 13031981 13032801 13032805 13032810 13032814 13032818 qwen3-600M-fsdp-1116-noref\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
205
+ 205,1123484,"TERMINAL",0,0,"cd 13034357",,terminal_command
206
+ 206,1124592,"TERMINAL",0,0,"ls --color=auto",,terminal_command
207
+ 207,1124605,"TERMINAL",0,0,"]633;Ccheckpoints\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357",,terminal_output
208
+ 208,1126601,"TERMINAL",0,0,"cd checkpoints/",,terminal_command
209
+ 209,1126898,"TERMINAL",0,0,"ls --color=auto",,terminal_command
210
+ 210,1126969,"TERMINAL",0,0,"]633;Citer_0001000 iter_0002000 iter_0003000 iter_0004000 iter_0005000 latest_checkpointed_iteration.txt rollout\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357/checkpoints",,terminal_output
211
+ 211,1130166,"TERMINAL",0,0,"ls --color=auto iter_0001000/",,terminal_command
212
+ 212,1130169,"TERMINAL",0,0,"]633;Clr_scheduler meta.json model optimizer rng.pt\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357/checkpoints",,terminal_output
213
+ 213,1306846,"TERMINAL",0,0,"ls --color=auto",,terminal_command
214
+ 214,1306849,"TERMINAL",0,0,"]633;Citer_0001000 iter_0002000 iter_0003000 iter_0004000 iter_0005000 latest_checkpointed_iteration.txt rollout\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357/checkpoints",,terminal_output
215
+ 215,1309990,"TERMINAL",0,0,"du -h .",,terminal_command
216
+ 216,1310043,"TERMINAL",0,0,"]633;C",,terminal_output
217
+ 217,1310226,"TERMINAL",0,0,"40K\t./iter_0003000/lr_scheduler\r\n",,terminal_output
218
+ 218,1310370,"TERMINAL",0,0,"62G\t./iter_0003000/optimizer\r\n",,terminal_output
219
+ 219,1310513,"TERMINAL",0,0,"31G\t./iter_0003000/model\r\n92G\t./iter_0003000\r\n",,terminal_output
220
+ 220,1310776,"TERMINAL",0,0,"40K\t./iter_0004000/lr_scheduler\r\n62G\t./iter_0004000/optimizer\r\n31G\t./iter_0004000/model\r\n92G\t./iter_0004000\r\n3.0K\t./rollout\r\n",,terminal_output
221
+ 221,1310892,"TERMINAL",0,0,"40K\t./iter_0005000/lr_scheduler\r\n62G\t./iter_0005000/optimizer\r\n",,terminal_output
222
+ 222,1310944,"TERMINAL",0,0,"31G\t./iter_0005000/model\r\n92G\t./iter_0005000\r\n",,terminal_output
223
+ 223,1311035,"TERMINAL",0,0,"40K\t./iter_0001000/lr_scheduler\r\n",,terminal_output
224
+ 224,1311105,"TERMINAL",0,0,"62G\t./iter_0001000/optimizer\r\n",,terminal_output
225
+ 225,1311234,"TERMINAL",0,0,"31G\t./iter_0001000/model\r\n92G\t./iter_0001000\r\n40K\t./iter_0002000/lr_scheduler\r\n62G\t./iter_0002000/optimizer\r\n31G\t./iter_0002000/model\r\n92G\t./iter_0002000\r\n459G\t.\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357/checkpoints",,terminal_output
226
+ 226,1316248,"TERMINAL",0,0,"cd ..",,terminal_command
227
+ 227,1316250,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357",,terminal_output
228
+ 228,1316616,"TERMINAL",0,0,"ls --color=auto",,terminal_command
229
+ 229,1316624,"TERMINAL",0,0,"]633;Ccheckpoints\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13034357",,terminal_output
230
+ 230,1317548,"TERMINAL",0,0,"cd ..",,terminal_command
231
+ 231,1317790,"TERMINAL",0,0,"ls --color=auto",,terminal_command
232
+ 232,1317811,"TERMINAL",0,0,"]633;C13024253 13025345 13030388 13030392 13030396 13030400 13031982 13032802 13032806 13032811 13032815 13032820\r\n13025339 13025365 13030389 13030393 13030397 13031978 13032780 13032803 13032807 13032812 13032816 13032821\r\n13025341 13030386 13030390 13030394 13030398 13031979 13032800 13032804 13032809 13032813 13032817 13034357\r\n13025342 13030387 13030391 13030395 13030399 13031981 13032801 13032805 13032810 13032814 13032818 qwen3-600M-fsdp-1116-noref\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
233
+ 233,1350656,"TERMINAL",0,0,"cd 13032805",,terminal_command
234
+ 234,1351095,"TERMINAL",0,0,"ls --color=auto",,terminal_command
235
+ 235,1351111,"TERMINAL",0,0,"]633;Ccheckpoints\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13032805",,terminal_output
236
+ 236,1353850,"TERMINAL",0,0,"du -h .",,terminal_command
237
+ 237,1353898,"TERMINAL",0,0,"]633;C",,terminal_output
238
+ 238,1354011,"TERMINAL",0,0,"36K\t./checkpoints/iter_0014000/lr_scheduler\r\n",,terminal_output
239
+ 239,1354098,"TERMINAL",0,0,"13G\t./checkpoints/iter_0014000/optimizer\r\n",,terminal_output
240
+ 240,1354277,"TERMINAL",0,0,"7.6G\t./checkpoints/iter_0014000/model\r\n21G\t./checkpoints/iter_0014000\r\n36K\t./checkpoints/iter_0015000/lr_scheduler\r\n13G\t./checkpoints/iter_0015000/optimizer\r\n7.6G\t./checkpoints/iter_0015000/model\r\n21G\t./checkpoints/iter_0015000\r\n",,terminal_output
241
+ 241,1354394,"TERMINAL",0,0,"36K\t./checkpoints/iter_0007000/lr_scheduler\r\n",,terminal_output
242
+ 242,1354469,"TERMINAL",0,0,"13G\t./checkpoints/iter_0007000/optimizer\r\n7.6G\t./checkpoints/iter_0007000/model\r\n21G\t./checkpoints/iter_0007000\r\n",,terminal_output
243
+ 243,1354534,"TERMINAL",0,0,"36K\t./checkpoints/iter_0003000/lr_scheduler\r\n",,terminal_output
244
+ 244,1354590,"TERMINAL",0,0,"13G\t./checkpoints/iter_0003000/optimizer\r\n",,terminal_output
245
+ 245,1354684,"TERMINAL",0,0,"7.6G\t./checkpoints/iter_0003000/model\r\n21G\t./checkpoints/iter_0003000\r\n",,terminal_output
246
+ 246,1354740,"TERMINAL",0,0,"36K\t./checkpoints/iter_0011000/lr_scheduler\r\n",,terminal_output
247
+ 247,1355757,"TERMINAL",0,0,"13G\t./checkpoints/iter_0011000/optimizer\r\n7.6G\t./checkpoints/iter_0011000/model\r\n21G\t./checkpoints/iter_0011000\r\n36K\t./checkpoints/iter_0013000/lr_scheduler\r\n13G\t./checkpoints/iter_0013000/optimizer\r\n7.6G\t./checkpoints/iter_0013000/model\r\n21G\t./checkpoints/iter_0013000\r\n36K\t./checkpoints/iter_0017000/lr_scheduler\r\n13G\t./checkpoints/iter_0017000/optimizer\r\n7.6G\t./checkpoints/iter_0017000/model\r\n21G\t./checkpoints/iter_0017000\r\n36K\t./checkpoints/iter_0012000/lr_scheduler\r\n13G\t./checkpoints/iter_0012000/optimizer\r\n7.6G\t./checkpoints/iter_0012000/model\r\n21G\t./checkpoints/iter_0012000\r\n36K\t./checkpoints/iter_0016000/lr_scheduler\r\n13G\t./checkpoints/iter_0016000/optimizer\r\n7.6G\t./checkpoints/iter_0016000/model\r\n21G\t./checkpoints/iter_0016000\r\n36K\t./checkpoints/iter_0008000/lr_scheduler\r\n13G\t./checkpoints/iter_0008000/optimizer\r\n7.6G\t./checkpoints/iter_0008000/model\r\n21G\t./checkpoints/iter_0008000\r\n36K\t./checkpoints/iter_0020000/lr_scheduler\r\n13G\t./checkpoints/iter_0020000/optimizer\r\n7.6G\t./checkpoints/iter_0020000/model\r\n21G\t./checkpoints/iter_0020000\r\n36K\t./checkpoints/iter_0010000/lr_scheduler\r\n13G\t./checkpoints/iter_0010000/optimizer\r\n7.6G\t./checkpoints/iter_0010000/model\r\n21G\t./checkpoints/iter_0010000\r\n36K\t./checkpoints/iter_0018000/lr_scheduler\r\n13G\t./checkpoints/iter_0018000/optimizer\r\n7.6G\t./checkpoints/iter_0018000/model\r\n21G\t./checkpoints/iter_0018000\r\n36K\t./checkpoints/iter_0004000/lr_scheduler\r\n13G\t./checkpoints/iter_0004000/optimizer\r\n7.6G\t./checkpoints/iter_0004000/model\r\n21G\t./checkpoints/iter_0004000\r\n36K\t./checkpoints/iter_0009000/lr_scheduler\r\n13G\t./checkpoints/iter_0009000/optimizer\r\n7.6G\t./checkpoints/iter_0009000/model\r\n21G\t./checkpoints/iter_0009000\r\n11K\t./checkpoints/rollout\r\n",,terminal_output
248
+ 248,1355997,"TERMINAL",0,0,"36K\t./checkpoints/iter_0005000/lr_scheduler\r\n13G\t./checkpoints/iter_0005000/optimizer\r\n7.6G\t./checkpoints/iter_0005000/model\r\n21G\t./checkpoints/iter_0005000\r\n36K\t./checkpoints/iter_0019000/lr_scheduler\r\n13G\t./checkpoints/iter_0019000/optimizer\r\n7.6G\t./checkpoints/iter_0019000/model\r\n21G\t./checkpoints/iter_0019000\r\n",,terminal_output
249
+ 249,1356176,"TERMINAL",0,0,"36K\t./checkpoints/iter_0001000/lr_scheduler\r\n13G\t./checkpoints/iter_0001000/optimizer\r\n7.6G\t./checkpoints/iter_0001000/model\r\n21G\t./checkpoints/iter_0001000\r\n36K\t./checkpoints/iter_0002000/lr_scheduler\r\n13G\t./checkpoints/iter_0002000/optimizer\r\n7.6G\t./checkpoints/iter_0002000/model\r\n21G\t./checkpoints/iter_0002000\r\n36K\t./checkpoints/iter_0006000/lr_scheduler\r\n13G\t./checkpoints/iter_0006000/optimizer\r\n7.6G\t./checkpoints/iter_0006000/model\r\n21G\t./checkpoints/iter_0006000\r\n409G\t./checkpoints\r\n409G\t.\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13032805",,terminal_output
250
+ 250,1379857,"TERMINAL",0,0,"cd ..",,terminal_command
251
+ 251,1379863,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
252
+ 252,1380382,"TERMINAL",0,0,"sl",,terminal_command
253
+ 253,1380389,"TERMINAL",0,0,"]633;Cbash: sl: command not found\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
254
+ 254,1381246,"TERMINAL",0,0,"ls --color=auto",,terminal_command
255
+ 255,1381264,"TERMINAL",0,0,"]633;C13024253 13025345 13030388 13030392 13030396 13030400 13031982 13032802 13032806 13032811 13032815 13032820\r\n13025339 13025365 13030389 13030393 13030397 13031978 13032780 13032803 13032807 13032812 13032816 13032821\r\n13025341 13030386 13030390 13030394 13030398 13031979 13032800 13032804 13032809 13032813 13032817 13034357\r\n13025342 13030387 13030391 13030395 13030399 13031981 13032801 13032805 13032810 13032814 13032818 qwen3-600M-fsdp-1116-noref\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data",,terminal_output
256
+ 256,1383247,"TERMINAL",0,0,"cd 13032801",,terminal_command
257
+ 257,1383654,"TERMINAL",0,0,"ls --color=auto",,terminal_command
258
+ 258,1383660,"TERMINAL",0,0,"]633;Ccheckpoints\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13032801",,terminal_output
259
+ 259,1386050,"TERMINAL",0,0,"du -h .",,terminal_command
260
+ 260,1386098,"TERMINAL",0,0,"]633;C",,terminal_output
261
+ 261,1386235,"TERMINAL",0,0,"40K\t./checkpoints/iter_0004500/lr_scheduler\r\n",,terminal_output
262
+ 262,1386350,"TERMINAL",0,0,"17K\t./checkpoints/iter_0004500/optimizer\r\n",,terminal_output
263
+ 263,1386414,"TERMINAL",0,0,"15M\t./checkpoints/iter_0004500/model\r\n26M\t./checkpoints/iter_0004500\r\n",,terminal_output
264
+ 264,1386558,"TERMINAL",0,0,"40K\t./checkpoints/iter_0003000/lr_scheduler\r\n",,terminal_output
265
+ 265,1386652,"TERMINAL",0,0,"17K\t./checkpoints/iter_0003000/optimizer\r\n",,terminal_output
266
+ 266,1386746,"TERMINAL",0,0,"15M\t./checkpoints/iter_0003000/model\r\n26M\t./checkpoints/iter_0003000\r\n",,terminal_output
267
+ 267,1386851,"TERMINAL",0,0,"40K\t./checkpoints/iter_0001500/lr_scheduler\r\n",,terminal_output
268
+ 268,1387056,"TERMINAL",0,0,"17K\t./checkpoints/iter_0001500/optimizer\r\n",,terminal_output
269
+ 269,1387059,"TERMINAL",0,0,"15M\t./checkpoints/iter_0001500/model\r\n26M\t./checkpoints/iter_0001500\r\n",,terminal_output
270
+ 270,1387119,"TERMINAL",0,0,"40K\t./checkpoints/iter_0000500/lr_scheduler\r\n",,terminal_output
271
+ 271,1387212,"TERMINAL",0,0,"17K\t./checkpoints/iter_0000500/optimizer\r\n",,terminal_output
272
+ 272,1387275,"TERMINAL",0,0,"15M\t./checkpoints/iter_0000500/model\r\n26M\t./checkpoints/iter_0000500\r\n",,terminal_output
273
+ 273,1387343,"TERMINAL",0,0,"40K\t./checkpoints/iter_0004000/lr_scheduler\r\n",,terminal_output
274
+ 274,1387418,"TERMINAL",0,0,"17K\t./checkpoints/iter_0004000/optimizer\r\n",,terminal_output
275
+ 275,1387565,"TERMINAL",0,0,"15M\t./checkpoints/iter_0004000/model\r\n26M\t./checkpoints/iter_0004000\r\n5.5K\t./checkpoints/rollout\r\n40K\t./checkpoints/iter_0003500/lr_scheduler\r\n17K\t./checkpoints/iter_0003500/optimizer\r\n15M\t./checkpoints/iter_0003500/model\r\n26M\t./checkpoints/iter_0003500\r\n",,terminal_output
276
+ 276,1387623,"TERMINAL",0,0,"40K\t./checkpoints/iter_0005000/lr_scheduler\r\n",,terminal_output
277
+ 277,1387686,"TERMINAL",0,0,"17K\t./checkpoints/iter_0005000/optimizer\r\n",,terminal_output
278
+ 278,1388042,"TERMINAL",0,0,"15M\t./checkpoints/iter_0005000/model\r\n26M\t./checkpoints/iter_0005000\r\n40K\t./checkpoints/iter_0002500/lr_scheduler\r\n17K\t./checkpoints/iter_0002500/optimizer\r\n15M\t./checkpoints/iter_0002500/model\r\n26M\t./checkpoints/iter_0002500\r\n40K\t./checkpoints/iter_0001000/lr_scheduler\r\n17K\t./checkpoints/iter_0001000/optimizer\r\n15M\t./checkpoints/iter_0001000/model\r\n26M\t./checkpoints/iter_0001000\r\n40K\t./checkpoints/iter_0002000/lr_scheduler\r\n17K\t./checkpoints/iter_0002000/optimizer\r\n15M\t./checkpoints/iter_0002000/model\r\n26M\t./checkpoints/iter_0002000\r\n259M\t./checkpoints\r\n259M\t.\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13032801",,terminal_output
279
+ 279,1408798,"TERMINAL",0,0,"cd ../13032804",,terminal_command
280
+ 280,1411088,"TERMINAL",0,0,"du -h .",,terminal_command
281
+ 281,1411139,"TERMINAL",0,0,"]633;C",,terminal_output
282
+ 282,1411322,"TERMINAL",0,0,"40K\t./checkpoints/iter_0003000/lr_scheduler\r\n",,terminal_output
283
+ 283,1411415,"TERMINAL",0,0,"13G\t./checkpoints/iter_0003000/optimizer\r\n",,terminal_output
284
+ 284,1411482,"TERMINAL",0,0,"7.6G\t./checkpoints/iter_0003000/model\r\n21G\t./checkpoints/iter_0003000\r\n",,terminal_output
285
+ 285,1411583,"TERMINAL",0,0,"40K\t./checkpoints/iter_0004000/lr_scheduler\r\n13G\t./checkpoints/iter_0004000/optimizer\r\n",,terminal_output
286
+ 286,1411644,"TERMINAL",0,0,"7.6G\t./checkpoints/iter_0004000/model\r\n21G\t./checkpoints/iter_0004000\r\n",,terminal_output
287
+ 287,1411707,"TERMINAL",0,0,"3.0K\t./checkpoints/rollout\r\n",,terminal_output
288
+ 288,1411830,"TERMINAL",0,0,"40K\t./checkpoints/iter_0005000/lr_scheduler\r\n13G\t./checkpoints/iter_0005000/optimizer\r\n7.6G\t./checkpoints/iter_0005000/model\r\n21G\t./checkpoints/iter_0005000\r\n",,terminal_output
289
+ 289,1411994,"TERMINAL",0,0,"40K\t./checkpoints/iter_0001000/lr_scheduler\r\n13G\t./checkpoints/iter_0001000/optimizer\r\n",,terminal_output
290
+ 290,1412114,"TERMINAL",0,0,"7.6G\t./checkpoints/iter_0001000/model\r\n21G\t./checkpoints/iter_0001000\r\n40K\t./checkpoints/iter_0002000/lr_scheduler\r\n13G\t./checkpoints/iter_0002000/optimizer\r\n7.6G\t./checkpoints/iter_0002000/model\r\n21G\t./checkpoints/iter_0002000\r\n103G\t./checkpoints\r\n103G\t.\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/mihir/huggingface/shared_data/13032804",,terminal_output
291
+ 291,1704506,"TERMINAL",0,0,"cd ${SCRATCH}",,terminal_command
292
+ 292,1704512,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:/p/scratch/envcomp",,terminal_output
293
+ 293,1707885,"TERMINAL",0,0,"cd /p/home/jusers/mahajan1/juwels/projects/mahajan1/miles",,terminal_command
294
+ 294,1707894,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
295
+ 295,1711713,"TERMINAL",0,0,"source .venv/bin/activate",,terminal_command
296
+ 296,1711752,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
297
+ 297,1712931,"TERMINAL",0,0,"ls --color=auto",,terminal_command
298
+ 298,1712934,"TERMINAL",0,0,"]633;Cbuild_conda.sh core.jwb0234.juwels.4036136 core.jwb0246.juwels.1957296 core.jwb0248.juwels.1760203 docs slurm\r\ncore.jwb0234.juwels.4019759 core.jwb0234.juwels.4036137 core.jwb0246.juwels.1957297 core.jwb0248.juwels.1760204 examples tests\r\ncore.jwb0234.juwels.4019760 core.jwb0234.juwels.4036138 core.jwb0246.juwels.1957298 core.jwb0248.juwels.1760205 imgs tmp.txt\r\ncore.jwb0234.juwels.4019761 core.jwb0234.juwels.4036139 core.jwb0246.juwels.1957299 core.jwb0248.juwels.1760206 LICENSE tools\r\ncore.jwb0234.juwels.4019762 core.jwb0246.juwels.1953481 core.jwb0246.juwels.1969807 core.jwb0248.juwels.1762730 miles train_async.py\r\ncore.jwb0234.juwels.4021039 core.jwb0246.juwels.1953482 core.jwb0246.juwels.1969808 core.jwb0248.juwels.1762732 miles.egg-info train.py\r\ncore.jwb0234.juwels.4021040 core.jwb0246.juwels.1953483 core.jwb0246.juwels.1969809 core.jwb0248.juwels.1762733 miles_plugins train_sft.py\r\ncore.jwb0234.juwels.4021041 core.jwb0246.juwels.1953484 core.jwb0246.juwels.1969810 core.jwb0248.juwels.1775280 pyproject.toml wandb\r\ncore.jwb0234.juwels.4021042 core.jwb0246.juwels.1954767 core.jwb0248.juwels.1758912 core.jwb0248.juwels.1775281 README.md\r\ncore.jwb0234.juwels.4023546 core.jwb0246.juwels.1954768 core.jwb0248.juwels.1758913 core.jwb0248.juwels.1775282 requirements.txt\r\ncore.jwb0234.juwels.4023547 core.jwb0246.juwels.1954769 core.jwb0248.juwels.1758914 core.jwb0248.juwels.1775283 scripts\r\ncore.jwb0234.juwels.4023548 core.jwb0246.juwels.1954770 core.jwb0248.juwels.1758915 docker setup.py\r\n]0;mahajan1@jwlogin23:~/projects/mahajan1/miles",,terminal_output
299
+ 299,1717970,"TERMINAL",0,0,"cd /p/scratch/envcomp/logs",,terminal_command
300
+ 300,1717991,"TERMINAL",0,0,"]633;C]0;mahajan1@jwlogin23:/p/scratch/envcomp/logs",,terminal_output
301
+ 301,1718311,"TERMINAL",0,0,"ls --color=auto",,terminal_command
302
+ 302,1718317,"TERMINAL",0,0,"]633;CANTA_CLAUS\r\n]0;mahajan1@jwlogin23:/p/scratch/envcomp/logs",,terminal_output
303
+ 303,1719731,"TERMINAL",0,0,"cd ANTA_CLAUS/wandb",,terminal_command
304
+ 304,1726328,"TERMINAL",0,0,"wandb sync offline-run-202512*",,terminal_command
305
+ 305,1726368,"TERMINAL",0,0,"]633;C",,terminal_output
306
+ 306,1733834,"TERMINAL",0,0,"Find logs at: /tmp/debug-cli.mahajan1.log\r\n",,terminal_output
307
+ 307,1735300,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/srhvpy1x ... ",,terminal_output
308
+ 308,1775668,"TERMINAL",0,0,"done.\r\n",,terminal_output
309
+ 309,1776254,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/s3vt6j03 ... ",,terminal_output
310
+ 310,1854902,"TERMINAL",0,0,"done.\r\n",,terminal_output
311
+ 311,1855347,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/hdeu863c ... ",,terminal_output
312
+ 312,2607375,"TERMINAL",0,0,"done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/txpn35pr ... ",,terminal_output
313
+ 313,2607523,"TERMINAL",0,0,"done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/2tmrcqyr ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/cynfzb05 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/gbiw7ser ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/vwqvlawr ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/qy3yond7 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/naygks5j ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/oiw5w79y ... ",,terminal_output
314
+ 314,2607756,"TERMINAL",0,0,"done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/srqg6je9 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/0nh03pm4 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/7zbgvp5x ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/lq3zgm03 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/lu9cvgax ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/p2t8lqnz ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/r04esu69 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/ae6935ok ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/8pfgcefs ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/jl7irwel ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/bmylq4k5 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/ik1q9zz5 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/7qsqbv0l ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/4riovnzx ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/r5gobf6z ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/h4yo7jku ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/p1w5hpc9 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/8eru4ijj ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/05geexep ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/97n8prwm ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/995dj0ls ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/r8kd7td9 ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/b3ubrvgn ... done.\r\nSyncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/h7d0nu82 ... \r\n\r\n\r\n",,terminal_output
315
+ 315,2615353,"TERMINAL",0,0,"done.\r\n",,terminal_output
316
+ 316,2616042,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/dxnhrjgl ... ",,terminal_output
317
+ 317,2688171,"TERMINAL",0,0,"done.\r\n",,terminal_output
318
+ 318,2688814,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/8uqk41di ... ",,terminal_output
319
+ 319,2713210,"TERMINAL",0,0,"done.\r\n",,terminal_output
320
+ 320,2713832,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/qycikhf6 ... ",,terminal_output
321
+ 321,2738549,"TERMINAL",0,0,"done.\r\n",,terminal_output
322
+ 322,2739164,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/my1c4y3r ... ",,terminal_output
323
+ 323,2780388,"TERMINAL",0,0,"done.\r\n",,terminal_output
324
+ 324,2780999,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/xfl44nex ... ",,terminal_output
325
+ 325,2852143,"TERMINAL",0,0,"done.\r\n",,terminal_output
326
+ 326,2852868,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/1izuyptv ... ",,terminal_output
327
+ 327,2876023,"TERMINAL",0,0,"done.\r\n",,terminal_output
328
+ 328,2876796,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/z4ouqxad ... ",,terminal_output
329
+ 329,2916322,"TERMINAL",0,0,"done.\r\n",,terminal_output
330
+ 330,2917040,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/rcrggu5s ... ",,terminal_output
331
+ 331,2987540,"TERMINAL",0,0,"done.\r\n",,terminal_output
332
+ 332,2988288,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/dgnm2rjh ... ",,terminal_output
333
+ 333,3062857,"TERMINAL",0,0,"done.\r\n",,terminal_output
334
+ 334,3063479,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/sovqvfna ... ",,terminal_output
335
+ 335,3088467,"TERMINAL",0,0,"done.\r\n",,terminal_output
336
+ 336,3089066,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/a4qul0re ... ",,terminal_output
337
+ 337,3127410,"TERMINAL",0,0,"done.\r\n",,terminal_output
338
+ 338,3128025,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/cxqahaj0 ... ",,terminal_output
339
+ 339,3151842,"TERMINAL",0,0,"done.\r\n",,terminal_output
340
+ 340,3152439,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/ernte0x4 ... ",,terminal_output
341
+ 341,3175417,"TERMINAL",0,0,"done.\r\n",,terminal_output
342
+ 342,3175951,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/5t3dv9s2 ... ",,terminal_output
343
+ 343,3214658,"TERMINAL",0,0,"done.\r\n",,terminal_output
344
+ 344,3215432,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/iismd3s9 ... ",,terminal_output
345
+ 345,3253920,"TERMINAL",0,0,"done.\r\n",,terminal_output
346
+ 346,3254578,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/22c5kj9q ... ",,terminal_output
347
+ 347,3294181,"TERMINAL",0,0,"done.\r\n",,terminal_output
348
+ 348,3294793,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/54umjcrz ... ",,terminal_output
349
+ 349,3365370,"TERMINAL",0,0,"done.\r\n",,terminal_output
350
+ 350,3366016,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/axchcl5p ... ",,terminal_output
351
+ 351,3439595,"TERMINAL",0,0,"done.\r\n",,terminal_output
352
+ 352,3439949,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/zeltecf3 ... ",,terminal_output
353
+ 353,3513487,"TERMINAL",0,0,"done.\r\n",,terminal_output
354
+ 354,3514079,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/xtx69n1v ... ",,terminal_output
355
+ 355,3552448,"TERMINAL",0,0,"done.\r\n",,terminal_output
356
+ 356,3553097,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/fb070njd ... ",,terminal_output
357
+ 357,3576478,"TERMINAL",0,0,"done.\r\n",,terminal_output
358
+ 358,3577199,"TERMINAL",0,0,"Syncing: https://wandb.ai/instant-uv/crowd-pilot-miles/runs/w5ikcawf ... ",,terminal_output
359
+ 359,3595221,"TERMINAL",0,0,"done.\r\n",,terminal_output
360
+ 360,3595805,"TERMINAL",0,0,"]0;mahajan1@jwlogin23:/p/scratch/envcomp/logs/ANTA_CLAUS/wandb",,terminal_output
58dff52cba2a091453cfbef6169091e684254819f0b9f334dbecea6a130284bc/crowd-code-f9c548ba-e7ae-418f-bcd9-3b3e771f5fa01767372765713-2026_01_02-17.53.20.698/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-08cafcbe-d0e5-4505-ac95-8b9050d84d731759228460178-2025_09_30-12.34.56.10/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-10196e97-c322-40bf-836a-16ee811908931758807420822-2025_09_25-15.37.22.442/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-1e70ca6b-f2dc-4f0c-81bb-b7d403b4df271752242192153-2025_07_11-15.56.51.266/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-1f51b8ea-81c1-4db7-8702-1416f8c1c0cc1751376377945-2025_07_01-15.27.44.831/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-242fa472-b5db-492d-8b66-f482468772b21757500459062-2025_09_10-12.34.42.52/source.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,7,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\nimport time\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nimport optax\nimport orbax\nimport numpy as np\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\n\nts = int(time.time())\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_resolution: int = 64\n data_dir: str = ""data/coinrun_episodes""\n # Optimization\n batch_size: int = 36\n min_lr: float = 3e-6\n max_lr: float = 3e-5\n warmup_steps: int = 5000\n # Tokenizer\n tokenizer_dim: int = 512\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 8\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 8\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_num_blocks: int = 12\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_gradients: bool = False\n name: str = """"\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n wandb_id: str = """"\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n outputs = state.apply_fn(\n params, inputs, training=True, rngs={""dropout"": inputs[""dropout_rng""]}\n )\n mask = outputs[""mask""]\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\n@jax.jit\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n rng = jax.random.PRNGKey(args.seed)\n if args.log:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_resolution, args.image_resolution, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (args.batch_size, args.seq_len, *image_shape), dtype=jnp.float32\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n init_params = restore_genie_components(\n init_params, args.tokenizer_checkpoint, args.lam_checkpoint\n )\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4)\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n # --- TRAIN LOOP ---\n dataloader = get_dataloader(args.data_dir, args.seq_len, args.batch_size)\n step = 0\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng, _mask_rng = jax.random.split(rng, 3)\n inputs = dict(\n videos=videos,\n action=jnp.zeros((args.batch_size, args.seq_len), dtype=jnp.float32),\n dropout_rng=_rng,\n mask_rng=_mask_rng,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0:\n wandb.log({""loss"": loss, ""step"": step, **metrics})\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[15])),\n recon=wandb.Image(np.asarray(recon_seq[15])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n if step % args.log_checkpoint_interval == 0:\n ckpt = {""model"": train_state}\n orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n save_args = orbax_utils.save_args_from_target(ckpt)\n orbax_checkpointer.save(\n os.path.join(os.getcwd(), args.ckpt_dir, f""genie_{ts}_{step}""),\n ckpt,\n save_args=save_args,\n )\n if step >= args.num_steps:\n break\n",python,tab
3
+ 2,479,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:34:42 PM [info] Activating crowd-code\n12:34:42 PM [info] Recording started\n12:34:42 PM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,1114,"extension-output-pdoom-org.crowd-code-#1-crowd-code",153,0,"12:34:42 PM [info] Git repository found\n12:34:42 PM [info] Git provider initialized successfully\n12:34:42 PM [info] Initial git state: [object Object]\n",Log,content
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-27fd9e5e-b562-49ba-9321-8ed11ebad94f1756718814603-2025_09_01-11.27.16.489/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2b01d9ad-2c11-4b6b-bc1b-f335a6c7dd4a1750840473876-2025_06_25-10.34.49.55/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2cce3a90-32a5-4d8b-8cb0-10445a2ee7a71754054463184-2025_08_01-15.21.32.127/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2e25d757-859b-4fde-ba77-792b0eb397df1759579674644-2025_10_04-14.09.15.386/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-2f4869ae-f0d3-4e60-80d2-8655e52f1ea31751064760332-2025_06_28-00.52.51.957/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-3ba207b9-2f18-4919-a6bb-bebae1f850441758203079280-2025_09_18-15.45.09.509/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-3ebbac58-2f0e-41b5-a15d-9a2b6b0c20ab1758725119572-2025_09_24-16.46.25.34/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-411c0b26-1d5f-4194-8163-38afd5728d3d1756886238975-2025_09_03-09.59.08.217/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-43fbfe2e-f9a4-4bb4-acf4-2bdbf37810851757006149083-2025_09_04-19.16.32.851/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-4b6051ce-1cfc-4dca-874b-0d0d7270d33f1753454394749-2025_07_25-16.42.21.379/source.csv ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,1366,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"4:42:21 PM [info] Activating crowd-code\n4:42:21 PM [info] Recording started\n4:42:21 PM [info] Initializing git provider using file system watchers...\n4:42:21 PM [info] Git repository found\n4:42:21 PM [info] Git provider initialized successfully\n4:42:21 PM [info] Initial git state: [object Object]\n",Log,tab
3
+ 3,2902,"TERMINAL",0,0,"bash",,terminal_focus
4
+ 4,33144,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=8\n#SBATCH --ntasks-per-node=4\n#SBATCH --time=48:00:00\n#SBATCH --partition=accelerated\n#SBATCH --cpus-per-task=5\n#SBATCH --gres=gpu:4\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/maskgit-maskprob-fix/dynamics-cotraining/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/maskgit-maskprob-fix/dynamics-cotraining/%x_%j.log\n#SBATCH --job-name=train_dynamics_maskprob_fix_8_node\n#SBATCH --requeue\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\n\n# --- signal trap to requeue job before timeout ---\nrequeue_job() {\n echo ""[$(date)] caught sigusr1 (timeout warning), requeueing slurm job $SLURM_JOB_ID...""\n # optional: trigger checkpoint saving here\n # e.g., touch $checkpoint_dir/requeue_trigger\n scontrol requeue $SLURM_JOB_ID\n exit 0\n}\n\ntrap requeue_job sigusr1\n\n# set checkpoint flag based on restart count\nrestart_count=$(scontrol show job $SLURM_JOB_ID | grep -o 'Restarts=[0-9]*' | cut -d'=' -f2)\n\nif [ $restart_count -eq 0 ]; then\n restore_ckpt_flag=""--no-restore-ckpt""\nelse\n restore_ckpt_flag=""--restore-ckpt""\nfi\n\n\n\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\nsource .venv/bin/activate\n\narray_records_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_new/open_ai_minecraft_arrayrecords_chunked\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\n# tokenizer with the new structure supporting larger ffn_dim\ntokenizer_ckpt_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data/checkpoints/train_tokenizer_lr_sweep_1e-4_larger_ffn/\n\nenv | grep SLURM\n\nsrun python train_dynamics.py \\n --save_ckpt \\n $restore_ckpt_flag \\n --wandb_id $SLURM_JOB_ID \\n --ckpt_dir $CHECKPOINT_DIR \\n --batch_size=384 \\n --init_lr=0 \\n --max_lr=8e-5 \\n --log_image_interval=1000 \\n --log \\n --log_checkpoint_interval=1000 \\n --name=dynamics-maskprob-fix-8-node-$slurm_job_id \\n --tags dynamics maskprob-fix 8-node \\n --entity instant-uv \\n --project jafar \\n --dyna_dim=1024 \\n --dyna_num_blocks=16 \\n --dyna_num_heads=16 \\n --dyna_ffn_dim=4096 \\n --tokenizer_checkpoint=$tokenizer_ckpt_dir \\n --data_dir $array_records_dir &\n\nchild_pid=$!\n\nwait $child_pid\n",shellscript,tab
5
+ 5,51851,"TERMINAL",0,0,"bash",,terminal_focus
6
+ 6,56221,"TERMINAL",0,0,"fsacct_week",,terminal_command
7
+ 7,56266,"TERMINAL",0,0,"]633;E;2025-07-25 16:43:16 fsacct_week;406cfb31-2341-454a-afa8-cae7781806b2]633;C",,terminal_output
8
+ 8,56266,"TERMINAL",0,0," JobID JobName Partition All State Elapsed Timelimit \r\n--------------- ------------------------------ ---------------- --- ------------ ---------- ---------- \r\n 3358457 train_dyn_yolorun_new_arch accelerated 48 FAILED 00:00:28 2-00:00:00 \r\n 3359334 wrap accelerated 6 TIMEOUT 10:00:29 10:00:00 \r\n 3359338 wrap accelerated 6 TIMEOUT 10:00:16 10:00:00 \r\n 3359343 train_dyn_new_arch-bugfixed-s+ accelerated 48 COMPLETED 23:19:14 2-00:00:00 \r\n 3359349 train_dyn_new_arch-bugfixed-t+ accelerated 48 COMPLETED 1-01:00:55 2-00:00:00 \r\n 3365873 train_dynamics_overfit_sample+ accelerated 6 COMPLETED 01:26:52 2-00:00:00 \r\n 3365876 train_dynamics_overfit_sample+ accelerated 6 COMPLETED 01:40:07 2-00:00:00 \r\n 3366883 train_dynamics_overfit_sample+ accelerated 6 COMPLETED 01:33:31 2-00:00:00 \r\n 3371238 train_dynamics_maskprob_fix_2+ accelerated 48 RUNNING 1-16:09:01 2-00:00:00 \r\n 3372629 train_dynamics_maskprob_fix_8+ accelerated 192 COMPLETED 1-02:29:22 2-00:00:00 \r\n 3372631 train_dynamics_maskprob_fix_2+ accelerated 48 COMPLETED 1-01:17:59 2-00:00:00 \r\n 3372931 train_dyn_causal_180M dev_accelerated 6 FAILED 00:00:33 00:10:00 \r\n 3372932 train_dyn_causal_255M dev_accelerated 6 FAILED 00:00:29 00:10:00 \r\n 3372934 train_dyn_causal_356M dev_accelerated 6 FAILED 00:00:29 00:10:00 \r\n 3372936 train_dyn_causal_500M dev_accelerated 6 FAILED 00:00:29 00:10:00 \r\n 3372969 train_dyn_causal_180M dev_accelerated 6 FAILED 00:02:11 00:10:00 \r\n 3372970 train_dyn_causal_255M dev_accelerated 6 FAILED 00:02:24 00:10:00 \r\n 3372971 train_dyn_causal_356M dev_accelerated 6 FAILED 00:02:08 00:10:00 \r\n 3372972 train_dyn_causal_500M dev_accelerated 6 FAILED 00:02:09 00:10:00 \r\n 3373107 train_dyn_causal_180M dev_accelerated 6 COMPLETED 00:06:15 00:10:00 \r\n 3373108 train_dyn_causal_255M dev_accelerated 6 COMPLETED 00:07:14 00:10:00 \r\n 3373109 train_dyn_causal_356M dev_accelerated 6 FAILED 00:04:17 00:10:00 \r\n 3373110 train_dyn_causal_500M dev_accelerated 6 FAILED 00:04:59 00:10:00 \r\n 3373400 wrap accelerated 6 COMPLETED 00:04:34 02:00:00 \r\n 3373404 wrap accelerated 6 COMPLETED 00:04:38 02:00:00 \r\n 3373407 train_dynamics_causal_2_node accelerated 48 RUNNING 05:58:48 2-00:00:00 \r\n 3373408 train_dynamics_causal_8_node accelerated 192 RUNNING 05:58:48 2-00:00:00 \r\n 3373409 wrap accelerated 6 COMPLETED 00:41:24 02:00:00 \r\n 3373410 wrap accelerated 6 COMPLETED 00:42:56 02:00:00 \r\n 3371237 train_dynamics_maskprob_fix_8+ accelerated 192 RUNNING 00:45:54 2-00:00:00 \r\n]0;tum_cte0515@hkn1990:~/Projects/jafar]633;D;0",,terminal_output
9
+ 9,489274,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",0,0,"",shellscript,tab
10
+ 10,492538,"TERMINAL",0,0,"bash",,terminal_focus
11
+ 11,496388,"TERMINAL",0,0,"cd $ws_dir",,terminal_command
12
+ 12,496810,"TERMINAL",0,0,"ls",,terminal_command
13
+ 13,496859,"TERMINAL",0,0,"]633;E;2025-07-25 16:50:38 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C",,terminal_output
14
+ 14,496990,"TERMINAL",0,0,"checkpoints count_items.sh data data_new huggingface logs possibly_corrupt_files_in_this_workspace.txt scripts\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared]633;D;0",,terminal_output
15
+ 15,501267,"TERMINAL",0,0,"cd checkpoints/",,terminal_command
16
+ 16,501293,"TERMINAL",0,0,"]633;E;2025-07-25 16:50:42 cd checkpoints/;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints]633;D;0",,terminal_output
17
+ 17,501578,"TERMINAL",0,0,"ls",,terminal_command
18
+ 18,501628,"TERMINAL",0,0,"]633;E;2025-07-25 16:50:42 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C",,terminal_output
19
+ 19,501871,"TERMINAL",0,0,"0000 3291405 3292335 3296571 3297606 3299069 3301026 3310436 3316022 lam_ckpt_dir train_dyn_causal_500M\r\n3290283 3292213 3292336 3296573 3297671 3299258 3301027 3310437 big-runs lam_main_test train_dyn_new_arch-bugfixed-spatial-shift\r\n3290284 3292221 3292337 3296574 3297693 3299259 3301029 3311671 causal maskgit-maskprob-fix train_dyn_new_arch-bugfixed-temporal-shift\r\n3290295 3292258 3292338 3296575 3297706 3299272 3301030 3311672 checkpoints_alfred tokenizer train_dyn_yolorun_new_arch\r\n3290296 3292328 3292339 3297569 3297727 3299579 3301031 3313562 coinrun tokenizer_ckpt_dir train_lam_minecraft_overfit_sample\r\n3290366 3292329 3294600 3297575 3299016 3300233 3306801 3313563 debug train_dynamics_lr_schedule_const train_tokenizer_batch_size_scaling_16_node\r\n3290367 3292330 3294601 3297576 3299062 3300290 3307618 3313564 dyn train_dynamics_lr_schedule_cos train_tokenizer_minecraft_overfit_sample\r\n3290391 3292331 3294602 3297577 3299063 3300658 3307619 3313565 dynamics_ckpt_dir train_dynamics_lr_schedule_wsd wrap\r\n3290392 3292332 3294603 3297578 3299065 3300663 3309662 3313570 interactive train_dyn_causal_180M\r\n3290439 3292333 3296502 3297582 3299066 3300672 3309663 3313571 lam train_dyn_causal_255M\r\n3290440 3292334 3296540 3297586 3299068 3301025 3309699 3313572 lam-1-action train_dyn_causal_356M\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints]633;D;0",,terminal_output
20
+ 20,503515,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",0,0,"",shellscript,tab
21
+ 21,506478,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",1559,0,"",shellscript,selection_mouse
22
+ 22,506611,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",1557,8,"maskprob",shellscript,selection_mouse
23
+ 23,511718,"TERMINAL",0,0,"cd maskgit-maskprob-fix/",,terminal_command
24
+ 24,512173,"TERMINAL",0,0,"ls",,terminal_command
25
+ 25,512216,"TERMINAL",0,0,"]633;E;2025-07-25 16:50:53 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C",,terminal_output
26
+ 26,512275,"TERMINAL",0,0,"interactive train_dynamics_maskprob_fix_2_node train_dynamics_maskprob_fix_2_node_80M train_dynamics_maskprob_fix_8_node train_dynamics_maskprob_fix_8_node_80M\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix]633;D;0",,terminal_output
27
+ 27,520223,"TERMINAL",0,0,"cd train_dynamics_maskprob_fix_",,terminal_command
28
+ 28,520228,"TERMINAL",0,0,"]633;E;2025-07-25 16:51:01 cd train_dynamics_maskprob_fix_;adbf53fe-397b-40d3-9339-94ea79afad56]633;Cbash: cd: train_dynamics_maskprob_fix_: No such file or directory\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix]633;D;1",,terminal_output
29
+ 29,522776,"TERMINAL",0,0,"cd train_dynamics_maskprob_fix_8_node",,terminal_command
30
+ 30,522802,"TERMINAL",0,0,"]633;E;2025-07-25 16:51:04 cd train_dynamics_maskprob_fix_8_node;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_8_node]633;D;0",,terminal_output
31
+ 31,523278,"TERMINAL",0,0,"ls",,terminal_command
32
+ 32,523301,"TERMINAL",0,0,"]633;E;2025-07-25 16:51:04 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C3370788 3371237\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_8_node]633;D;0",,terminal_output
33
+ 33,536976,"TERMINAL",0,0,"cd 3371237/",,terminal_command
34
+ 34,537010,"TERMINAL",0,0,"]633;E;2025-07-25 16:51:18 cd 3371237/;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_8_node/3371237]633;D;0",,terminal_output
35
+ 35,537454,"TERMINAL",0,0,"ls",,terminal_command
36
+ 36,537509,"TERMINAL",0,0,"]633;E;2025-07-25 16:51:18 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C016000 017000 018000\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_8_node/3371237]633;D;0",,terminal_output
37
+ 37,557600,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",0,0,"",shellscript,tab
38
+ 38,560516,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",2060,0,"",shellscript,selection_mouse
39
+ 39,560673,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",2059,4,"1000",shellscript,selection_mouse
40
+ 40,561723,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",2147,0,"",shellscript,selection_mouse
41
+ 41,562486,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",2144,3,"fix",shellscript,selection_mouse
42
+ 42,563079,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",2110,0,"",shellscript,selection_mouse
43
+ 43,563243,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",2108,4,"1000",shellscript,selection_mouse
44
+ 44,579775,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\n\nimport einops\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = (\n 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n )\n warmup_steps: int = 5000\n lr_schedule: str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n tokenizer_ffn_dim: int = 2048\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 4\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n lam_ffn_dim: int = 2048\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 4\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_ffn_dim: int = 2048\n dyna_num_blocks: int = 6\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n use_maskgit: bool = False\n param_dtype: jnp.dtype = jnp.float32\n dtype: jnp.dtype = jnp.bfloat16\n use_flash_attention: bool = True\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n outputs[""recon""] = outputs[""recon""].astype(jnp.float32)\n logits = outputs[""token_logits""]\n targets = outputs[""video_tokens""]\n\n # if not args.use_maskgit:\n # logits = outputs[""token_logits""][:, :, :-1]\n # targets = outputs[""video_tokens""][:, :, 1:]\n # mask = outputs[""mask""][:, :, 1:]\n\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(logits, targets)\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = logits.argmax(-1) == targets\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(logits)\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean() # type: ignore\n ssim = pix.ssim(gt, recon).mean() # type: ignore\n psnr = pix.psnr(gt, recon).mean() # type: ignore\n ssim = pix.ssim(gt, recon).mean() # type: ignore\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_latent_actions, fill_value=0\n )\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=logits.max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\n@jax.jit\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n tokenizer_ffn_dim=args.tokenizer_ffn_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n lam_ffn_dim=args.lam_ffn_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_ffn_dim=args.dyna_ffn_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n use_maskgit=args.use_maskgit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n action=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len), dtype=args.dtype\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n\n param_counts = count_parameters_by_component(init_params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(\n args.lr_schedule,\n args.init_lr,\n args.max_lr,\n args.decay_end,\n args.num_steps,\n args.warmup_steps,\n args.wsd_decay_steps,\n )\n tx = optax.adamw(\n learning_rate=lr_schedule,\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.StandardSave, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.StandardRestore, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointSave, grain.checkpoint.CheckpointHandler) # type: ignore\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler) # type: ignore\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n # Restore full dynamics model\n abstract_train_state = jax.tree_util.tree_map(\n ocp.utils.to_shape_dtype_struct, train_state\n )\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_train_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )\n train_state = restored[""model_state""]\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n train_state = restore_genie_components(\n train_state, replicated_sharding, dummy_inputs, rng, args\n )\n\n # --- TRAIN LOOP ---\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator) # type: ignore\n while step < args.num_steps:\n for videos in dataloader:\n # for i in range(videos.shape[0]):\n # video_i = videos[i:i+1] # shape (1, T, H, W, C)\n # np.save(f""overfit_dir/oai_sample_seed69_{i}.npy"", video_i)\n # jax.debug.breakpoint()\n # videos = np.load(""overfit_dir/oai_sample_seed69_1.npy"") # *255.\n # videos = videos.astype(np.uint8)\n # videos = jax.make_array_from_process_local_data(videos_sharding, videos)\n # while True:\n # --- Train step ---\n rng, _rng, _rng_dropout, _rng_mask = jax.random.split(rng, 4)\n\n inputs = dict(\n videos=videos,\n rng=_rng,\n dropout_rng=_rng_dropout,\n mask_rng=_rng_mask,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) / 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.StandardSave(train_state),\n dataloader_state=grain.checkpoint.CheckpointSave(\n grain_iterator\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
45
+ 45,588014,"train_dynamics.py",2371,0,"",python,selection_mouse
46
+ 46,588162,"train_dynamics.py",2367,5,"20000",python,selection_mouse
47
+ 47,598870,"TERMINAL",0,0,"cd ..",,terminal_command
48
+ 48,599269,"TERMINAL",0,0,"ls",,terminal_command
49
+ 49,600516,"TERMINAL",0,0,"cd ..",,terminal_command
50
+ 50,600835,"TERMINAL",0,0,"ls",,terminal_command
51
+ 51,600876,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:22 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;Cinteractive train_dynamics_maskprob_fix_2_node train_dynamics_maskprob_fix_2_node_80M train_dynamics_maskprob_fix_8_node train_dynamics_maskprob_fix_8_node_80M\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix]633;D;0",,terminal_output
52
+ 52,610052,"TERMINAL",0,0,"cd train_dynamics_maskprob_fix_2_node",,terminal_command
53
+ 53,610076,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:31 cd train_dynamics_maskprob_fix_2_node;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_2_node]633;D;0",,terminal_output
54
+ 54,611337,"TERMINAL",0,0,"ls",,terminal_command
55
+ 55,611384,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:32 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C3371238\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_2_node]633;D;0",,terminal_output
56
+ 56,613099,"TERMINAL",0,0,"cd 3371238/",,terminal_command
57
+ 57,613125,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:34 cd 3371238/;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_2_node/3371238]633;D;0",,terminal_output
58
+ 58,613491,"TERMINAL",0,0,"ls",,terminal_command
59
+ 59,613535,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:34 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C020000 031000 032000 033000\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_2_node/3371238]633;D;0",,terminal_output
60
+ 60,625849,"TERMINAL",0,0,"cd ..",,terminal_command
61
+ 61,625875,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:47 cd ..;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix/train_dynamics_maskprob_fix_2_node]633;D;0",,terminal_output
62
+ 62,626753,"TERMINAL",0,0,"cd ..",,terminal_command
63
+ 63,626781,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:48 cd ..;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/maskgit-maskprob-fix]633;D;0",,terminal_output
64
+ 64,628009,"TERMINAL",0,0,"cd ..",,terminal_command
65
+ 65,628426,"TERMINAL",0,0,"ls",,terminal_command
66
+ 66,628538,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:49 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C0000 3291405 3292335 3296571 3297606 3299069 3301026 3310436 3316022 lam_ckpt_dir train_dyn_causal_500M\r\n3290283 3292213 3292336 3296573 3297671 3299258 3301027 3310437 big-runs lam_main_test train_dyn_new_arch-bugfixed-spatial-shift\r\n3290284 3292221 3292337 3296574 3297693 3299259 3301029 3311671 causal maskgit-maskprob-fix train_dyn_new_arch-bugfixed-temporal-shift\r\n3290295 3292258 3292338 3296575 3297706 3299272 3301030 3311672 checkpoints_alfred tokenizer train_dyn_yolorun_new_arch\r\n3290296 3292328 3292339 3297569 3297727 3299579 3301031 3313562 coinrun tokenizer_ckpt_dir train_lam_minecraft_overfit_sample\r\n3290366 3292329 3294600 3297575 3299016 3300233 3306801 3313563 debug train_dynamics_lr_schedule_const train_tokenizer_batch_size_scaling_16_node\r\n3290367 3292330 3294601 3297576 3299062 3300290 3307618 3313564 dyn train_dynamics_lr_schedule_cos train_tokenizer_minecraft_overfit_sample\r\n3290391 3292331 3294602 3297577 3299063 3300658 3307619 3313565 dynamics_ckpt_dir train_dynamics_lr_schedule_wsd wrap\r\n3290392 3292332 3294603 3297578 3299065 3300663 3309662 3313570 interactive train_dyn_causal_180M\r\n3290439 3292333 3296502 3297582 3299066 3300672 3309663 3313571 lam train_dyn_causal_255M\r\n3290440 3292334 3296540 3297586 3299068 3301025 3309699 3313572 lam-1-action train_dyn_causal_356M\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints]633;D;0",,terminal_output
67
+ 67,631264,"TERMINAL",0,0,"cd causal/l",,terminal_command
68
+ 68,631312,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:52 cd causal/l;adbf53fe-397b-40d3-9339-94ea79afad56]633;Cbash: cd: causal/l: No such file or directory\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints]633;D;1",,terminal_output
69
+ 69,632746,"TERMINAL",0,0,"cd causal/",,terminal_command
70
+ 70,632787,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:53 cd causal/;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal]633;D;0",,terminal_output
71
+ 71,633679,"TERMINAL",0,0,"ls",,terminal_command
72
+ 72,633695,"TERMINAL",0,0,"]633;E;2025-07-25 16:52:54 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;Coverfit overfit-seed69-1 overfit-seed69-1-no-noise train_dynamics_causal_2_node train_dynamics_causal_8_node\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal]633;D;0",,terminal_output
73
+ 73,639358,"TERMINAL",0,0,"cd train_dynamics_causal_8_node/",,terminal_command
74
+ 74,639389,"TERMINAL",0,0,"]633;E;2025-07-25 16:53:00 cd train_dynamics_causal_8_node/;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal/train_dynamics_causal_8_node]633;D;0",,terminal_output
75
+ 75,639775,"TERMINAL",0,0,"ls",,terminal_command
76
+ 76,639812,"TERMINAL",0,0,"]633;E;2025-07-25 16:53:01 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C3373408\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal/train_dynamics_causal_8_node]633;D;0",,terminal_output
77
+ 77,641099,"TERMINAL",0,0,"cd 3373408/",,terminal_command
78
+ 78,641109,"TERMINAL",0,0,"]633;E;2025-07-25 16:53:02 cd 3373408/;adbf53fe-397b-40d3-9339-94ea79afad56]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal/train_dynamics_causal_8_node/3373408]633;D;0",,terminal_output
79
+ 79,641668,"TERMINAL",0,0,"ls",,terminal_command
80
+ 80,641717,"TERMINAL",0,0,"]633;E;2025-07-25 16:53:02 ls;adbf53fe-397b-40d3-9339-94ea79afad56]633;C003000 004000 005000\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal/train_dynamics_causal_8_node/3373408]633;D;0",,terminal_output
81
+ 81,968762,"TERMINAL",0,0,"git branch",,terminal_command
82
+ 82,968798,"TERMINAL",0,0,"]633;E;2025-07-25 16:58:30 git branch;adbf53fe-397b-40d3-9339-94ea79afad56]633;Cfatal: not a git repository (or any parent up to mount point /hkfs)\r\nStopping at filesystem boundary (GIT_DISCOVERY_ACROSS_FILESYSTEM not set).\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/causal/train_dynamics_causal_8_node/3373408]633;D;128",,terminal_output
83
+ 83,971943,"TERMINAL",0,0,"bash",,terminal_focus
84
+ 84,973457,"TERMINAL",0,0,"git branch",,terminal_command
85
+ 85,973508,"TERMINAL",0,0,"]633;E;2025-07-25 16:58:34 git branch;2f980232-d92f-4231-927c-3ee17e3c6d04]633;C[?1h=\r",,terminal_output
86
+ 86,973653,"TERMINAL",0,0," add-wandb-name-and-tags\r\n causal-st-transformer\r\n causal-transformer-dynamics-model\r\n convert-to-jax-array-in-iter\r\n correct-batched-sampling\r\n dev\r\n dont-let-tf-see-gpu\r\n feat/explicit-image-dims\r\n fix-sampling\r\n grad-norm-log-and-clip\r\n grain-dataloader\r\n logging-variants\r\n lr-schedules\r\n main\r\n maskgit-different-maskprob-per-sample\r\n:",,terminal_output
87
+ 87,974834,"TERMINAL",0,0,"\r metrics-logging-for-dynamics-model\r\n:",,terminal_output
88
+ 88,975036,"TERMINAL",0,0,"\r monkey-patch\r\n:",,terminal_output
89
+ 89,975185,"TERMINAL",0,0,"\r* new-arch-sampling\r\n:",,terminal_output
90
+ 90,975295,"TERMINAL",0,0,"\r preprocess_video\r\n:",,terminal_output
91
+ 91,975531,"TERMINAL",0,0,"\r refactor-tmp\r\n:",,terminal_output
92
+ 92,975700,"TERMINAL",0,0,"\r revised-dataloader\r\n:",,terminal_output
93
+ 93,975801,"TERMINAL",0,0,"\r runner\r\n:",,terminal_output
94
+ 94,975984,"TERMINAL",0,0,"\r runner-grain\r\n:",,terminal_output
95
+ 95,976103,"TERMINAL",0,0,"\r sample-from-different-topologies\r\n:",,terminal_output
96
+ 96,976214,"TERMINAL",0,0,"\r speedup-tfrecord-preprocessing\r\n:",,terminal_output
97
+ 97,976418,"TERMINAL",0,0,"\r tmp\r\n:",,terminal_output
98
+ 98,976534,"TERMINAL",0,0,"\r\r(END)",,terminal_output
99
+ 99,976646,"TERMINAL",0,0,"\r\r(END)",,terminal_output
100
+ 100,976827,"TERMINAL",0,0,"[?25l\r\r(END)[?25h",,terminal_output
101
+ 101,976967,"TERMINAL",0,0,"[?25l\r\r(END)[?25h",,terminal_output
102
+ 102,977071,"TERMINAL",0,0,"\r[?1l>]0;tum_cte0515@hkn1990:~/Projects/jafar]633;D;0",,terminal_output
103
+ 103,979880,"TERMINAL",0,0,"bash",,terminal_focus
104
+ 104,1001754,"TERMINAL",0,0,"sacct",,terminal_command
105
+ 105,1001800,"TERMINAL",0,0,"]633;E;2025-07-25 16:59:03 sacct;406cfb31-2341-454a-afa8-cae7781806b2]633;CJobID JobName Partition Account AllocCPUS State ExitCode \r\n------------ ---------- ---------- ---------- ---------- ---------- -------- \r\n3371238 train_dyn+ accelerat+ hk-projec+ 48 RUNNING 0:0 \r\n3371238.bat+ batch hk-projec+ 24 RUNNING 0:0 \r\n3371238.ext+ extern hk-projec+ 48 RUNNING 0:0 \r\n3371238.0 python hk-projec+ 40 RUNNING 0:0 \r\n3372629 train_dyn+ accelerat+ hk-projec+ 192 COMPLETED 0:0 \r\n3372629.bat+ batch hk-projec+ 24 COMPLETED 0:0 \r\n3372629.ext+ extern hk-projec+ 192 COMPLETED 0:0 \r\n3372629.0 python hk-projec+ 160 COMPLETED 0:0 \r\n3372631 train_dyn+ accelerat+ hk-projec+ 48 COMPLETED 0:0 \r\n3372631.bat+ batch hk-projec+ 24 COMPLETED 0:0 \r\n3372631.ext+ extern hk-projec+ 48 COMPLETED 0:0 \r\n3372631.0 python hk-projec+ 40 COMPLETED 0:0 \r\n3373407 train_dyn+ accelerat+ hk-projec+ 48 RUNNING 0:0 \r\n3373407.bat+ batch hk-projec+ 24 RUNNING 0:0 \r\n3373407.ext+ extern hk-projec+ 48 RUNNING 0:0 \r\n3373407.0 python hk-projec+ 40 RUNNING 0:0 \r\n3373408 train_dyn+ accelerat+ hk-projec+ 192 RUNNING 0:0 \r\n3373408.bat+ batch hk-projec+ 24 RUNNING 0:0 \r\n3373408.ext+ extern hk-projec+ 192 RUNNING 0:0 \r\n3373408.0 python hk-projec+ 160 RUNNING 0:0 \r\n3371237 train_dyn+ accelerat+ hk-projec+ 192 RUNNING 0:0 \r\n3371237.bat+ batch hk-projec+ 24 RUNNING 0:0 \r\n3371237.ext+ extern hk-projec+ 192 RUNNING 0:0 \r\n3371237.0 python hk-projec+ 160 RUNNING 0:0 \r\n]0;tum_cte0515@hkn1990:~/Projects/jafar]633;D;0]633;P;Cwd=/home/hk-project-p0023960/tum_cte0515/Projects/jafar",,terminal_output
106
+ 106,1011767,"TERMINAL",0,0,"alias",,terminal_command
107
+ 107,1011813,"TERMINAL",0,0,"]633;E;2025-07-25 16:59:13 alias;406cfb31-2341-454a-afa8-cae7781806b2]633;Calias egrep='egrep --color=auto'\r\nalias fgrep='fgrep --color=auto'\r\nalias fqueue='watch -n 1 ""squeue -o \""%.10i %.16P %.30j %.8u %.8T %.10M %.9l %.6D %R\""""'\r\nalias fsacct_week='sacct --format=""JobID%15,JobName%30,Partition%16,AllocCPUS%3,State%12,Elapsed%10,Timelimit%10"" --starttime $(date -d ""last week"" +%Y-%m-%d) | grep -vE ""*.batch|*.extern|*.inter|bash|python|CANCELLED|echo""'\r\nalias grep='grep --color=auto'\r\nalias idle='sinfo_t_idle'\r\nalias idling='watch -n1 sinfo_t_idle'\r\nalias l.='ls -d .* --color=auto'\r\nalias ll='ls -l --color=auto'\r\nalias ls='ls --color=auto'\r\nalias mc='. /usr/libexec/mc/mc-wrapper.sh'\r\nalias queue='watch -n1 squeue --me'\r\nalias runner='cd /home/hk-project-p0023960/tum_cte0515/Projects/jafar_jobs/'\r\nalias runner-2='cd /home/hk-project-p0023960/tum_cte0515/Projects/jafar_jobs_2/'\r\nalias salloc_cpu='salloc --time=01:00:00 --partition=dev_cpuonly --nodes=1 --cpus-per-task=128'\r\nalias salloc_node='salloc --time=01:00:00 --partition=dev_accelerated --nodes=1 --gres=gpu:1 --cpus-per-task=8'\r\nalias smi='watch -n1 nvidia-smi'\r\nalias sync-runner='sh /home/hk-project-p0023960/tum_cte0515/sync_runner.sh /home/hk-project-p0023960/tum_cte0515/Projects/jafar /home/hk-project-p0023960/tum_cte0515/Projects/jafar_jobs/'\r\nalias sync-runner-2='sh /home/hk-project-p0023960/tum_cte0515/sync_runner.sh /home/hk-project-p0023960/tum_cte0515/Projects/jafar /home/hk-project-p0023960/tum_cte0515/Projects/jafar_jobs_2/'\r\nalias xzegrep='xzegrep --color=auto'\r\nalias xzfgrep='xzfgrep --color=auto'\r\nalias xzgrep='xzgrep --color=auto'\r\nalias zegrep='zegrep --color=auto'\r\nalias zfgrep='zfgrep --color=auto'\r\nalias zgrep='zgrep --color=auto'\r\n]0;tum_cte0515@hkn1990:~/Projects/jafar]633;D;0",,terminal_output
108
+ 108,1037050,"TERMINAL",0,0,"sacct --format=""JobID%15,JobName%30,Partition%16,AllocCPUS%3,State%12,Elapsed%10,Timelimit%10"" --starttime $(date -d ""last week"" +%Y-%m-%d) | grep -vE ""*.batch|*.extern|*.inter"" | grep ""accelerate""",,terminal_command
109
+ 109,1037128,"TERMINAL",0,0,"]633;E;2025-07-25 16:59:38 sacct --format=""JobID%15,JobName%30,Partition%16,AllocCPUS%3,State%12,Elapsed%10,Timelimit%10"" --starttime $(date -d ""last week"" +%Y-%m-%d) | grep -vE ""*.batch|*.extern|*.inter"" | grep ""accelerate"";406cfb31-2341-454a-afa8-cae7781806b2]633;C 3358457 train_dyn_yolorun_new_arch accelerated 48 FAILED 00:00:28 2-00:00:00 \r\n 3359333 wrap accelerated 6 CANCELLED b+ 00:00:18 10:00:00 \r\n 3359334 wrap accelerated 6 TIMEOUT 10:00:29 10:00:00 \r\n 3359338 wrap accelerated 6 TIMEOUT 10:00:16 10:00:00 \r\n 3359343 train_dyn_new_arch-bugfixed-s+ accelerated 48 COMPLETED 23:19:14 2-00:00:00 \r\n 3359349 train_dyn_new_arch-bugfixed-t+ accelerated 48 COMPLETED 1-01:00:55 2-00:00:00 \r\n 3365872 train_dynamics_overfit_sample+ accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3365873 train_dynamics_overfit_sample+ accelerated 6 COMPLETED 01:26:52 2-00:00:00 \r\n 3365876 train_dynamics_overfit_sample+ accelerated 6 COMPLETED 01:40:07 2-00:00:00 \r\n 3366843 train_dynamics_overfit_sample+ accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3366883 train_dynamics_overfit_sample+ accelerated 6 COMPLETED 01:33:31 2-00:00:00 \r\n 3370768 train_dynamics_maskprob_fix_8+ accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3370769 train_dynamics_maskprob_fix_8+ accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3370787 train_dynamics_maskprob_fix_8+ accelerated 0 CANCELLED b+ 00:00:00 00:15:00 \r\n 3370788 train_dynamics_maskprob_fix_8+ dev_accelerated 6 CANCELLED b+ 00:05:54 00:15:00 \r\n 3370822 train_dynamics_maskprob_fix_8+ accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3371238 train_dynamics_maskprob_fix_2+ accelerated 48 RUNNING 1-16:25:23 2-00:00:00 \r\n 3372629 train_dynamics_maskprob_fix_8+ accelerated 192 COMPLETED 1-02:29:22 2-00:00:00 \r\n 3372631 train_dynamics_maskprob_fix_2+ accelerated 48 COMPLETED 1-01:17:59 2-00:00:00 \r\n 3372929 train_dyn_causal dev_accelerated 0 CANCELLED b+ 00:00:00 00:10:00 \r\n 3372931 train_dyn_causal_180M dev_accelerated 6 FAILED 00:00:33 00:10:00 \r\n 3372932 train_dyn_causal_255M dev_accelerated 6 FAILED 00:00:29 00:10:00 \r\n 3372934 train_dyn_causal_356M dev_accelerated 6 FAILED 00:00:29 00:10:00 \r\n 3372936 train_dyn_causal_500M dev_accelerated 6 FAILED 00:00:29 00:10:00 \r\n 3372963 train_dyn_causal_180M dev_accelerated 6 CANCELLED b+ 00:00:29 00:10:00 \r\n 3372964 train_dyn_causal_255M dev_accelerated 0 CANCELLED b+ 00:00:00 00:10:00 \r\n 3372965 train_dyn_causal_356M dev_accelerated 0 CANCELLED b+ 00:00:00 00:10:00 \r\n 3372966 train_dyn_causal_500M dev_accelerated 0 CANCELLED b+ 00:00:00 00:10:00 \r\n 3372969 train_dyn_causal_180M dev_accelerated 6 FAILED 00:02:11 00:10:00 \r\n 3372970 train_dyn_causal_255M dev_accelerated 6 FAILED 00:02:24 00:10:00 \r\n 3372971 train_dyn_causal_356M dev_accelerated 6 FAILED 00:02:08 00:10:00 \r\n 3372972 train_dyn_causal_500M dev_accelerated 6 FAILED 00:02:09 00:10:00 \r\n 3373107 train_dyn_causal_180M dev_accelerated 6 COMPLETED 00:06:15 00:10:00 \r\n 3373108 train_dyn_causal_255M dev_accelerated 6 COMPLETED 00:07:14 00:10:00 \r\n 3373109 train_dyn_causal_356M dev_accelerated 6 FAILED 00:04:17 00:10:00 \r\n 3373110 train_dyn_causal_500M dev_accelerated 6 FAILED 00:04:59 00:10:00 \r\n 3373205 train_dynamics_causal_2_node accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3373207 train_dynamics_causal_8_node accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3373213 train_dynamics_causal_8_node accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3373276 train_dynamics_causal_2_node accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3373277 train_dynamics_causal_8_node accelerated 0 CANCELLED b+ 00:00:00 2-00:00:00 \r\n 3373400 wrap accelerated 6 COMPLETED 00:04:34 02:00:00 \r\n 3373404 wrap accelerated 6 COMPLETED 00:04:38 02:00:00 \r\n 3373407 train_dynamics_causal_2_node accelerated 48 RUNNING 06:15:10 2-00:00:00 \r\n 3373408 train_dynamics_causal_8_node accelerated 192 RUNNING 06:15:10 2-00:00:00 \r\n 3373409 wrap accelerated 6 COMPLETED 00:41:24 02:00:00 \r\n 3373410 wrap accelerated 6 COMPLETED 00:42:56 02:00:00 \r\n 3371237 train_dynamics_maskprob_fix_8+ accelerated 192 RUNNING 01:02:16 2-00:00:00 \r\n]0;tum_cte0515@hkn1990:~/Projects/jafar]633;D;0",,terminal_output
110
+ 110,5563097,"TERMINAL",0,0,"queue",,terminal_command
111
+ 111,5563185,"TERMINAL",0,0,"]633;E;2025-07-25 18:15:03 queue;406cfb31-2341-454a-afa8-cae7781806b2]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1990.localdomain: Fri Jul 25 18:15:03 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3373407 accelerat train_dy tum_cte0 R 7:30:35\t 2 hkn[0501,0506]3373408 accelerat train_dy tum_cte0 R 7:30:35\t 8 hkn[0406,0409,0411,0413,0421,0423-0424,0525]3371237 accelerat train_dy tum_cte0 R 2:17:41\t 8 hkn[0410,0429,0520,0532,0607,0610,0810,0814]3371238 accelerat train_dy tum_cte0 R 1-17:40:48\t 2 hkn[0706,0710]",,terminal_output
112
+ 112,5564311,"TERMINAL",0,0,"46629",,terminal_output
113
+ 113,5565250,"TERMINAL",0,0,"577350",,terminal_output
114
+ 114,5566469,"TERMINAL",0,0,"69952",,terminal_output
115
+ 115,5567659,"TERMINAL",0,0,"8404063",,terminal_output
116
+ 116,5568855,"TERMINAL",0,0,"91174",,terminal_output
117
+ 117,5569632,"TERMINAL",0,0,"102285",,terminal_output
118
+ 118,5570209,"TERMINAL",0,0,"13396",,terminal_output
119
+ 119,5571324,"TERMINAL",0,0,"244507",,terminal_output
120
+ 120,5572586,"TERMINAL",0,0,"35518",,terminal_output
121
+ 121,5573472,"TERMINAL",0,0,"46629",,terminal_output
122
+ 122,5574531,"TERMINAL",0,0,"57731:00",,terminal_output
123
+ 123,5575451,"TERMINAL",0,0,"68841",,terminal_output
124
+ 124,5575776,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1990:~/Projects/jafar]633;D;0",,terminal_output
125
+ 125,5576793,"slurm/jobs/mihir/horeka/mask_prob_fix/train_dynamics_8_nodes.sbatch",0,0,"",shellscript,tab
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-50d32311-0df8-4235-b597-7d69f06b72151752666637262-2025_07_16-13.50.55.636/source.csv ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,209,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"",Log,tab
3
+ 3,327,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"1:50:55 PM [info] Activating crowd-code\n1:50:55 PM [info] Recording started\n1:50:55 PM [info] Initializing git provider using file system watchers...\n1:50:55 PM [info] Git repository found\n1:50:55 PM [info] Git provider initialized successfully\n1:50:55 PM [info] Initial git state: [object Object]\n",Log,content
4
+ 4,3004,"TERMINAL",0,0,"/bin/python3 /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt",,terminal_command
5
+ 5,3050,"TERMINAL",0,0,"]633;E;2025-07-16 13:50:58 /bin/python3 /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt;8d1bd821-a8b0-4413-aad3-038e7b28f0ba]633;C",,terminal_output
6
+ 6,3072,"TERMINAL",0,0,"]0;tum_cte0515@hkn1991:/hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash]633;D;0",,terminal_output
7
+ 7,12393,"TERMINAL",0,0,"bash",,terminal_focus
8
+ 8,14724,"TERMINAL",0,0,"queue",,terminal_command
9
+ 9,14783,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:10 queue;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1991.localdomain: Wed Jul 16 13:51:10 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3348592 accelerat train_dy tum_cte0 R 13:50:48\t 2 hkn[0416,0421]3349982 accelerat interact tum_cte0 R\t9:47\t 2 hkn[0407,0511]3348397 accelerat train_dy tum_cte0 R 19:12:30\t 2 hkn[0810,0815]3348399 accelerat train_dy tum_cte0 R 19:12:30\t 2 hkn[0601,0603]3348400 accelerat train_dy tum_cte0 R 19:12:30\t 2 hkn[0604,0608]3350111 accelerat interact tum_cte0 R\t9:03\t 2 hkn[0415,0422]3345116 accelerat train_dy tum_cte0 R 1-19:56:15\t 2 hkn[0503,0506]",,terminal_output
10
+ 10,15818,"TERMINAL",0,0,"19811146",,terminal_output
11
+ 11,16869,"TERMINAL",0,0,"250922257",,terminal_output
12
+ 12,17926,"TERMINAL",0,0,"315033368",,terminal_output
13
+ 13,18971,"TERMINAL",0,0,"42144479",,terminal_output
14
+ 14,20019,"TERMINAL",0,0,"532555820",,terminal_output
15
+ 15,21074,"TERMINAL",0,0,"64366691",,terminal_output
16
+ 16,22124,"TERMINAL",0,0,"754777102",,terminal_output
17
+ 17,23156,"TERMINAL",0,0,"86588813",,terminal_output
18
+ 18,24214,"TERMINAL",0,0,"97699924",,terminal_output
19
+ 19,25251,"TERMINAL",0,0,"208740404035",,terminal_output
20
+ 20,25893,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
21
+ 21,27896,"TERMINAL",0,0,"idling",,terminal_command
22
+ 22,27951,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:23 idling;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C[?1049h(B[?7hEvery 1.0s: sinfo_t_idlehkn1991.localdomain: Wed Jul 16 13:51:23 2025Partition dev_cpuonly:\t 9 nodes idle\rPartition cpuonly:\t 3 nodes idle\rPartition dev_accelerated:\t 0 nodes idle\rPartition accelerated:\t 9 nodes idle\rPartition dev_accelerated-h100 :\t 0 nodes idle\rPartition accelerated-h100:\t 0 nodes idle\rPartition large:\t 7 nodes idle",,terminal_output
23
+ 23,28992,"TERMINAL",0,0,"4",,terminal_output
24
+ 24,29405,"TERMINAL",0,0,"bash",,terminal_focus
25
+ 25,30037,"TERMINAL",0,0,"5",,terminal_output
26
+ 26,31088,"TERMINAL",0,0,"6",,terminal_output
27
+ 27,32138,"TERMINAL",0,0,"7",,terminal_output
28
+ 28,32742,"TERMINAL",0,0,"salloc --time=10:00:00 --partition=accelerated --nodes=2 --ntasks-per-node=4 --gres=gpu:4 --cpus-per-task=5",,terminal_command
29
+ 29,32797,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:28 salloc --time=10:00:00 --partition=accelerated --nodes=2 --ntasks-per-node=4 --gres=gpu:4 --cpus-per-task=5;dea9d5fc-91fd-447c-886d-4b0240ae057d]633;Csalloc: Granted job allocation 3350245\r\n",,terminal_output
30
+ 30,32908,"TERMINAL",0,0,"salloc: Waiting for resource configuration\r\n",,terminal_output
31
+ 31,33181,"TERMINAL",0,0,"87",,terminal_output
32
+ 32,34023,"TERMINAL",0,0,"watch",,terminal_focus
33
+ 33,34249,"TERMINAL",0,0,"9",,terminal_output
34
+ 34,35275,"TERMINAL",0,0,"30",,terminal_output
35
+ 35,35956,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
36
+ 36,36736,"TERMINAL",0,0,"queue",,terminal_command
37
+ 37,36791,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:32 queue;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1991.localdomain: Wed Jul 16 13:51:32 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3348592 accelerat train_dy tum_cte0 R 13:51:10\t 2 hkn[0416,0421]3349982 accelerat interact tum_cte0 R10:09\t 2 hkn[0407,0511]3348397 accelerat train_dy tum_cte0 R 19:12:52\t 2 hkn[0810,0815]3348399 accelerat train_dy tum_cte0 R 19:12:52\t 2 hkn[0601,0603]3348400 accelerat train_dy tum_cte0 R 19:12:52\t 2 hkn[0604,0608]3350111 accelerat interact tum_cte0 R\t9:25\t 2 hkn[0415,0422]3350245 accelerat interact tum_cte0 R\t0:04\t 2 hkn[0423-0424]3345116 accelerat train_dy tum_cte0 R 1-19:56:37\t 2 hkn[0503,0506]",,terminal_output
38
+ 38,37831,"TERMINAL",0,0,"3110333658",,terminal_output
39
+ 39,39190,"TERMINAL",0,0,"421444769",,terminal_output
40
+ 40,40941,"TERMINAL",0,0,"5436669841",,terminal_output
41
+ 41,41454,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
42
+ 42,48631,"TERMINAL",0,0,"scancel 3350111",,terminal_command
43
+ 43,48681,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:44 scancel 3350111;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C",,terminal_output
44
+ 44,48714,"TERMINAL",0,0,"]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0]633;P;Cwd=/home/hk-project-p0023960/tum_cte0515/Projects/jafar",,terminal_output
45
+ 45,49689,"TERMINAL",0,0,"queue",,terminal_command
46
+ 46,49762,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:45 queue;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1991.localdomain: Wed Jul 16 13:51:45 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3350111 accelerat interact tum_cte0 CG\t9:37\t 2 hkn[0415,0422]3348592 accelerat train_dy tum_cte0 R 13:51:23\t 2 hkn[0416,0421]3349982 accelerat interact tum_cte0 R10:22\t 2 hkn[0407,0511]3348397 accelerat train_dy tum_cte0 R 19:13:05\t 2 hkn[0810,0815]3348399 accelerat train_dy tum_cte0 R 19:13:05\t 2 hkn[0601,0603]3348400 accelerat train_dy tum_cte0 R 19:13:05\t 2 hkn[0604,0608]3350245 accelerat interact tum_cte0 R\t0:17\t 2 hkn[0423-0424]3345116 accelerat train_dy tum_cte0 R 1-19:56:50\t 2 hkn[0503,0506]",,terminal_output
47
+ 47,50848,"TERMINAL",0,0,"64366681",,terminal_output
48
+ 48,51854,"TERMINAL",0,0,"75477792",,terminal_output
49
+ 49,52906,"TERMINAL",0,0,"865888203",,terminal_output
50
+ 50,53965,"TERMINAL",0,0,"97699914",,terminal_output
51
+ 51,55013,"TERMINAL",0,0,"508710101025",,terminal_output
52
+ 52,56066,"TERMINAL",0,0,"19811136",,terminal_output
53
+ 53,57130,"TERMINAL",0,0,"230922247",,terminal_output
54
+ 54,57167,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
55
+ 55,59809,"TERMINAL",0,0,"scancel 3349982",,terminal_command
56
+ 56,59820,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:55 scancel 3349982;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0]633;P;Cwd=/home/hk-project-p0023960/tum_cte0515/Projects/jafar",,terminal_output
57
+ 57,60880,"TERMINAL",0,0,"salloc: Nodes hkn[0423-0424] are ready for job\r\n",,terminal_output
58
+ 58,61361,"TERMINAL",0,0,"queue",,terminal_command
59
+ 59,61421,"TERMINAL",0,0,"]633;E;2025-07-16 13:51:56 queue;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1991.localdomain: Wed Jul 16 13:51:56 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3349982 accelerat interact tum_cte0 CG10:32\t 2 hkn[0407,0511]3350111 accelerat interact tum_cte0 CG\t9:37\t 1 hkn04153348592 accelerat train_dy tum_cte0 R 13:51:34\t 2 hkn[0416,0421]3348397 accelerat train_dy tum_cte0 R 19:13:16\t 2 hkn[0810,0815]3348399 accelerat train_dy tum_cte0 R 19:13:16\t 2 hkn[0601,0603]3348400 accelerat train_dy tum_cte0 R 19:13:16\t 2 hkn[0604,0608]3350245 accelerat interact tum_cte0 R\t0:28\t 2 hkn[0423-0424]3345116 accelerat train_dy tum_cte0 R 1-19:57:01\t 2 hkn[0503,0506]",,terminal_output
60
+ 60,61987,"TERMINAL",0,0,"]0;tum_cte0515@hkn0423:~/Projects/jafar[?2004h[tum_cte0515@hkn0423 jafar]$ ",,terminal_output
61
+ 61,62457,"TERMINAL",0,0,"76888303",,terminal_output
62
+ 62,63517,"TERMINAL",0,0,"9799914",,terminal_output
63
+ 63,64554,"TERMINAL",0,0,"2:00820202025",,terminal_output
64
+ 64,65608,"TERMINAL",0,0,"1911136",,terminal_output
65
+ 65,66695,"TERMINAL",0,0,"24022247",,terminal_output
66
+ 66,67699,"TERMINAL",0,0,"3133358",,terminal_output
67
+ 67,68748,"TERMINAL",0,0,"4244469",,terminal_output
68
+ 68,69815,"TERMINAL",0,0,"53555710",,terminal_output
69
+ 69,70853,"TERMINAL",0,0,"61 hkn0407466681",,terminal_output
70
+ 70,71899,"TERMINAL",0,0,"7577792",,terminal_output
71
+ 71,73029,"TERMINAL",0,0,"86888403",,terminal_output
72
+ 72,74047,"TERMINAL",0,0,"9799914",,terminal_output
73
+ 73,75046,"TERMINAL",0,0,"10830303025",,terminal_output
74
+ 74,76160,"TERMINAL",0,0,"1911136",,terminal_output
75
+ 75,77184,"TERMINAL",0,0,"25022247",,terminal_output
76
+ 76,78194,"TERMINAL",0,0,"3133358",,terminal_output
77
+ 77,79248,"TERMINAL",0,0,"4244469",,terminal_output
78
+ 78,80291,"TERMINAL",0,0,"53555720",,terminal_output
79
+ 79,81385,"TERMINAL",0,0,"6466681",,terminal_output
80
+ 80,82408,"TERMINAL",0,0,"7577792",,terminal_output
81
+ 81,83532,"TERMINAL",0,0,"86888503",,terminal_output
82
+ 82,84556,"TERMINAL",0,0,"9840404025",,terminal_output
83
+ 83,85537,"TERMINAL",0,0,"21911136",,terminal_output
84
+ 84,86581,"TERMINAL",0,0,"22:0022247",,terminal_output
85
+ 85,87738,"TERMINAL",0,0,"3133358",,terminal_output
86
+ 86,88674,"TERMINAL",0,0,"4244469",,terminal_output
87
+ 87,89798,"TERMINAL",0,0,"\r548592train_dy R 13:52:03\t 2 hkn[0416,0421]3979:13:45810,081595601,060340054,060850245interact 0:57423-042445116train_dy1-19:57:30503,0506",,terminal_output
88
+ 88,90806,"TERMINAL",0,0,"6466681",,terminal_output
89
+ 89,91909,"TERMINAL",0,0,"7577792",,terminal_output
90
+ 90,92943,"TERMINAL",0,0,"868881:003",,terminal_output
91
+ 91,93977,"TERMINAL",0,0,"9799914",,terminal_output
92
+ 92,95002,"TERMINAL",0,0,"30850505025",,terminal_output
93
+ 93,96032,"TERMINAL",0,0,"1911136",,terminal_output
94
+ 94,97062,"TERMINAL",0,0,"21022247",,terminal_output
95
+ 95,98121,"TERMINAL",0,0,"3133358",,terminal_output
96
+ 96,99204,"TERMINAL",0,0,"4244469",,terminal_output
97
+ 97,100210,"TERMINAL",0,0,"53555740",,terminal_output
98
+ 98,101290,"TERMINAL",0,0,"\r6859train_dy R 13:52:14\t 2 hkn[0416,0421]3979:13:56810,081596601,060340064,060850245interact 1:08423-042445116train_dy1-19:57:41503,0506",,terminal_output
99
+ 99,102334,"TERMINAL",0,0,"7577792",,terminal_output
100
+ 100,103359,"TERMINAL",0,0,"86888103",,terminal_output
101
+ 101,104412,"TERMINAL",0,0,"9799914",,terminal_output
102
+ 102,105476,"TERMINAL",0,0,"4094:014:014:0136",,terminal_output
103
+ 103,106533,"TERMINAL",0,0,"22022247",,terminal_output
104
+ 104,107610,"TERMINAL",0,0,"3133358",,terminal_output
105
+ 105,108608,"TERMINAL",0,0,"4244469",,terminal_output
106
+ 106,109651,"TERMINAL",0,0,"53555750",,terminal_output
107
+ 107,110697,"TERMINAL",0,0,"6466681",,terminal_output
108
+ 108,111743,"TERMINAL",0,0,"7577792",,terminal_output
109
+ 109,112789,"TERMINAL",0,0,"86888203",,terminal_output
110
+ 110,113948,"TERMINAL",0,0,"9799914",,terminal_output
111
+ 111,114973,"TERMINAL",0,0,"50810101025",,terminal_output
112
+ 112,115997,"TERMINAL",0,0,"1911136",,terminal_output
113
+ 113,117011,"TERMINAL",0,0,"23022247",,terminal_output
114
+ 114,118148,"TERMINAL",0,0,"3133358",,terminal_output
115
+ 115,119171,"TERMINAL",0,0,"4244469",,terminal_output
116
+ 116,119335,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
117
+ 117,120747,"TERMINAL",0,0,"smi",,terminal_command
118
+ 118,120813,"TERMINAL",0,0,"]633;E;2025-07-16 13:52:56 smi;97c203bb-2de3-4bf0-b19e-fa122ab0b933]633;C[?1049h(B[?7hEvery 1.0s: nvidia-smihkn1991.localdomain: Wed Jul 16 13:52:56 2025sh: line 1: nvidia-smi: command not found",,terminal_output
119
+ 119,121696,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
120
+ 120,122902,"TERMINAL",0,0,"srun",,terminal_focus
121
+ 121,124100,"TERMINAL",0,0,"s",,terminal_output
122
+ 122,124160,"TERMINAL",0,0,"m",,terminal_output
123
+ 123,124220,"TERMINAL",0,0,"i",,terminal_output
124
+ 124,124434,"TERMINAL",0,0,"\r\n[?2004l\r",,terminal_output
125
+ 125,126034,"TERMINAL",0,0,"[?1049h(B[?7hEvery 1.0s: nvidia-smihkn0423.localdomain: Wed Jul 16 13:52:59 2025Wed Jul 16 13:53:00 2025\r+-----------------------------------------------------------------------------------------+\r| NVIDIA-SMI 570.133.20Driver Version: 570.133.20 CUDA Version: 12.8 |\r|-----------------------------------------+------------------------+----------------------+\r| GPU NamePersistence-M | Bus-IdDisp.A | Volatile Uncorr. ECC |\r| Fan Temp PerfPwr:Usage/Cap |Memory-Usage | GPU-Util Compute M. |\r|||MIG M. |\r|=========================================+========================+======================|\r| 0 NVIDIA A100-SXM4-40GBOn | 00000000:31:00.0 Off |0 |\r| N/A 44C P051W / 300W |\t 27MiB / 40960MiB |\t 0%\t Default |\r|||Disabled |\r+-----------------------------------------+------------------------+----------------------+\r| 1 NVIDIA A100-SXM4-40GBOn | 00000000:4B:00.0 Off |0 |\r| N/A 44C P054W / 300W |\t 27MiB / 40960MiB |\t 0%\t Default |\r|||Disabled |\r+-----------------------------------------+------------------------+----------------------+\r| 2 NVIDIA A100-SXM4-40GBOn | 00000000:CA:00.0 Off |0 |\r| N/A 44C P052W / 300W |\t 27MiB / 40960MiB |\t 0%\t Default |\r|||Disabled |\r+-----------------------------------------+------------------------+----------------------+\r| 3 NVIDIA A100-SXM4-40GBOn | 00000000:E3:00.0 Off |0 |\r| N/A 44C P053W / 300W |\t 27MiB / 40960MiB |\t 0%\t Default |\r|||Disabled |\r+-----------------------------------------+------------------------+----------------------+\r+-----------------------------------------------------------------------------------------+\r| Processes:|\r| GPU GI CIPID Type Process nameGPU Memory |\r|ID IDUsage\t |\r|=========================================================================================|\r| 0 N/A N/A2966G /usr/libexec/Xorg17MiB |\r| 1 N/A N/A2966G /usr/libexec/Xorg17MiB |\r| 2 N/A N/A2966G /usr/libexec/Xorg17MiB |\r| 3 N/A N/A2966G /usr/libexec/Xorg17MiB |\r+-----------------------------------------------------------------------------------------+",,terminal_output
126
+ 126,126701,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn0423:~/Projects/jafar[?2004h[tum_cte0515@hkn0423 jafar]$ ",,terminal_output
127
+ 127,127637,"TERMINAL",0,0,"s",,terminal_output
128
+ 128,127696,"TERMINAL",0,0,"[?25lo[?25h",,terminal_output
129
+ 129,127836,"TERMINAL",0,0,"[?25lu[?25h",,terminal_output
130
+ 130,127899,"TERMINAL",0,0,"[?25lr[?25h",,terminal_output
131
+ 131,128110,"TERMINAL",0,0,"[?25lc[?25h",,terminal_output
132
+ 132,128230,"TERMINAL",0,0,"[?25le[?25h",,terminal_output
133
+ 133,128289,"TERMINAL",0,0,"[?25l [?25h",,terminal_output
134
+ 134,128466,"TERMINAL",0,0,"[?25lv[?25h",,terminal_output
135
+ 135,128982,"TERMINAL",0,0,"[?25l.[?25h",,terminal_output
136
+ 136,129039,"TERMINAL",0,0,"[?25lv[?25h",,terminal_output
137
+ 137,129181,"TERMINAL",0,0,"env/",,terminal_output
138
+ 138,129467,"TERMINAL",0,0,"[?25lb[?25h",,terminal_output
139
+ 139,129530,"TERMINAL",0,0,"in/",,terminal_output
140
+ 140,130084,"TERMINAL",0,0,"[?25la[?25h",,terminal_output
141
+ 141,130844,"TERMINAL",0,0,"[?25lc[?25h",,terminal_output
142
+ 142,131268,"TERMINAL",0,0,"tivate",,terminal_output
143
+ 143,131542,"TERMINAL",0,0,"[?25l[?2004l\r[?25h]0;tum_cte0515@hkn0423:~/Projects/jafar[?2004h(jafar) [tum_cte0515@hkn0423 jafar]$ ",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-527e6f79-68be-4672-b584-2b15b1cf78281754060417734-2025_08_01-17.00.27.872/source.csv ADDED
@@ -0,0 +1,1141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,142,"tasks",0,0,"",Log,tab
3
+ 3,3516,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"5:00:27 PM [info] Activating crowd-code\n5:00:27 PM [info] Recording started\n5:00:27 PM [info] Initializing git provider using file system watchers...\n5:00:28 PM [info] Git repository found\n5:00:28 PM [info] Git provider initialized successfully\n5:00:28 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 4,5906,"TERMINAL",0,0,"undefined[tum_cte0515@hkn1990 jafar]$ queue",,terminal_command
5
+ 5,5967,"TERMINAL",0,0,"]633;E;2025-08-01 17:00:33 queue;adbf53fe-397b-40d3-9339-94ea79afad56]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1990.localdomain: Fri Aug 1 17:00:33 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3390458 accelerat train_dy tum_cte0 PD\t0:00 12 (Priority)3388151 accelerat train_to tum_cte0 R 5:57:25\t 2 hkn[0604-0605]3388153 accelerat train_to tum_cte0 R 5:57:25\t 2 hkn[0607-0608]3389801 accelerat train_dy tum_cte0 R 4:33:06\t 3 hkn[0405,0415,0417]",,terminal_output
6
+ 6,7009,"TERMINAL",0,0,"4667",,terminal_output
7
+ 7,8074,"TERMINAL",0,0,"5778",,terminal_output
8
+ 8,9126,"TERMINAL",0,0,"6889",,terminal_output
9
+ 9,10156,"TERMINAL",0,0,"79910",,terminal_output
10
+ 10,11214,"TERMINAL",0,0,"830301",,terminal_output
11
+ 11,12231,"TERMINAL",0,0,"9223",,terminal_output
12
+ 12,13305,"TERMINAL",0,0,"41334",,terminal_output
13
+ 13,14310,"TERMINAL",0,0,"2445",,terminal_output
14
+ 14,15392,"TERMINAL",0,0,"3556",,terminal_output
15
+ 15,16410,"TERMINAL",0,0,"4667",,terminal_output
16
+ 16,17465,"TERMINAL",0,0,"5778",,terminal_output
17
+ 17,18491,"TERMINAL",0,0,"6889",,terminal_output
18
+ 18,19534,"TERMINAL",0,0,"79920",,terminal_output
19
+ 19,20586,"TERMINAL",0,0,"840401",,terminal_output
20
+ 20,21648,"TERMINAL",0,0,"9112",,terminal_output
21
+ 21,22695,"TERMINAL",0,0,"50223",,terminal_output
22
+ 22,23716,"TERMINAL",0,0,"1334",,terminal_output
23
+ 23,24795,"TERMINAL",0,0,"2445",,terminal_output
24
+ 24,25808,"TERMINAL",0,0,"3556",,terminal_output
25
+ 25,26867,"TERMINAL",0,0,"4667",,terminal_output
26
+ 26,27941,"TERMINAL",0,0,"5778",,terminal_output
27
+ 27,28977,"TERMINAL",0,0,"6889",,terminal_output
28
+ 28,30015,"TERMINAL",0,0,"79930",,terminal_output
29
+ 29,31063,"TERMINAL",0,0,"850501",,terminal_output
30
+ 30,32184,"TERMINAL",0,0,"9112",,terminal_output
31
+ 31,33175,"TERMINAL",0,0,"1:00223",,terminal_output
32
+ 32,34221,"TERMINAL",0,0,"1334",,terminal_output
33
+ 33,35266,"TERMINAL",0,0,"2556",,terminal_output
34
+ 34,36298,"TERMINAL",0,0,"4667",,terminal_output
35
+ 35,37331,"TERMINAL",0,0,"5778",,terminal_output
36
+ 36,38399,"TERMINAL",0,0,"6889",,terminal_output
37
+ 37,39433,"TERMINAL",0,0,"79940",,terminal_output
38
+ 38,40497,"TERMINAL",0,0,"88:008:001",,terminal_output
39
+ 39,41540,"TERMINAL",0,0,"9112",,terminal_output
40
+ 40,42592,"TERMINAL",0,0,"10223",,terminal_output
41
+ 41,43615,"TERMINAL",0,0,"1334",,terminal_output
42
+ 42,44676,"TERMINAL",0,0,"2445",,terminal_output
43
+ 43,45741,"TERMINAL",0,0,"3556",,terminal_output
44
+ 44,46761,"TERMINAL",0,0,"4667",,terminal_output
45
+ 45,47822,"TERMINAL",0,0,"5778",,terminal_output
46
+ 46,48854,"TERMINAL",0,0,"6889",,terminal_output
47
+ 47,49895,"TERMINAL",0,0,"79950",,terminal_output
48
+ 48,50968,"TERMINAL",0,0,"810101",,terminal_output
49
+ 49,51989,"TERMINAL",0,0,"9112",,terminal_output
50
+ 50,53040,"TERMINAL",0,0,"20223",,terminal_output
51
+ 51,54111,"TERMINAL",0,0,"1334",,terminal_output
52
+ 52,55180,"TERMINAL",0,0,"2445",,terminal_output
53
+ 53,56226,"TERMINAL",0,0,"3556",,terminal_output
54
+ 54,57223,"TERMINAL",0,0,"4778",,terminal_output
55
+ 55,58282,"TERMINAL",0,0,"6889",,terminal_output
56
+ 56,59321,"TERMINAL",0,0,"7994:00",,terminal_output
57
+ 57,60374,"TERMINAL",0,0,"820201",,terminal_output
58
+ 58,61416,"TERMINAL",0,0,"9112",,terminal_output
59
+ 59,62476,"TERMINAL",0,0,"30223",,terminal_output
60
+ 60,63513,"TERMINAL",0,0,"1334",,terminal_output
61
+ 61,64582,"TERMINAL",0,0,"2445",,terminal_output
62
+ 62,65615,"TERMINAL",0,0,"3556",,terminal_output
63
+ 63,66708,"TERMINAL",0,0,"4667",,terminal_output
64
+ 64,67742,"TERMINAL",0,0,"5778",,terminal_output
65
+ 65,68754,"TERMINAL",0,0,"6889",,terminal_output
66
+ 66,69826,"TERMINAL",0,0,"79910",,terminal_output
67
+ 67,70906,"TERMINAL",0,0,"830301",,terminal_output
68
+ 68,71912,"TERMINAL",0,0,"9112",,terminal_output
69
+ 69,72979,"TERMINAL",0,0,"40223",,terminal_output
70
+ 70,74002,"TERMINAL",0,0,"1334",,terminal_output
71
+ 71,75076,"TERMINAL",0,0,"2445",,terminal_output
72
+ 72,76163,"TERMINAL",0,0,"3556",,terminal_output
73
+ 73,77175,"TERMINAL",0,0,"4667",,terminal_output
74
+ 74,78180,"TERMINAL",0,0,"5778",,terminal_output
75
+ 75,79233,"TERMINAL",0,0,"69920",,terminal_output
76
+ 76,80281,"TERMINAL",0,0,"840401",,terminal_output
77
+ 77,81337,"TERMINAL",0,0,"9112",,terminal_output
78
+ 78,82382,"TERMINAL",0,0,"50223",,terminal_output
79
+ 79,83467,"TERMINAL",0,0,"1334",,terminal_output
80
+ 80,84468,"TERMINAL",0,0,"2445",,terminal_output
81
+ 81,85520,"TERMINAL",0,0,"3556",,terminal_output
82
+ 82,86609,"TERMINAL",0,0,"4667",,terminal_output
83
+ 83,87650,"TERMINAL",0,0,"5778",,terminal_output
84
+ 84,88666,"TERMINAL",0,0,"6889",,terminal_output
85
+ 85,89710,"TERMINAL",0,0,"79930",,terminal_output
86
+ 86,90756,"TERMINAL",0,0,"850501",,terminal_output
87
+ 87,91804,"TERMINAL",0,0,"9112",,terminal_output
88
+ 88,92956,"TERMINAL",0,0,"2:00223",,terminal_output
89
+ 89,93978,"TERMINAL",0,0,"1334",,terminal_output
90
+ 90,95007,"TERMINAL",0,0,"2445",,terminal_output
91
+ 91,96005,"TERMINAL",0,0,"3556",,terminal_output
92
+ 92,97028,"TERMINAL",0,0,"4667",,terminal_output
93
+ 93,98080,"TERMINAL",0,0,"5778",,terminal_output
94
+ 94,99133,"TERMINAL",0,0,"6889",,terminal_output
95
+ 95,100183,"TERMINAL",0,0,"79940",,terminal_output
96
+ 96,101264,"TERMINAL",0,0,"89:009:001",,terminal_output
97
+ 97,102304,"TERMINAL",0,0,"10223",,terminal_output
98
+ 98,103325,"TERMINAL",0,0,"1334",,terminal_output
99
+ 99,104426,"TERMINAL",0,0,"2445",,terminal_output
100
+ 100,105450,"TERMINAL",0,0,"3556",,terminal_output
101
+ 101,106459,"TERMINAL",0,0,"4667",,terminal_output
102
+ 102,107496,"TERMINAL",0,0,"5778",,terminal_output
103
+ 103,108624,"TERMINAL",0,0,"6889",,terminal_output
104
+ 104,109647,"TERMINAL",0,0,"79950",,terminal_output
105
+ 105,110641,"TERMINAL",0,0,"810101",,terminal_output
106
+ 106,111721,"TERMINAL",0,0,"9112",,terminal_output
107
+ 107,112734,"TERMINAL",0,0,"20223",,terminal_output
108
+ 108,113785,"TERMINAL",0,0,"1334",,terminal_output
109
+ 109,114837,"TERMINAL",0,0,"2445",,terminal_output
110
+ 110,115938,"TERMINAL",0,0,"3556",,terminal_output
111
+ 111,116971,"TERMINAL",0,0,"4667",,terminal_output
112
+ 112,117974,"TERMINAL",0,0,"5778",,terminal_output
113
+ 113,119127,"TERMINAL",0,0,"6889",,terminal_output
114
+ 114,120065,"TERMINAL",0,0,"7995:00",,terminal_output
115
+ 115,121147,"TERMINAL",0,0,"820201",,terminal_output
116
+ 116,122171,"TERMINAL",0,0,"9112",,terminal_output
117
+ 117,123212,"TERMINAL",0,0,"30223",,terminal_output
118
+ 118,124287,"TERMINAL",0,0,"1445",,terminal_output
119
+ 119,125304,"TERMINAL",0,0,"3556",,terminal_output
120
+ 120,126346,"TERMINAL",0,0,"4667",,terminal_output
121
+ 121,127464,"TERMINAL",0,0,"5778",,terminal_output
122
+ 122,128489,"TERMINAL",0,0,"6889",,terminal_output
123
+ 123,129512,"TERMINAL",0,0,"79910",,terminal_output
124
+ 124,130641,"TERMINAL",0,0,"830301",,terminal_output
125
+ 125,131636,"TERMINAL",0,0,"9112",,terminal_output
126
+ 126,132688,"TERMINAL",0,0,"40223",,terminal_output
127
+ 127,133820,"TERMINAL",0,0,"1334",,terminal_output
128
+ 128,134837,"TERMINAL",0,0,"2445",,terminal_output
129
+ 129,135828,"TERMINAL",0,0,"3556",,terminal_output
130
+ 130,136878,"TERMINAL",0,0,"4667",,terminal_output
131
+ 131,137926,"TERMINAL",0,0,"5778",,terminal_output
132
+ 132,138975,"TERMINAL",0,0,"6889",,terminal_output
133
+ 133,140024,"TERMINAL",0,0,"79920",,terminal_output
134
+ 134,141074,"TERMINAL",0,0,"840401",,terminal_output
135
+ 135,142194,"TERMINAL",0,0,"9112",,terminal_output
136
+ 136,143544,"TERMINAL",0,0,"50334",,terminal_output
137
+ 137,144670,"TERMINAL",0,0,"2445",,terminal_output
138
+ 138,145628,"TERMINAL",0,0,"3556",,terminal_output
139
+ 139,146714,"TERMINAL",0,0,"4667",,terminal_output
140
+ 140,147731,"TERMINAL",0,0,"5778",,terminal_output
141
+ 141,148778,"TERMINAL",0,0,"6889",,terminal_output
142
+ 142,149888,"TERMINAL",0,0,"79930",,terminal_output
143
+ 143,151034,"TERMINAL",0,0,"850501",,terminal_output
144
+ 144,152019,"TERMINAL",0,0,"9112",,terminal_output
145
+ 145,152970,"TERMINAL",0,0,"3:00223",,terminal_output
146
+ 146,154090,"TERMINAL",0,0,"1334",,terminal_output
147
+ 147,155069,"TERMINAL",0,0,"2445",,terminal_output
148
+ 148,156144,"TERMINAL",0,0,"3556",,terminal_output
149
+ 149,157199,"TERMINAL",0,0,"4667",,terminal_output
150
+ 150,158228,"TERMINAL",0,0,"5778",,terminal_output
151
+ 151,159306,"TERMINAL",0,0,"69940",,terminal_output
152
+ 152,160306,"TERMINAL",0,0,"86:00:006:00:001",,terminal_output
153
+ 153,161365,"TERMINAL",0,0,"9112",,terminal_output
154
+ 154,162417,"TERMINAL",0,0,"10223",,terminal_output
155
+ 155,163510,"TERMINAL",0,0,"1334",,terminal_output
156
+ 156,164505,"TERMINAL",0,0,"2445",,terminal_output
157
+ 157,165559,"TERMINAL",0,0,"3556",,terminal_output
158
+ 158,166713,"TERMINAL",0,0,"4667",,terminal_output
159
+ 159,167661,"TERMINAL",0,0,"5778",,terminal_output
160
+ 160,168738,"TERMINAL",0,0,"6889",,terminal_output
161
+ 161,169755,"TERMINAL",0,0,"79950",,terminal_output
162
+ 162,170797,"TERMINAL",0,0,"810101",,terminal_output
163
+ 163,171847,"TERMINAL",0,0,"9112",,terminal_output
164
+ 164,172898,"TERMINAL",0,0,"20223",,terminal_output
165
+ 165,173942,"TERMINAL",0,0,"1334",,terminal_output
166
+ 166,175010,"TERMINAL",0,0,"2445",,terminal_output
167
+ 167,176086,"TERMINAL",0,0,"3556",,terminal_output
168
+ 168,177149,"TERMINAL",0,0,"4667",,terminal_output
169
+ 169,178154,"TERMINAL",0,0,"5778",,terminal_output
170
+ 170,179181,"TERMINAL",0,0,"6889",,terminal_output
171
+ 171,180306,"TERMINAL",0,0,"7996:00",,terminal_output
172
+ 172,181270,"TERMINAL",0,0,"921212",,terminal_output
173
+ 173,182359,"TERMINAL",0,0,"30223",,terminal_output
174
+ 174,183376,"TERMINAL",0,0,"1334",,terminal_output
175
+ 175,184423,"TERMINAL",0,0,"2445",,terminal_output
176
+ 176,185476,"TERMINAL",0,0,"3556",,terminal_output
177
+ 177,186521,"TERMINAL",0,0,"4667",,terminal_output
178
+ 178,187571,"TERMINAL",0,0,"5778",,terminal_output
179
+ 179,188626,"TERMINAL",0,0,"6889",,terminal_output
180
+ 180,189700,"TERMINAL",0,0,"79910",,terminal_output
181
+ 181,190719,"TERMINAL",0,0,"830301",,terminal_output
182
+ 182,191765,"TERMINAL",0,0,"9112",,terminal_output
183
+ 183,192865,"TERMINAL",0,0,"40223",,terminal_output
184
+ 184,193952,"TERMINAL",0,0,"1334",,terminal_output
185
+ 185,194949,"TERMINAL",0,0,"2445",,terminal_output
186
+ 186,195972,"TERMINAL",0,0,"3556",,terminal_output
187
+ 187,197096,"TERMINAL",0,0,"4667",,terminal_output
188
+ 188,198174,"TERMINAL",0,0,"5778",,terminal_output
189
+ 189,199145,"TERMINAL",0,0,"6889",,terminal_output
190
+ 190,200184,"TERMINAL",0,0,"79920",,terminal_output
191
+ 191,201218,"TERMINAL",0,0,"840401",,terminal_output
192
+ 192,202280,"TERMINAL",0,0,"9223",,terminal_output
193
+ 193,203325,"TERMINAL",0,0,"51334",,terminal_output
194
+ 194,204369,"TERMINAL",0,0,"2445",,terminal_output
195
+ 195,205412,"TERMINAL",0,0,"3556",,terminal_output
196
+ 196,206475,"TERMINAL",0,0,"4667",,terminal_output
197
+ 197,207510,"TERMINAL",0,0,"5778",,terminal_output
198
+ 198,208563,"TERMINAL",0,0,"6889",,terminal_output
199
+ 199,209651,"TERMINAL",0,0,"79930",,terminal_output
200
+ 200,210718,"TERMINAL",0,0,"850501",,terminal_output
201
+ 201,211712,"TERMINAL",0,0,"9112",,terminal_output
202
+ 202,212762,"TERMINAL",0,0,"4:00223",,terminal_output
203
+ 203,213890,"TERMINAL",0,0,"1334",,terminal_output
204
+ 204,214852,"TERMINAL",0,0,"2445",,terminal_output
205
+ 205,216042,"TERMINAL",0,0,"3556",,terminal_output
206
+ 206,216964,"TERMINAL",0,0,"4667",,terminal_output
207
+ 207,217997,"TERMINAL",0,0,"5778",,terminal_output
208
+ 208,219044,"TERMINAL",0,0,"6889",,terminal_output
209
+ 209,220184,"TERMINAL",0,0,"79940",,terminal_output
210
+ 210,221159,"TERMINAL",0,0,"81:001:001",,terminal_output
211
+ 211,222195,"TERMINAL",0,0,"9112",,terminal_output
212
+ 212,223266,"TERMINAL",0,0,"10334",,terminal_output
213
+ 213,224297,"TERMINAL",0,0,"2445",,terminal_output
214
+ 214,225345,"TERMINAL",0,0,"3556",,terminal_output
215
+ 215,226445,"TERMINAL",0,0,"4667",,terminal_output
216
+ 216,227514,"TERMINAL",0,0,"5778",,terminal_output
217
+ 217,228536,"TERMINAL",0,0,"6889",,terminal_output
218
+ 218,229538,"TERMINAL",0,0,"79950",,terminal_output
219
+ 219,230585,"TERMINAL",0,0,"810101",,terminal_output
220
+ 220,231634,"TERMINAL",0,0,"9112",,terminal_output
221
+ 221,232733,"TERMINAL",0,0,"20223",,terminal_output
222
+ 222,233761,"TERMINAL",0,0,"1334",,terminal_output
223
+ 223,234777,"TERMINAL",0,0,"2445",,terminal_output
224
+ 224,235829,"TERMINAL",0,0,"3556",,terminal_output
225
+ 225,236868,"TERMINAL",0,0,"4667",,terminal_output
226
+ 226,237919,"TERMINAL",0,0,"5778",,terminal_output
227
+ 227,238981,"TERMINAL",0,0,"6889",,terminal_output
228
+ 228,240008,"TERMINAL",0,0,"7997:00",,terminal_output
229
+ 229,241098,"TERMINAL",0,0,"820201",,terminal_output
230
+ 230,242173,"TERMINAL",0,0,"9112",,terminal_output
231
+ 231,243275,"TERMINAL",0,0,"30223",,terminal_output
232
+ 232,244209,"TERMINAL",0,0,"1334",,terminal_output
233
+ 233,245258,"TERMINAL",0,0,"2556",,terminal_output
234
+ 234,246304,"TERMINAL",0,0,"4667",,terminal_output
235
+ 235,247356,"TERMINAL",0,0,"5778",,terminal_output
236
+ 236,248507,"TERMINAL",0,0,"6889",,terminal_output
237
+ 237,249526,"TERMINAL",0,0,"79910",,terminal_output
238
+ 238,250553,"TERMINAL",0,0,"830301",,terminal_output
239
+ 239,251539,"TERMINAL",0,0,"9112",,terminal_output
240
+ 240,252580,"TERMINAL",0,0,"40223",,terminal_output
241
+ 241,253631,"TERMINAL",0,0,"1334",,terminal_output
242
+ 242,254710,"TERMINAL",0,0,"2445",,terminal_output
243
+ 243,255726,"TERMINAL",0,0,"3556",,terminal_output
244
+ 244,256772,"TERMINAL",0,0,"4667",,terminal_output
245
+ 245,257817,"TERMINAL",0,0,"5778",,terminal_output
246
+ 246,258874,"TERMINAL",0,0,"6889",,terminal_output
247
+ 247,259972,"TERMINAL",0,0,"79920",,terminal_output
248
+ 248,260963,"TERMINAL",0,0,"840401",,terminal_output
249
+ 249,262018,"TERMINAL",0,0,"9112",,terminal_output
250
+ 250,263188,"TERMINAL",0,0,"50223",,terminal_output
251
+ 251,264172,"TERMINAL",0,0,"1334",,terminal_output
252
+ 252,265201,"TERMINAL",0,0,"2445",,terminal_output
253
+ 253,266212,"TERMINAL",0,0,"3556",,terminal_output
254
+ 254,267256,"TERMINAL",0,0,"4778",,terminal_output
255
+ 255,268308,"TERMINAL",0,0,"6889",,terminal_output
256
+ 256,269362,"TERMINAL",0,0,"79930",,terminal_output
257
+ 257,270397,"TERMINAL",0,0,"850501",,terminal_output
258
+ 258,271443,"TERMINAL",0,0,"9112",,terminal_output
259
+ 259,272520,"TERMINAL",0,0,"5:00223",,terminal_output
260
+ 260,273600,"TERMINAL",0,0,"1334",,terminal_output
261
+ 261,274616,"TERMINAL",0,0,"2445",,terminal_output
262
+ 262,275615,"TERMINAL",0,0,"3556",,terminal_output
263
+ 263,276680,"TERMINAL",0,0,"4667",,terminal_output
264
+ 264,277710,"TERMINAL",0,0,"5778",,terminal_output
265
+ 265,278814,"TERMINAL",0,0,"6889",,terminal_output
266
+ 266,279815,"TERMINAL",0,0,"79940",,terminal_output
267
+ 267,280964,"TERMINAL",0,0,"82:002:001",,terminal_output
268
+ 268,281899,"TERMINAL",0,0,"9112",,terminal_output
269
+ 269,282951,"TERMINAL",0,0,"10223",,terminal_output
270
+ 270,283999,"TERMINAL",0,0,"1334",,terminal_output
271
+ 271,285042,"TERMINAL",0,0,"2445",,terminal_output
272
+ 272,286098,"TERMINAL",0,0,"3556",,terminal_output
273
+ 273,287199,"TERMINAL",0,0,"4667",,terminal_output
274
+ 274,288263,"TERMINAL",0,0,"5778",,terminal_output
275
+ 275,289346,"TERMINAL",0,0,"6889",,terminal_output
276
+ 276,290277,"TERMINAL",0,0,"7101051",,terminal_output
277
+ 277,291331,"TERMINAL",0,0,"9112",,terminal_output
278
+ 278,292378,"TERMINAL",0,0,"20223",,terminal_output
279
+ 279,293429,"TERMINAL",0,0,"1334",,terminal_output
280
+ 280,294479,"TERMINAL",0,0,"2445",,terminal_output
281
+ 281,295604,"TERMINAL",0,0,"3556",,terminal_output
282
+ 282,296572,"TERMINAL",0,0,"4667",,terminal_output
283
+ 283,297654,"TERMINAL",0,0,"5778",,terminal_output
284
+ 284,298657,"TERMINAL",0,0,"6889",,terminal_output
285
+ 285,299705,"TERMINAL",0,0,"7998:00",,terminal_output
286
+ 286,300806,"TERMINAL",0,0,"820201",,terminal_output
287
+ 287,302674,"TERMINAL",0,0,"9223",,terminal_output
288
+ 288,303720,"TERMINAL",0,0,"31334",,terminal_output
289
+ 289,304674,"TERMINAL",0,0,"2445",,terminal_output
290
+ 290,305722,"TERMINAL",0,0,"3556",,terminal_output
291
+ 291,306770,"TERMINAL",0,0,"4667",,terminal_output
292
+ 292,307812,"TERMINAL",0,0,"5778",,terminal_output
293
+ 293,308907,"TERMINAL",0,0,"6889",,terminal_output
294
+ 294,309930,"TERMINAL",0,0,"79910",,terminal_output
295
+ 295,311005,"TERMINAL",0,0,"830301",,terminal_output
296
+ 296,312106,"TERMINAL",0,0,"9112",,terminal_output
297
+ 297,313121,"TERMINAL",0,0,"40223",,terminal_output
298
+ 298,314146,"TERMINAL",0,0,"1334",,terminal_output
299
+ 299,315167,"TERMINAL",0,0,"2445",,terminal_output
300
+ 300,316314,"TERMINAL",0,0,"3556",,terminal_output
301
+ 301,317243,"TERMINAL",0,0,"4778",,terminal_output
302
+ 302,318302,"TERMINAL",0,0,"6889",,terminal_output
303
+ 303,319349,"TERMINAL",0,0,"79920",,terminal_output
304
+ 304,320396,"TERMINAL",0,0,"840401",,terminal_output
305
+ 305,321456,"TERMINAL",0,0,"9112",,terminal_output
306
+ 306,322521,"TERMINAL",0,0,"50223",,terminal_output
307
+ 307,323554,"TERMINAL",0,0,"1334",,terminal_output
308
+ 308,324604,"TERMINAL",0,0,"2445",,terminal_output
309
+ 309,325699,"TERMINAL",0,0,"3556",,terminal_output
310
+ 310,326720,"TERMINAL",0,0,"4667",,terminal_output
311
+ 311,327768,"TERMINAL",0,0,"5778",,terminal_output
312
+ 312,328889,"TERMINAL",0,0,"6889",,terminal_output
313
+ 313,329915,"TERMINAL",0,0,"79930",,terminal_output
314
+ 314,330940,"TERMINAL",0,0,"850501",,terminal_output
315
+ 315,332064,"TERMINAL",0,0,"9112",,terminal_output
316
+ 316,333093,"TERMINAL",0,0,"6:00223",,terminal_output
317
+ 317,334216,"TERMINAL",0,0,"1334",,terminal_output
318
+ 318,335134,"TERMINAL",0,0,"2445",,terminal_output
319
+ 319,336191,"TERMINAL",0,0,"3556",,terminal_output
320
+ 320,337224,"TERMINAL",0,0,"4667",,terminal_output
321
+ 321,338270,"TERMINAL",0,0,"6889",,terminal_output
322
+ 322,339326,"TERMINAL",0,0,"79940",,terminal_output
323
+ 323,340372,"TERMINAL",0,0,"83:003:001",,terminal_output
324
+ 324,341425,"TERMINAL",0,0,"9112",,terminal_output
325
+ 325,342508,"TERMINAL",0,0,"10223",,terminal_output
326
+ 326,343532,"TERMINAL",0,0,"1334",,terminal_output
327
+ 327,344658,"TERMINAL",0,0,"2445",,terminal_output
328
+ 328,345786,"TERMINAL",0,0,"3556",,terminal_output
329
+ 329,346679,"TERMINAL",0,0,"4667",,terminal_output
330
+ 330,347713,"TERMINAL",0,0,"5778",,terminal_output
331
+ 331,348857,"TERMINAL",0,0,"6889",,terminal_output
332
+ 332,349814,"TERMINAL",0,0,"79950",,terminal_output
333
+ 333,350865,"TERMINAL",0,0,"810101",,terminal_output
334
+ 334,351918,"TERMINAL",0,0,"9112",,terminal_output
335
+ 335,352968,"TERMINAL",0,0,"20223",,terminal_output
336
+ 336,354021,"TERMINAL",0,0,"1334",,terminal_output
337
+ 337,355076,"TERMINAL",0,0,"2445",,terminal_output
338
+ 338,356128,"TERMINAL",0,0,"3556",,terminal_output
339
+ 339,357212,"TERMINAL",0,0,"4667",,terminal_output
340
+ 340,358224,"TERMINAL",0,0,"5778",,terminal_output
341
+ 341,359302,"TERMINAL",0,0,"7999:00",,terminal_output
342
+ 342,360318,"TERMINAL",0,0,"820201",,terminal_output
343
+ 343,361357,"TERMINAL",0,0,"9112",,terminal_output
344
+ 344,362582,"TERMINAL",0,0,"30223",,terminal_output
345
+ 345,363606,"TERMINAL",0,0,"1334",,terminal_output
346
+ 346,364515,"TERMINAL",0,0,"2445",,terminal_output
347
+ 347,365562,"TERMINAL",0,0,"3556",,terminal_output
348
+ 348,366612,"TERMINAL",0,0,"4667",,terminal_output
349
+ 349,367681,"TERMINAL",0,0,"5778",,terminal_output
350
+ 350,368710,"TERMINAL",0,0,"6889",,terminal_output
351
+ 351,369777,"TERMINAL",0,0,"79910",,terminal_output
352
+ 352,370862,"TERMINAL",0,0,"830301",,terminal_output
353
+ 353,371896,"TERMINAL",0,0,"9112",,terminal_output
354
+ 354,372907,"TERMINAL",0,0,"40223",,terminal_output
355
+ 355,374099,"TERMINAL",0,0,"1334",,terminal_output
356
+ 356,375072,"TERMINAL",0,0,"2445",,terminal_output
357
+ 357,376096,"TERMINAL",0,0,"3556",,terminal_output
358
+ 358,377124,"TERMINAL",0,0,"4667",,terminal_output
359
+ 359,378166,"TERMINAL",0,0,"5778",,terminal_output
360
+ 360,379269,"TERMINAL",0,0,"6889",,terminal_output
361
+ 361,380295,"TERMINAL",0,0,"79920",,terminal_output
362
+ 362,381273,"TERMINAL",0,0,"841412",,terminal_output
363
+ 363,382315,"TERMINAL",0,0,"50223",,terminal_output
364
+ 364,383394,"TERMINAL",0,0,"1334",,terminal_output
365
+ 365,384516,"TERMINAL",0,0,"2445",,terminal_output
366
+ 366,385565,"TERMINAL",0,0,"3556",,terminal_output
367
+ 367,386644,"TERMINAL",0,0,"4667",,terminal_output
368
+ 368,387656,"TERMINAL",0,0,"5778",,terminal_output
369
+ 369,388757,"TERMINAL",0,0,"6889",,terminal_output
370
+ 370,389816,"TERMINAL",0,0,"79930",,terminal_output
371
+ 371,390843,"TERMINAL",0,0,"850501",,terminal_output
372
+ 372,391888,"TERMINAL",0,0,"9112",,terminal_output
373
+ 373,392993,"TERMINAL",0,0,"7:00223",,terminal_output
374
+ 374,394146,"TERMINAL",0,0,"1334",,terminal_output
375
+ 375,395039,"TERMINAL",0,0,"2445",,terminal_output
376
+ 376,396170,"TERMINAL",0,0,"3556",,terminal_output
377
+ 377,397116,"TERMINAL",0,0,"4667",,terminal_output
378
+ 378,398156,"TERMINAL",0,0,"5778",,terminal_output
379
+ 379,399207,"TERMINAL",0,0,"6889",,terminal_output
380
+ 380,400278,"TERMINAL",0,0,"74:004:0041",,terminal_output
381
+ 381,401302,"TERMINAL",0,0,"9112",,terminal_output
382
+ 382,402337,"TERMINAL",0,0,"10223",,terminal_output
383
+ 383,403378,"TERMINAL",0,0,"1334",,terminal_output
384
+ 384,404428,"TERMINAL",0,0,"2445",,terminal_output
385
+ 385,405485,"TERMINAL",0,0,"3556",,terminal_output
386
+ 386,406611,"TERMINAL",0,0,"4667",,terminal_output
387
+ 387,407637,"TERMINAL",0,0,"5778",,terminal_output
388
+ 388,408659,"TERMINAL",0,0,"6889",,terminal_output
389
+ 389,409683,"TERMINAL",0,0,"79950",,terminal_output
390
+ 390,410713,"TERMINAL",0,0,"810101",,terminal_output
391
+ 391,411759,"TERMINAL",0,0,"9112",,terminal_output
392
+ 392,412806,"TERMINAL",0,0,"20223",,terminal_output
393
+ 393,413872,"TERMINAL",0,0,"1334",,terminal_output
394
+ 394,414935,"TERMINAL",0,0,"2445",,terminal_output
395
+ 395,416055,"TERMINAL",0,0,"3556",,terminal_output
396
+ 396,417057,"TERMINAL",0,0,"4667",,terminal_output
397
+ 397,418042,"TERMINAL",0,0,"5778",,terminal_output
398
+ 398,419085,"TERMINAL",0,0,"6889",,terminal_output
399
+ 399,420429,"TERMINAL",0,0,"79940:00",,terminal_output
400
+ 400,421257,"TERMINAL",0,0,"820201",,terminal_output
401
+ 401,422278,"TERMINAL",0,0,"9223",,terminal_output
402
+ 402,423303,"TERMINAL",0,0,"31334",,terminal_output
403
+ 403,424326,"TERMINAL",0,0,"2445",,terminal_output
404
+ 404,425375,"TERMINAL",0,0,"3556",,terminal_output
405
+ 405,426419,"TERMINAL",0,0,"4667",,terminal_output
406
+ 406,427474,"TERMINAL",0,0,"5778",,terminal_output
407
+ 407,428519,"TERMINAL",0,0,"6889",,terminal_output
408
+ 408,429595,"TERMINAL",0,0,"79910",,terminal_output
409
+ 409,430607,"TERMINAL",0,0,"830301",,terminal_output
410
+ 410,431656,"TERMINAL",0,0,"9112",,terminal_output
411
+ 411,432765,"TERMINAL",0,0,"40223",,terminal_output
412
+ 412,433890,"TERMINAL",0,0,"1334",,terminal_output
413
+ 413,434874,"TERMINAL",0,0,"2445",,terminal_output
414
+ 414,435851,"TERMINAL",0,0,"3556",,terminal_output
415
+ 415,437167,"TERMINAL",0,0,"4667",,terminal_output
416
+ 416,438053,"TERMINAL",0,0,"5778",,terminal_output
417
+ 417,438995,"TERMINAL",0,0,"6889",,terminal_output
418
+ 418,440051,"TERMINAL",0,0,"79920",,terminal_output
419
+ 419,441090,"TERMINAL",0,0,"840401",,terminal_output
420
+ 420,442147,"TERMINAL",0,0,"9112",,terminal_output
421
+ 421,443182,"TERMINAL",0,0,"50223",,terminal_output
422
+ 422,444278,"TERMINAL",0,0,"1445",,terminal_output
423
+ 423,445358,"TERMINAL",0,0,"3556",,terminal_output
424
+ 424,446323,"TERMINAL",0,0,"4667",,terminal_output
425
+ 425,447366,"TERMINAL",0,0,"5778",,terminal_output
426
+ 426,448404,"TERMINAL",0,0,"6889",,terminal_output
427
+ 427,449524,"TERMINAL",0,0,"79930",,terminal_output
428
+ 428,450542,"TERMINAL",0,0,"850501",,terminal_output
429
+ 429,451565,"TERMINAL",0,0,"9112",,terminal_output
430
+ 430,452592,"TERMINAL",0,0,"8:00223",,terminal_output
431
+ 431,453653,"TERMINAL",0,0,"1334",,terminal_output
432
+ 432,454690,"TERMINAL",0,0,"2445",,terminal_output
433
+ 433,455771,"TERMINAL",0,0,"3556",,terminal_output
434
+ 434,456789,"TERMINAL",0,0,"4667",,terminal_output
435
+ 435,457834,"TERMINAL",0,0,"5778",,terminal_output
436
+ 436,458936,"TERMINAL",0,0,"6889",,terminal_output
437
+ 437,459929,"TERMINAL",0,0,"79940",,terminal_output
438
+ 438,460980,"TERMINAL",0,0,"85:005:001",,terminal_output
439
+ 439,462219,"TERMINAL",0,0,"9112",,terminal_output
440
+ 440,463136,"TERMINAL",0,0,"10223",,terminal_output
441
+ 441,464131,"TERMINAL",0,0,"1334",,terminal_output
442
+ 442,465286,"TERMINAL",0,0,"2445",,terminal_output
443
+ 443,466317,"TERMINAL",0,0,"3667",,terminal_output
444
+ 444,467286,"TERMINAL",0,0,"5778",,terminal_output
445
+ 445,468344,"TERMINAL",0,0,"6889",,terminal_output
446
+ 446,469394,"TERMINAL",0,0,"79950",,terminal_output
447
+ 447,470424,"TERMINAL",0,0,"810101",,terminal_output
448
+ 448,471477,"TERMINAL",0,0,"9112",,terminal_output
449
+ 449,472555,"TERMINAL",0,0,"20223",,terminal_output
450
+ 450,473674,"TERMINAL",0,0,"1334",,terminal_output
451
+ 451,474723,"TERMINAL",0,0,"2445",,terminal_output
452
+ 452,475844,"TERMINAL",0,0,"3556",,terminal_output
453
+ 453,476723,"TERMINAL",0,0,"4667",,terminal_output
454
+ 454,477776,"TERMINAL",0,0,"5778",,terminal_output
455
+ 455,478821,"TERMINAL",0,0,"6889",,terminal_output
456
+ 456,479874,"TERMINAL",0,0,"7991:00",,terminal_output
457
+ 457,480913,"TERMINAL",0,0,"820201",,terminal_output
458
+ 458,481983,"TERMINAL",0,0,"9112",,terminal_output
459
+ 459,483009,"TERMINAL",0,0,"30223",,terminal_output
460
+ 460,484065,"TERMINAL",0,0,"1334",,terminal_output
461
+ 461,485152,"TERMINAL",0,0,"2445",,terminal_output
462
+ 462,486177,"TERMINAL",0,0,"3556",,terminal_output
463
+ 463,487231,"TERMINAL",0,0,"4667",,terminal_output
464
+ 464,488235,"TERMINAL",0,0,"5889",,terminal_output
465
+ 465,489291,"TERMINAL",0,0,"79910",,terminal_output
466
+ 466,490338,"TERMINAL",0,0,"830301",,terminal_output
467
+ 467,491388,"TERMINAL",0,0,"9112",,terminal_output
468
+ 468,492440,"TERMINAL",0,0,"40223",,terminal_output
469
+ 469,493478,"TERMINAL",0,0,"1334",,terminal_output
470
+ 470,494532,"TERMINAL",0,0,"2445",,terminal_output
471
+ 471,495580,"TERMINAL",0,0,"3556",,terminal_output
472
+ 472,496647,"TERMINAL",0,0,"4667",,terminal_output
473
+ 473,497672,"TERMINAL",0,0,"5778",,terminal_output
474
+ 474,498733,"TERMINAL",0,0,"6889",,terminal_output
475
+ 475,499816,"TERMINAL",0,0,"79920",,terminal_output
476
+ 476,500817,"TERMINAL",0,0,"840401",,terminal_output
477
+ 477,501947,"TERMINAL",0,0,"9112",,terminal_output
478
+ 478,502952,"TERMINAL",0,0,"50223",,terminal_output
479
+ 479,503999,"TERMINAL",0,0,"1334",,terminal_output
480
+ 480,505122,"TERMINAL",0,0,"2445",,terminal_output
481
+ 481,506251,"TERMINAL",0,0,"3556",,terminal_output
482
+ 482,507191,"TERMINAL",0,0,"4667",,terminal_output
483
+ 483,508300,"TERMINAL",0,0,"5889",,terminal_output
484
+ 484,509332,"TERMINAL",0,0,"79930",,terminal_output
485
+ 485,510337,"TERMINAL",0,0,"850501",,terminal_output
486
+ 486,511384,"TERMINAL",0,0,"9112",,terminal_output
487
+ 487,512420,"TERMINAL",0,0,"9:00223",,terminal_output
488
+ 488,513512,"TERMINAL",0,0,"1334",,terminal_output
489
+ 489,514507,"TERMINAL",0,0,"2445",,terminal_output
490
+ 490,515567,"TERMINAL",0,0,"3556",,terminal_output
491
+ 491,516603,"TERMINAL",0,0,"4667",,terminal_output
492
+ 492,517716,"TERMINAL",0,0,"5778",,terminal_output
493
+ 493,518834,"TERMINAL",0,0,"6889",,terminal_output
494
+ 494,519766,"TERMINAL",0,0,"79940",,terminal_output
495
+ 495,520891,"TERMINAL",0,0,"86:006:001",,terminal_output
496
+ 496,521916,"TERMINAL",0,0,"9112",,terminal_output
497
+ 497,522899,"TERMINAL",0,0,"10223",,terminal_output
498
+ 498,523952,"TERMINAL",0,0,"1334",,terminal_output
499
+ 499,524999,"TERMINAL",0,0,"2445",,terminal_output
500
+ 500,526046,"TERMINAL",0,0,"3556",,terminal_output
501
+ 501,527122,"TERMINAL",0,0,"4667",,terminal_output
502
+ 502,528146,"TERMINAL",0,0,"5778",,terminal_output
503
+ 503,529223,"TERMINAL",0,0,"6889",,terminal_output
504
+ 504,530304,"TERMINAL",0,0,"7101051",,terminal_output
505
+ 505,531283,"TERMINAL",0,0,"9112",,terminal_output
506
+ 506,532328,"TERMINAL",0,0,"20223",,terminal_output
507
+ 507,533383,"TERMINAL",0,0,"1334",,terminal_output
508
+ 508,534434,"TERMINAL",0,0,"2445",,terminal_output
509
+ 509,535535,"TERMINAL",0,0,"3556",,terminal_output
510
+ 510,536557,"TERMINAL",0,0,"4667",,terminal_output
511
+ 511,537587,"TERMINAL",0,0,"5778",,terminal_output
512
+ 512,538710,"TERMINAL",0,0,"6889",,terminal_output
513
+ 513,539730,"TERMINAL",0,0,"7992:00",,terminal_output
514
+ 514,540786,"TERMINAL",0,0,"820201",,terminal_output
515
+ 515,541837,"TERMINAL",0,0,"9112",,terminal_output
516
+ 516,542875,"TERMINAL",0,0,"30223",,terminal_output
517
+ 517,543929,"TERMINAL",0,0,"1334",,terminal_output
518
+ 518,544965,"TERMINAL",0,0,"2445",,terminal_output
519
+ 519,546041,"TERMINAL",0,0,"3556",,terminal_output
520
+ 520,547065,"TERMINAL",0,0,"4667",,terminal_output
521
+ 521,548159,"TERMINAL",0,0,"5778",,terminal_output
522
+ 522,549279,"TERMINAL",0,0,"6889",,terminal_output
523
+ 523,550283,"TERMINAL",0,0,"79910",,terminal_output
524
+ 524,551244,"TERMINAL",0,0,"831312",,terminal_output
525
+ 525,552328,"TERMINAL",0,0,"40223",,terminal_output
526
+ 526,553355,"TERMINAL",0,0,"1334",,terminal_output
527
+ 527,554554,"TERMINAL",0,0,"2445",,terminal_output
528
+ 528,555447,"TERMINAL",0,0,"3556",,terminal_output
529
+ 529,556486,"TERMINAL",0,0,"4667",,terminal_output
530
+ 530,557529,"TERMINAL",0,0,"5778",,terminal_output
531
+ 531,558570,"TERMINAL",0,0,"6889",,terminal_output
532
+ 532,559643,"TERMINAL",0,0,"79920",,terminal_output
533
+ 533,560661,"TERMINAL",0,0,"840401",,terminal_output
534
+ 534,561707,"TERMINAL",0,0,"9112",,terminal_output
535
+ 535,562771,"TERMINAL",0,0,"50223",,terminal_output
536
+ 536,563903,"TERMINAL",0,0,"1334",,terminal_output
537
+ 537,564922,"TERMINAL",0,0,"2445",,terminal_output
538
+ 538,565948,"TERMINAL",0,0,"3556",,terminal_output
539
+ 539,566970,"TERMINAL",0,0,"4667",,terminal_output
540
+ 540,568012,"TERMINAL",0,0,"5778",,terminal_output
541
+ 541,569120,"TERMINAL",0,0,"6889",,terminal_output
542
+ 542,570144,"TERMINAL",0,0,"79930",,terminal_output
543
+ 543,571174,"TERMINAL",0,0,"850501",,terminal_output
544
+ 544,572255,"TERMINAL",0,0,"9112",,terminal_output
545
+ 545,573266,"TERMINAL",0,0,"10:00334",,terminal_output
546
+ 546,574314,"TERMINAL",0,0,"2445",,terminal_output
547
+ 547,575450,"TERMINAL",0,0,"3556",,terminal_output
548
+ 548,576459,"TERMINAL",0,0,"4667",,terminal_output
549
+ 549,577517,"TERMINAL",0,0,"5778",,terminal_output
550
+ 550,578627,"TERMINAL",0,0,"6889",,terminal_output
551
+ 551,579672,"TERMINAL",0,0,"79940",,terminal_output
552
+ 552,580693,"TERMINAL",0,0,"87:007:001",,terminal_output
553
+ 553,581704,"TERMINAL",0,0,"9112",,terminal_output
554
+ 554,582783,"TERMINAL",0,0,"10223",,terminal_output
555
+ 555,583866,"TERMINAL",0,0,"1334",,terminal_output
556
+ 556,584847,"TERMINAL",0,0,"2445",,terminal_output
557
+ 557,585925,"TERMINAL",0,0,"3556",,terminal_output
558
+ 558,587042,"TERMINAL",0,0,"4667",,terminal_output
559
+ 559,588065,"TERMINAL",0,0,"5778",,terminal_output
560
+ 560,589034,"TERMINAL",0,0,"6889",,terminal_output
561
+ 561,590107,"TERMINAL",0,0,"79950",,terminal_output
562
+ 562,591135,"TERMINAL",0,0,"810101",,terminal_output
563
+ 563,592205,"TERMINAL",0,0,"9112",,terminal_output
564
+ 564,593265,"TERMINAL",0,0,"20334",,terminal_output
565
+ 565,594265,"TERMINAL",0,0,"2445",,terminal_output
566
+ 566,595339,"TERMINAL",0,0,"3556",,terminal_output
567
+ 567,596709,"TERMINAL",0,0,"4667",,terminal_output
568
+ 568,597779,"TERMINAL",0,0,"5778",,terminal_output
569
+ 569,598805,"TERMINAL",0,0,"6889",,terminal_output
570
+ 570,599871,"TERMINAL",0,0,"7993:00",,terminal_output
571
+ 571,600909,"TERMINAL",0,0,"820201",,terminal_output
572
+ 572,601953,"TERMINAL",0,0,"9112",,terminal_output
573
+ 573,602996,"TERMINAL",0,0,"30223",,terminal_output
574
+ 574,604056,"TERMINAL",0,0,"1334",,terminal_output
575
+ 575,605103,"TERMINAL",0,0,"2445",,terminal_output
576
+ 576,606158,"TERMINAL",0,0,"3556",,terminal_output
577
+ 577,607239,"TERMINAL",0,0,"4667",,terminal_output
578
+ 578,608362,"TERMINAL",0,0,"5889",,terminal_output
579
+ 579,609453,"TERMINAL",0,0,"79910",,terminal_output
580
+ 580,610337,"TERMINAL",0,0,"830301",,terminal_output
581
+ 581,611386,"TERMINAL",0,0,"9112",,terminal_output
582
+ 582,612443,"TERMINAL",0,0,"40223",,terminal_output
583
+ 583,613481,"TERMINAL",0,0,"1334",,terminal_output
584
+ 584,614532,"TERMINAL",0,0,"2445",,terminal_output
585
+ 585,615583,"TERMINAL",0,0,"3556",,terminal_output
586
+ 586,616660,"TERMINAL",0,0,"4667",,terminal_output
587
+ 587,617683,"TERMINAL",0,0,"5778",,terminal_output
588
+ 588,618742,"TERMINAL",0,0,"6889",,terminal_output
589
+ 589,619768,"TERMINAL",0,0,"79920",,terminal_output
590
+ 590,620833,"TERMINAL",0,0,"840401",,terminal_output
591
+ 591,621897,"TERMINAL",0,0,"9112",,terminal_output
592
+ 592,623008,"TERMINAL",0,0,"50223",,terminal_output
593
+ 593,624010,"TERMINAL",0,0,"1334",,terminal_output
594
+ 594,625033,"TERMINAL",0,0,"2445",,terminal_output
595
+ 595,626072,"TERMINAL",0,0,"3556",,terminal_output
596
+ 596,627445,"TERMINAL",0,0,"4778",,terminal_output
597
+ 597,628621,"TERMINAL",0,0,"6889",,terminal_output
598
+ 598,629641,"TERMINAL",0,0,"79930",,terminal_output
599
+ 599,630668,"TERMINAL",0,0,"850501",,terminal_output
600
+ 600,631677,"TERMINAL",0,0,"9112",,terminal_output
601
+ 601,632684,"TERMINAL",0,0,"1:00223",,terminal_output
602
+ 602,633737,"TERMINAL",0,0,"1334",,terminal_output
603
+ 603,634790,"TERMINAL",0,0,"2445",,terminal_output
604
+ 604,635853,"TERMINAL",0,0,"3556",,terminal_output
605
+ 605,636886,"TERMINAL",0,0,"4667",,terminal_output
606
+ 606,637946,"TERMINAL",0,0,"5778",,terminal_output
607
+ 607,639023,"TERMINAL",0,0,"6889",,terminal_output
608
+ 608,640021,"TERMINAL",0,0,"79940",,terminal_output
609
+ 609,641115,"TERMINAL",0,0,"88:008:001",,terminal_output
610
+ 610,642131,"TERMINAL",0,0,"9112",,terminal_output
611
+ 611,643299,"TERMINAL",0,0,"10223",,terminal_output
612
+ 612,644316,"TERMINAL",0,0,"1334",,terminal_output
613
+ 613,645306,"TERMINAL",0,0,"2556",,terminal_output
614
+ 614,646294,"TERMINAL",0,0,"4667",,terminal_output
615
+ 615,647333,"TERMINAL",0,0,"5778",,terminal_output
616
+ 616,648384,"TERMINAL",0,0,"6889",,terminal_output
617
+ 617,649468,"TERMINAL",0,0,"79950",,terminal_output
618
+ 618,650518,"TERMINAL",0,0,"810101",,terminal_output
619
+ 619,651590,"TERMINAL",0,0,"9112",,terminal_output
620
+ 620,652618,"TERMINAL",0,0,"20223",,terminal_output
621
+ 621,653677,"TERMINAL",0,0,"1334",,terminal_output
622
+ 622,654724,"TERMINAL",0,0,"2445",,terminal_output
623
+ 623,655763,"TERMINAL",0,0,"3556",,terminal_output
624
+ 624,656815,"TERMINAL",0,0,"4667",,terminal_output
625
+ 625,657869,"TERMINAL",0,0,"5778",,terminal_output
626
+ 626,658925,"TERMINAL",0,0,"6889",,terminal_output
627
+ 627,659966,"TERMINAL",0,0,"7994:00",,terminal_output
628
+ 628,661080,"TERMINAL",0,0,"820201",,terminal_output
629
+ 629,662100,"TERMINAL",0,0,"9112",,terminal_output
630
+ 630,663128,"TERMINAL",0,0,"30223",,terminal_output
631
+ 631,664256,"TERMINAL",0,0,"1334",,terminal_output
632
+ 632,665231,"TERMINAL",0,0,"2445",,terminal_output
633
+ 633,666250,"TERMINAL",0,0,"3667",,terminal_output
634
+ 634,667324,"TERMINAL",0,0,"5778",,terminal_output
635
+ 635,668359,"TERMINAL",0,0,"6889",,terminal_output
636
+ 636,669397,"TERMINAL",0,0,"79910",,terminal_output
637
+ 637,670447,"TERMINAL",0,0,"830301",,terminal_output
638
+ 638,671523,"TERMINAL",0,0,"9112",,terminal_output
639
+ 639,672652,"TERMINAL",0,0,"40223",,terminal_output
640
+ 640,673593,"TERMINAL",0,0,"1334",,terminal_output
641
+ 641,674695,"TERMINAL",0,0,"2445",,terminal_output
642
+ 642,675722,"TERMINAL",0,0,"3556",,terminal_output
643
+ 643,676734,"TERMINAL",0,0,"4667",,terminal_output
644
+ 644,677787,"TERMINAL",0,0,"5778",,terminal_output
645
+ 645,678837,"TERMINAL",0,0,"6889",,terminal_output
646
+ 646,679887,"TERMINAL",0,0,"79920",,terminal_output
647
+ 647,680948,"TERMINAL",0,0,"840401",,terminal_output
648
+ 648,682027,"TERMINAL",0,0,"9112",,terminal_output
649
+ 649,683036,"TERMINAL",0,0,"50223",,terminal_output
650
+ 650,684113,"TERMINAL",0,0,"1334",,terminal_output
651
+ 651,685139,"TERMINAL",0,0,"2445",,terminal_output
652
+ 652,686271,"TERMINAL",0,0,"3556",,terminal_output
653
+ 653,687323,"TERMINAL",0,0,"4778",,terminal_output
654
+ 654,688316,"TERMINAL",0,0,"6889",,terminal_output
655
+ 655,689340,"TERMINAL",0,0,"79930",,terminal_output
656
+ 656,690376,"TERMINAL",0,0,"850501",,terminal_output
657
+ 657,691417,"TERMINAL",0,0,"9112",,terminal_output
658
+ 658,692468,"TERMINAL",0,0,"2:00223",,terminal_output
659
+ 659,693511,"TERMINAL",0,0,"1334",,terminal_output
660
+ 660,694570,"TERMINAL",0,0,"2445",,terminal_output
661
+ 661,695604,"TERMINAL",0,0,"3556",,terminal_output
662
+ 662,696678,"TERMINAL",0,0,"4667",,terminal_output
663
+ 663,697735,"TERMINAL",0,0,"5778",,terminal_output
664
+ 664,698835,"TERMINAL",0,0,"6889",,terminal_output
665
+ 665,699917,"TERMINAL",0,0,"79940",,terminal_output
666
+ 666,700910,"TERMINAL",0,0,"89:009:001",,terminal_output
667
+ 667,701908,"TERMINAL",0,0,"9112",,terminal_output
668
+ 668,703060,"TERMINAL",0,0,"10223",,terminal_output
669
+ 669,704089,"TERMINAL",0,0,"1334",,terminal_output
670
+ 670,705108,"TERMINAL",0,0,"2445",,terminal_output
671
+ 671,706132,"TERMINAL",0,0,"3556",,terminal_output
672
+ 672,707162,"TERMINAL",0,0,"4667",,terminal_output
673
+ 673,708323,"TERMINAL",0,0,"5778",,terminal_output
674
+ 674,709339,"TERMINAL",0,0,"69950",,terminal_output
675
+ 675,710349,"TERMINAL",0,0,"810101",,terminal_output
676
+ 676,711369,"TERMINAL",0,0,"9112",,terminal_output
677
+ 677,712435,"TERMINAL",0,0,"20223",,terminal_output
678
+ 678,713465,"TERMINAL",0,0,"1334",,terminal_output
679
+ 679,714518,"TERMINAL",0,0,"2445",,terminal_output
680
+ 680,715602,"TERMINAL",0,0,"3556",,terminal_output
681
+ 681,716682,"TERMINAL",0,0,"4667",,terminal_output
682
+ 682,717704,"TERMINAL",0,0,"5778",,terminal_output
683
+ 683,718708,"TERMINAL",0,0,"6889",,terminal_output
684
+ 684,719855,"TERMINAL",0,0,"7995:00",,terminal_output
685
+ 685,720879,"TERMINAL",0,0,"820201",,terminal_output
686
+ 686,721853,"TERMINAL",0,0,"9112",,terminal_output
687
+ 687,722928,"TERMINAL",0,0,"30223",,terminal_output
688
+ 688,724156,"TERMINAL",0,0,"1334",,terminal_output
689
+ 689,725001,"TERMINAL",0,0,"2445",,terminal_output
690
+ 690,726049,"TERMINAL",0,0,"3556",,terminal_output
691
+ 691,727104,"TERMINAL",0,0,"4667",,terminal_output
692
+ 692,728148,"TERMINAL",0,0,"5778",,terminal_output
693
+ 693,729201,"TERMINAL",0,0,"6889",,terminal_output
694
+ 694,730261,"TERMINAL",0,0,"7303011",,terminal_output
695
+ 695,731330,"TERMINAL",0,0,"9112",,terminal_output
696
+ 696,732355,"TERMINAL",0,0,"40223",,terminal_output
697
+ 697,733406,"TERMINAL",0,0,"1334",,terminal_output
698
+ 698,734457,"TERMINAL",0,0,"2445",,terminal_output
699
+ 699,735507,"TERMINAL",0,0,"3556",,terminal_output
700
+ 700,736560,"TERMINAL",0,0,"4667",,terminal_output
701
+ 701,737609,"TERMINAL",0,0,"5778",,terminal_output
702
+ 702,738703,"TERMINAL",0,0,"6889",,terminal_output
703
+ 703,739709,"TERMINAL",0,0,"79920",,terminal_output
704
+ 704,740753,"TERMINAL",0,0,"840401",,terminal_output
705
+ 705,741803,"TERMINAL",0,0,"9112",,terminal_output
706
+ 706,742850,"TERMINAL",0,0,"50223",,terminal_output
707
+ 707,743904,"TERMINAL",0,0,"1334",,terminal_output
708
+ 708,744990,"TERMINAL",0,0,"2445",,terminal_output
709
+ 709,746458,"TERMINAL",0,0,"3667",,terminal_output
710
+ 710,747499,"TERMINAL",0,0,"5778",,terminal_output
711
+ 711,748630,"TERMINAL",0,0,"6889",,terminal_output
712
+ 712,749611,"TERMINAL",0,0,"79930",,terminal_output
713
+ 713,750679,"TERMINAL",0,0,"850501",,terminal_output
714
+ 714,751685,"TERMINAL",0,0,"9112",,terminal_output
715
+ 715,752727,"TERMINAL",0,0,"3:00223",,terminal_output
716
+ 716,753968,"TERMINAL",0,0,"1334",,terminal_output
717
+ 717,754898,"TERMINAL",0,0,"2445",,terminal_output
718
+ 718,755927,"TERMINAL",0,0,"3556",,terminal_output
719
+ 719,756928,"TERMINAL",0,0,"4667",,terminal_output
720
+ 720,758050,"TERMINAL",0,0,"5778",,terminal_output
721
+ 721,759075,"TERMINAL",0,0,"6889",,terminal_output
722
+ 722,760102,"TERMINAL",0,0,"79940",,terminal_output
723
+ 723,761124,"TERMINAL",0,0,"810:0010:001",,terminal_output
724
+ 724,762196,"TERMINAL",0,0,"9112",,terminal_output
725
+ 725,763302,"TERMINAL",0,0,"10223",,terminal_output
726
+ 726,764269,"TERMINAL",0,0,"2445",,terminal_output
727
+ 727,765352,"TERMINAL",0,0,"3556",,terminal_output
728
+ 728,766447,"TERMINAL",0,0,"4667",,terminal_output
729
+ 729,767411,"TERMINAL",0,0,"5778",,terminal_output
730
+ 730,768461,"TERMINAL",0,0,"6889",,terminal_output
731
+ 731,769621,"TERMINAL",0,0,"79950",,terminal_output
732
+ 732,770647,"TERMINAL",0,0,"810101",,terminal_output
733
+ 733,771611,"TERMINAL",0,0,"9112",,terminal_output
734
+ 734,772651,"TERMINAL",0,0,"20223",,terminal_output
735
+ 735,773702,"TERMINAL",0,0,"1334",,terminal_output
736
+ 736,774779,"TERMINAL",0,0,"2445",,terminal_output
737
+ 737,775806,"TERMINAL",0,0,"3556",,terminal_output
738
+ 738,776857,"TERMINAL",0,0,"4667",,terminal_output
739
+ 739,777923,"TERMINAL",0,0,"5778",,terminal_output
740
+ 740,779019,"TERMINAL",0,0,"6889",,terminal_output
741
+ 741,780102,"TERMINAL",0,0,"7996:00",,terminal_output
742
+ 742,781052,"TERMINAL",0,0,"820201",,terminal_output
743
+ 743,782114,"TERMINAL",0,0,"9112",,terminal_output
744
+ 744,783244,"TERMINAL",0,0,"30223",,terminal_output
745
+ 745,784382,"TERMINAL",0,0,"1334",,terminal_output
746
+ 746,785290,"TERMINAL",0,0,"2556",,terminal_output
747
+ 747,786416,"TERMINAL",0,0,"4667",,terminal_output
748
+ 748,787373,"TERMINAL",0,0,"5778",,terminal_output
749
+ 749,788373,"TERMINAL",0,0,"6889",,terminal_output
750
+ 750,789425,"TERMINAL",0,0,"79910",,terminal_output
751
+ 751,790463,"TERMINAL",0,0,"830301",,terminal_output
752
+ 752,791527,"TERMINAL",0,0,"9112",,terminal_output
753
+ 753,792582,"TERMINAL",0,0,"40223",,terminal_output
754
+ 754,793659,"TERMINAL",0,0,"1334",,terminal_output
755
+ 755,794736,"TERMINAL",0,0,"2445",,terminal_output
756
+ 756,795738,"TERMINAL",0,0,"3556",,terminal_output
757
+ 757,796758,"TERMINAL",0,0,"4667",,terminal_output
758
+ 758,797885,"TERMINAL",0,0,"5778",,terminal_output
759
+ 759,798909,"TERMINAL",0,0,"6889",,terminal_output
760
+ 760,799932,"TERMINAL",0,0,"79920",,terminal_output
761
+ 761,800960,"TERMINAL",0,0,"840401",,terminal_output
762
+ 762,802086,"TERMINAL",0,0,"9112",,terminal_output
763
+ 763,803031,"TERMINAL",0,0,"50223",,terminal_output
764
+ 764,804076,"TERMINAL",0,0,"1334",,terminal_output
765
+ 765,805125,"TERMINAL",0,0,"2445",,terminal_output
766
+ 766,806169,"TERMINAL",0,0,"3556",,terminal_output
767
+ 767,807271,"TERMINAL",0,0,"4667",,terminal_output
768
+ 768,808370,"TERMINAL",0,0,"5889",,terminal_output
769
+ 769,809392,"TERMINAL",0,0,"79930",,terminal_output
770
+ 770,810381,"TERMINAL",0,0,"850501",,terminal_output
771
+ 771,811428,"TERMINAL",0,0,"9112",,terminal_output
772
+ 772,812477,"TERMINAL",0,0,"4:00223",,terminal_output
773
+ 773,813530,"TERMINAL",0,0,"1334",,terminal_output
774
+ 774,814579,"TERMINAL",0,0,"2445",,terminal_output
775
+ 775,815625,"TERMINAL",0,0,"3556",,terminal_output
776
+ 776,816677,"TERMINAL",0,0,"4667",,terminal_output
777
+ 777,817755,"TERMINAL",0,0,"5778",,terminal_output
778
+ 778,818780,"TERMINAL",0,0,"6889",,terminal_output
779
+ 779,819814,"TERMINAL",0,0,"79940",,terminal_output
780
+ 780,820929,"TERMINAL",0,0,"81:001:001",,terminal_output
781
+ 781,821949,"TERMINAL",0,0,"9112",,terminal_output
782
+ 782,822977,"TERMINAL",0,0,"10223",,terminal_output
783
+ 783,824104,"TERMINAL",0,0,"1334",,terminal_output
784
+ 784,825047,"TERMINAL",0,0,"2445",,terminal_output
785
+ 785,826148,"TERMINAL",0,0,"3556",,terminal_output
786
+ 786,827170,"TERMINAL",0,0,"4667",,terminal_output
787
+ 787,828206,"TERMINAL",0,0,"5778",,terminal_output
788
+ 788,829252,"TERMINAL",0,0,"69950",,terminal_output
789
+ 789,830296,"TERMINAL",0,0,"810101",,terminal_output
790
+ 790,831352,"TERMINAL",0,0,"9112",,terminal_output
791
+ 791,832402,"TERMINAL",0,0,"20223",,terminal_output
792
+ 792,833441,"TERMINAL",0,0,"1334",,terminal_output
793
+ 793,834584,"TERMINAL",0,0,"2445",,terminal_output
794
+ 794,835542,"TERMINAL",0,0,"3556",,terminal_output
795
+ 795,836679,"TERMINAL",0,0,"4667",,terminal_output
796
+ 796,837717,"TERMINAL",0,0,"5778",,terminal_output
797
+ 797,838774,"TERMINAL",0,0,"6889",,terminal_output
798
+ 798,839804,"TERMINAL",0,0,"7997:00",,terminal_output
799
+ 799,840791,"TERMINAL",0,0,"820201",,terminal_output
800
+ 800,841836,"TERMINAL",0,0,"9112",,terminal_output
801
+ 801,843075,"TERMINAL",0,0,"30223",,terminal_output
802
+ 802,843964,"TERMINAL",0,0,"1334",,terminal_output
803
+ 803,844996,"TERMINAL",0,0,"2445",,terminal_output
804
+ 804,846034,"TERMINAL",0,0,"3556",,terminal_output
805
+ 805,847141,"TERMINAL",0,0,"4667",,terminal_output
806
+ 806,848114,"TERMINAL",0,0,"5778",,terminal_output
807
+ 807,849166,"TERMINAL",0,0,"6889",,terminal_output
808
+ 808,850219,"TERMINAL",0,0,"79910",,terminal_output
809
+ 809,851256,"TERMINAL",0,0,"831312",,terminal_output
810
+ 810,852308,"TERMINAL",0,0,"40223",,terminal_output
811
+ 811,853418,"TERMINAL",0,0,"1334",,terminal_output
812
+ 812,854412,"TERMINAL",0,0,"2445",,terminal_output
813
+ 813,855448,"TERMINAL",0,0,"3556",,terminal_output
814
+ 814,856498,"TERMINAL",0,0,"4667",,terminal_output
815
+ 815,857547,"TERMINAL",0,0,"5778",,terminal_output
816
+ 816,858607,"TERMINAL",0,0,"6889",,terminal_output
817
+ 817,859842,"TERMINAL",0,0,"79920",,terminal_output
818
+ 818,860866,"TERMINAL",0,0,"840401",,terminal_output
819
+ 819,861762,"TERMINAL",0,0,"9112",,terminal_output
820
+ 820,862789,"TERMINAL",0,0,"50223",,terminal_output
821
+ 821,863836,"TERMINAL",0,0,"1334",,terminal_output
822
+ 822,864884,"TERMINAL",0,0,"2445",,terminal_output
823
+ 823,865958,"TERMINAL",0,0,"3556",,terminal_output
824
+ 824,867211,"TERMINAL",0,0,"4667",,terminal_output
825
+ 825,868233,"TERMINAL",0,0,"5778",,terminal_output
826
+ 826,869232,"TERMINAL",0,0,"69930",,terminal_output
827
+ 827,870272,"TERMINAL",0,0,"850501",,terminal_output
828
+ 828,871324,"TERMINAL",0,0,"9112",,terminal_output
829
+ 829,872372,"TERMINAL",0,0,"5:00223",,terminal_output
830
+ 830,873417,"TERMINAL",0,0,"1334",,terminal_output
831
+ 831,874479,"TERMINAL",0,0,"2445",,terminal_output
832
+ 832,875510,"TERMINAL",0,0,"3556",,terminal_output
833
+ 833,876546,"TERMINAL",0,0,"4667",,terminal_output
834
+ 834,877655,"TERMINAL",0,0,"5778",,terminal_output
835
+ 835,878647,"TERMINAL",0,0,"6889",,terminal_output
836
+ 836,879709,"TERMINAL",0,0,"79940",,terminal_output
837
+ 837,880734,"TERMINAL",0,0,"82:002:001",,terminal_output
838
+ 838,881789,"TERMINAL",0,0,"9112",,terminal_output
839
+ 839,882837,"TERMINAL",0,0,"10223",,terminal_output
840
+ 840,883884,"TERMINAL",0,0,"1334",,terminal_output
841
+ 841,884955,"TERMINAL",0,0,"2445",,terminal_output
842
+ 842,886004,"TERMINAL",0,0,"3556",,terminal_output
843
+ 843,887107,"TERMINAL",0,0,"4667",,terminal_output
844
+ 844,888080,"TERMINAL",0,0,"5778",,terminal_output
845
+ 845,889123,"TERMINAL",0,0,"6889",,terminal_output
846
+ 846,890174,"TERMINAL",0,0,"79950",,terminal_output
847
+ 847,891454,"TERMINAL",0,0,"810101",,terminal_output
848
+ 848,892253,"TERMINAL",0,0,"9223",,terminal_output
849
+ 849,893298,"TERMINAL",0,0,"21334",,terminal_output
850
+ 850,894348,"TERMINAL",0,0,"2445",,terminal_output
851
+ 851,895444,"TERMINAL",0,0,"3556",,terminal_output
852
+ 852,896453,"TERMINAL",0,0,"4667",,terminal_output
853
+ 853,897486,"TERMINAL",0,0,"5778",,terminal_output
854
+ 854,898540,"TERMINAL",0,0,"6889",,terminal_output
855
+ 855,899589,"TERMINAL",0,0,"7998:00",,terminal_output
856
+ 856,900628,"TERMINAL",0,0,"820201",,terminal_output
857
+ 857,901687,"TERMINAL",0,0,"9112",,terminal_output
858
+ 858,902745,"TERMINAL",0,0,"30223",,terminal_output
859
+ 859,903774,"TERMINAL",0,0,"1334",,terminal_output
860
+ 860,904998,"TERMINAL",0,0,"2445",,terminal_output
861
+ 861,906020,"TERMINAL",0,0,"3556",,terminal_output
862
+ 862,907045,"TERMINAL",0,0,"4667",,terminal_output
863
+ 863,908176,"TERMINAL",0,0,"5778",,terminal_output
864
+ 864,909101,"TERMINAL",0,0,"6889",,terminal_output
865
+ 865,910149,"TERMINAL",0,0,"79910",,terminal_output
866
+ 866,911200,"TERMINAL",0,0,"830301",,terminal_output
867
+ 867,912270,"TERMINAL",0,0,"9223",,terminal_output
868
+ 868,913357,"TERMINAL",0,0,"41334",,terminal_output
869
+ 869,914449,"TERMINAL",0,0,"2445",,terminal_output
870
+ 870,915444,"TERMINAL",0,0,"3556",,terminal_output
871
+ 871,916465,"TERMINAL",0,0,"4667",,terminal_output
872
+ 872,917495,"TERMINAL",0,0,"5778",,terminal_output
873
+ 873,918513,"TERMINAL",0,0,"6889",,terminal_output
874
+ 874,919561,"TERMINAL",0,0,"79920",,terminal_output
875
+ 875,920608,"TERMINAL",0,0,"840401",,terminal_output
876
+ 876,921669,"TERMINAL",0,0,"9112",,terminal_output
877
+ 877,922700,"TERMINAL",0,0,"50223",,terminal_output
878
+ 878,923766,"TERMINAL",0,0,"1334",,terminal_output
879
+ 879,924792,"TERMINAL",0,0,"2445",,terminal_output
880
+ 880,925872,"TERMINAL",0,0,"3556",,terminal_output
881
+ 881,926963,"TERMINAL",0,0,"4667",,terminal_output
882
+ 882,927974,"TERMINAL",0,0,"5778",,terminal_output
883
+ 883,929061,"TERMINAL",0,0,"6889",,terminal_output
884
+ 884,930086,"TERMINAL",0,0,"79930",,terminal_output
885
+ 885,931123,"TERMINAL",0,0,"850501",,terminal_output
886
+ 886,932236,"TERMINAL",0,0,"9112",,terminal_output
887
+ 887,933260,"TERMINAL",0,0,"6:00223",,terminal_output
888
+ 888,934284,"TERMINAL",0,0,"1445",,terminal_output
889
+ 889,935455,"TERMINAL",0,0,"3556",,terminal_output
890
+ 890,936434,"TERMINAL",0,0,"4667",,terminal_output
891
+ 891,937446,"TERMINAL",0,0,"5778",,terminal_output
892
+ 892,938457,"TERMINAL",0,0,"6889",,terminal_output
893
+ 893,939501,"TERMINAL",0,0,"79940",,terminal_output
894
+ 894,940551,"TERMINAL",0,0,"83:003:001",,terminal_output
895
+ 895,941605,"TERMINAL",0,0,"9112",,terminal_output
896
+ 896,942659,"TERMINAL",0,0,"10223",,terminal_output
897
+ 897,943705,"TERMINAL",0,0,"1334",,terminal_output
898
+ 898,944867,"TERMINAL",0,0,"2445",,terminal_output
899
+ 899,945860,"TERMINAL",0,0,"3556",,terminal_output
900
+ 900,946835,"TERMINAL",0,0,"4667",,terminal_output
901
+ 901,947904,"TERMINAL",0,0,"5778",,terminal_output
902
+ 902,949029,"TERMINAL",0,0,"6889",,terminal_output
903
+ 903,950057,"TERMINAL",0,0,"79950",,terminal_output
904
+ 904,951075,"TERMINAL",0,0,"810101",,terminal_output
905
+ 905,952080,"TERMINAL",0,0,"9112",,terminal_output
906
+ 906,953128,"TERMINAL",0,0,"20223",,terminal_output
907
+ 907,954174,"TERMINAL",0,0,"1334",,terminal_output
908
+ 908,955228,"TERMINAL",0,0,"2445",,terminal_output
909
+ 909,956274,"TERMINAL",0,0,"3667",,terminal_output
910
+ 910,957352,"TERMINAL",0,0,"5778",,terminal_output
911
+ 911,958369,"TERMINAL",0,0,"6889",,terminal_output
912
+ 912,959474,"TERMINAL",0,0,"7999:00",,terminal_output
913
+ 913,960496,"TERMINAL",0,0,"820201",,terminal_output
914
+ 914,961524,"TERMINAL",0,0,"9112",,terminal_output
915
+ 915,962546,"TERMINAL",0,0,"30223",,terminal_output
916
+ 916,963776,"TERMINAL",0,0,"1334",,terminal_output
917
+ 917,964695,"TERMINAL",0,0,"2445",,terminal_output
918
+ 918,965682,"TERMINAL",0,0,"3556",,terminal_output
919
+ 919,966750,"TERMINAL",0,0,"4667",,terminal_output
920
+ 920,967797,"TERMINAL",0,0,"5778",,terminal_output
921
+ 921,968813,"TERMINAL",0,0,"6889",,terminal_output
922
+ 922,969892,"TERMINAL",0,0,"79910",,terminal_output
923
+ 923,970978,"TERMINAL",0,0,"830301",,terminal_output
924
+ 924,971964,"TERMINAL",0,0,"9112",,terminal_output
925
+ 925,973097,"TERMINAL",0,0,"40223",,terminal_output
926
+ 926,974116,"TERMINAL",0,0,"1334",,terminal_output
927
+ 927,975142,"TERMINAL",0,0,"2445",,terminal_output
928
+ 928,976166,"TERMINAL",0,0,"3556",,terminal_output
929
+ 929,977293,"TERMINAL",0,0,"4667",,terminal_output
930
+ 930,978236,"TERMINAL",0,0,"5889",,terminal_output
931
+ 931,979280,"TERMINAL",0,0,"79920",,terminal_output
932
+ 932,980330,"TERMINAL",0,0,"840401",,terminal_output
933
+ 933,981369,"TERMINAL",0,0,"9112",,terminal_output
934
+ 934,982441,"TERMINAL",0,0,"50223",,terminal_output
935
+ 935,983490,"TERMINAL",0,0,"1334",,terminal_output
936
+ 936,984571,"TERMINAL",0,0,"2445",,terminal_output
937
+ 937,985622,"TERMINAL",0,0,"3556",,terminal_output
938
+ 938,986616,"TERMINAL",0,0,"4667",,terminal_output
939
+ 939,987671,"TERMINAL",0,0,"5778",,terminal_output
940
+ 940,988759,"TERMINAL",0,0,"6889",,terminal_output
941
+ 941,989886,"TERMINAL",0,0,"79930",,terminal_output
942
+ 942,990912,"TERMINAL",0,0,"850501",,terminal_output
943
+ 943,991871,"TERMINAL",0,0,"9112",,terminal_output
944
+ 944,992976,"TERMINAL",0,0,"7:00223",,terminal_output
945
+ 945,993968,"TERMINAL",0,0,"1334",,terminal_output
946
+ 946,995018,"TERMINAL",0,0,"2445",,terminal_output
947
+ 947,996072,"TERMINAL",0,0,"3556",,terminal_output
948
+ 948,997135,"TERMINAL",0,0,"4667",,terminal_output
949
+ 949,998169,"TERMINAL",0,0,"5778",,terminal_output
950
+ 950,999229,"TERMINAL",0,0,"6889",,terminal_output
951
+ 951,1000318,"TERMINAL",0,0,"74:004:0041",,terminal_output
952
+ 952,1001384,"TERMINAL",0,0,"9112",,terminal_output
953
+ 953,1002382,"TERMINAL",0,0,"10223",,terminal_output
954
+ 954,1003455,"TERMINAL",0,0,"1334",,terminal_output
955
+ 955,1004531,"TERMINAL",0,0,"2445",,terminal_output
956
+ 956,1005553,"TERMINAL",0,0,"3556",,terminal_output
957
+ 957,1006575,"TERMINAL",0,0,"4667",,terminal_output
958
+ 958,1007626,"TERMINAL",0,0,"5778",,terminal_output
959
+ 959,1008731,"TERMINAL",0,0,"6889",,terminal_output
960
+ 960,1009754,"TERMINAL",0,0,"79950",,terminal_output
961
+ 961,1010779,"TERMINAL",0,0,"810101",,terminal_output
962
+ 962,1011818,"TERMINAL",0,0,"9112",,terminal_output
963
+ 963,1012874,"TERMINAL",0,0,"20223",,terminal_output
964
+ 964,1013921,"TERMINAL",0,0,"1334",,terminal_output
965
+ 965,1014977,"TERMINAL",0,0,"2445",,terminal_output
966
+ 966,1016009,"TERMINAL",0,0,"3556",,terminal_output
967
+ 967,1017129,"TERMINAL",0,0,"4667",,terminal_output
968
+ 968,1018161,"TERMINAL",0,0,"5778",,terminal_output
969
+ 969,1019173,"TERMINAL",0,0,"6889",,terminal_output
970
+ 970,1020297,"TERMINAL",0,0,"79950:00",,terminal_output
971
+ 971,1021334,"TERMINAL",0,0,"821212",,terminal_output
972
+ 972,1022349,"TERMINAL",0,0,"30223",,terminal_output
973
+ 973,1023362,"TERMINAL",0,0,"1334",,terminal_output
974
+ 974,1024415,"TERMINAL",0,0,"2445",,terminal_output
975
+ 975,1025462,"TERMINAL",0,0,"3556",,terminal_output
976
+ 976,1026516,"TERMINAL",0,0,"4667",,terminal_output
977
+ 977,1027575,"TERMINAL",0,0,"5778",,terminal_output
978
+ 978,1028622,"TERMINAL",0,0,"6889",,terminal_output
979
+ 979,1029700,"TERMINAL",0,0,"79910",,terminal_output
980
+ 980,1030716,"TERMINAL",0,0,"830301",,terminal_output
981
+ 981,1031773,"TERMINAL",0,0,"9112",,terminal_output
982
+ 982,1032837,"TERMINAL",0,0,"40223",,terminal_output
983
+ 983,1033918,"TERMINAL",0,0,"1334",,terminal_output
984
+ 984,1034942,"TERMINAL",0,0,"2445",,terminal_output
985
+ 985,1035965,"TERMINAL",0,0,"3556",,terminal_output
986
+ 986,1036990,"TERMINAL",0,0,"4667",,terminal_output
987
+ 987,1038119,"TERMINAL",0,0,"5778",,terminal_output
988
+ 988,1039091,"TERMINAL",0,0,"6889",,terminal_output
989
+ 989,1040145,"TERMINAL",0,0,"79920",,terminal_output
990
+ 990,1041190,"TERMINAL",0,0,"840401",,terminal_output
991
+ 991,1042247,"TERMINAL",0,0,"9223",,terminal_output
992
+ 992,1043306,"TERMINAL",0,0,"51334",,terminal_output
993
+ 993,1044364,"TERMINAL",0,0,"2445",,terminal_output
994
+ 994,1045389,"TERMINAL",0,0,"3556",,terminal_output
995
+ 995,1046550,"TERMINAL",0,0,"4667",,terminal_output
996
+ 996,1047490,"TERMINAL",0,0,"5778",,terminal_output
997
+ 997,1048562,"TERMINAL",0,0,"6889",,terminal_output
998
+ 998,1049561,"TERMINAL",0,0,"79930",,terminal_output
999
+ 999,1050604,"TERMINAL",0,0,"850501",,terminal_output
1000
+ 1000,1051644,"TERMINAL",0,0,"9112",,terminal_output
1001
+ 1001,1052763,"TERMINAL",0,0,"8:00223",,terminal_output
1002
+ 1002,1053729,"TERMINAL",0,0,"1334",,terminal_output
1003
+ 1003,1055117,"TERMINAL",0,0,"2445",,terminal_output
1004
+ 1004,1056256,"TERMINAL",0,0,"3556",,terminal_output
1005
+ 1005,1057334,"TERMINAL",0,0,"4667",,terminal_output
1006
+ 1006,1058292,"TERMINAL",0,0,"5889",,terminal_output
1007
+ 1007,1059322,"TERMINAL",0,0,"79940",,terminal_output
1008
+ 1008,1060347,"TERMINAL",0,0,"85:005:001",,terminal_output
1009
+ 1009,1061394,"TERMINAL",0,0,"9112",,terminal_output
1010
+ 1010,1062431,"TERMINAL",0,0,"10223",,terminal_output
1011
+ 1011,1063538,"TERMINAL",0,0,"1334",,terminal_output
1012
+ 1012,1064546,"TERMINAL",0,0,"2445",,terminal_output
1013
+ 1013,1065590,"TERMINAL",0,0,"3556",,terminal_output
1014
+ 1014,1066673,"TERMINAL",0,0,"4667",,terminal_output
1015
+ 1015,1067688,"TERMINAL",0,0,"5778",,terminal_output
1016
+ 1016,1068740,"TERMINAL",0,0,"6889",,terminal_output
1017
+ 1017,1069790,"TERMINAL",0,0,"79950",,terminal_output
1018
+ 1018,1070910,"TERMINAL",0,0,"810101",,terminal_output
1019
+ 1019,1071873,"TERMINAL",0,0,"9112",,terminal_output
1020
+ 1020,1072915,"TERMINAL",0,0,"20223",,terminal_output
1021
+ 1021,1073977,"TERMINAL",0,0,"1334",,terminal_output
1022
+ 1022,1075022,"TERMINAL",0,0,"2445",,terminal_output
1023
+ 1023,1076063,"TERMINAL",0,0,"3556",,terminal_output
1024
+ 1024,1077170,"TERMINAL",0,0,"4667",,terminal_output
1025
+ 1025,1078164,"TERMINAL",0,0,"5778",,terminal_output
1026
+ 1026,1079292,"TERMINAL",0,0,"6889",,terminal_output
1027
+ 1027,1080307,"TERMINAL",0,0,"720201:01",,terminal_output
1028
+ 1028,1081329,"TERMINAL",0,0,"9112",,terminal_output
1029
+ 1029,1082364,"TERMINAL",0,0,"30223",,terminal_output
1030
+ 1030,1083412,"TERMINAL",0,0,"1334",,terminal_output
1031
+ 1031,1084614,"TERMINAL",0,0,"2445",,terminal_output
1032
+ 1032,1085534,"TERMINAL",0,0,"3556",,terminal_output
1033
+ 1033,1086553,"TERMINAL",0,0,"4667",,terminal_output
1034
+ 1034,1087633,"TERMINAL",0,0,"5778",,terminal_output
1035
+ 1035,1088648,"TERMINAL",0,0,"6889",,terminal_output
1036
+ 1036,1089697,"TERMINAL",0,0,"79910",,terminal_output
1037
+ 1037,1090756,"TERMINAL",0,0,"830301",,terminal_output
1038
+ 1038,1091788,"TERMINAL",0,0,"9112",,terminal_output
1039
+ 1039,1092843,"TERMINAL",0,0,"40223",,terminal_output
1040
+ 1040,1093927,"TERMINAL",0,0,"1334",,terminal_output
1041
+ 1041,1094950,"TERMINAL",0,0,"2445",,terminal_output
1042
+ 1042,1095972,"TERMINAL",0,0,"3556",,terminal_output
1043
+ 1043,1097106,"TERMINAL",0,0,"4667",,terminal_output
1044
+ 1044,1098124,"TERMINAL",0,0,"5778",,terminal_output
1045
+ 1045,1099132,"TERMINAL",0,0,"6889",,terminal_output
1046
+ 1046,1100165,"TERMINAL",0,0,"79920",,terminal_output
1047
+ 1047,1101215,"TERMINAL",0,0,"840401",,terminal_output
1048
+ 1048,1102275,"TERMINAL",0,0,"9223",,terminal_output
1049
+ 1049,1103346,"TERMINAL",0,0,"51334",,terminal_output
1050
+ 1050,1104374,"TERMINAL",0,0,"2445",,terminal_output
1051
+ 1051,1105396,"TERMINAL",0,0,"3556",,terminal_output
1052
+ 1052,1106522,"TERMINAL",0,0,"4667",,terminal_output
1053
+ 1053,1107593,"TERMINAL",0,0,"5778",,terminal_output
1054
+ 1054,1108571,"TERMINAL",0,0,"6889",,terminal_output
1055
+ 1055,1109595,"TERMINAL",0,0,"79930",,terminal_output
1056
+ 1056,1110611,"TERMINAL",0,0,"850501",,terminal_output
1057
+ 1057,1111673,"TERMINAL",0,0,"9112",,terminal_output
1058
+ 1058,1112713,"TERMINAL",0,0,"9:00223",,terminal_output
1059
+ 1059,1113775,"TERMINAL",0,0,"1334",,terminal_output
1060
+ 1060,1114816,"TERMINAL",0,0,"2445",,terminal_output
1061
+ 1061,1115867,"TERMINAL",0,0,"3556",,terminal_output
1062
+ 1062,1116895,"TERMINAL",0,0,"4667",,terminal_output
1063
+ 1063,1117942,"TERMINAL",0,0,"5778",,terminal_output
1064
+ 1064,1119016,"TERMINAL",0,0,"6889",,terminal_output
1065
+ 1065,1120048,"TERMINAL",0,0,"79940",,terminal_output
1066
+ 1066,1121089,"TERMINAL",0,0,"86:006:001",,terminal_output
1067
+ 1067,1122186,"TERMINAL",0,0,"9112",,terminal_output
1068
+ 1068,1123213,"TERMINAL",0,0,"10223",,terminal_output
1069
+ 1069,1124240,"TERMINAL",0,0,"1445",,terminal_output
1070
+ 1070,1125293,"TERMINAL",0,0,"3556",,terminal_output
1071
+ 1071,1126345,"TERMINAL",0,0,"4667",,terminal_output
1072
+ 1072,1127385,"TERMINAL",0,0,"5778",,terminal_output
1073
+ 1073,1128454,"TERMINAL",0,0,"6889",,terminal_output
1074
+ 1074,1129535,"TERMINAL",0,0,"79950",,terminal_output
1075
+ 1075,1130581,"TERMINAL",0,0,"810101",,terminal_output
1076
+ 1076,1131627,"TERMINAL",0,0,"9112",,terminal_output
1077
+ 1077,1132651,"TERMINAL",0,0,"20223",,terminal_output
1078
+ 1078,1133707,"TERMINAL",0,0,"1334",,terminal_output
1079
+ 1079,1134756,"TERMINAL",0,0,"2445",,terminal_output
1080
+ 1080,1135912,"TERMINAL",0,0,"3556",,terminal_output
1081
+ 1081,1136855,"TERMINAL",0,0,"4667",,terminal_output
1082
+ 1082,1137928,"TERMINAL",0,0,"5778",,terminal_output
1083
+ 1083,1138948,"TERMINAL",0,0,"6889",,terminal_output
1084
+ 1084,1140025,"TERMINAL",0,0,"7992:00",,terminal_output
1085
+ 1085,1141047,"TERMINAL",0,0,"820201",,terminal_output
1086
+ 1086,1142093,"TERMINAL",0,0,"9112",,terminal_output
1087
+ 1087,1143152,"TERMINAL",0,0,"30223",,terminal_output
1088
+ 1088,1144187,"TERMINAL",0,0,"1334",,terminal_output
1089
+ 1089,1145259,"TERMINAL",0,0,"2556",,terminal_output
1090
+ 1090,1146282,"TERMINAL",0,0,"4667",,terminal_output
1091
+ 1091,1147324,"TERMINAL",0,0,"5778",,terminal_output
1092
+ 1092,1148405,"TERMINAL",0,0,"6889",,terminal_output
1093
+ 1093,1149436,"TERMINAL",0,0,"79910",,terminal_output
1094
+ 1094,1150553,"TERMINAL",0,0,"830301",,terminal_output
1095
+ 1095,1151578,"TERMINAL",0,0,"9112",,terminal_output
1096
+ 1096,1152706,"TERMINAL",0,0,"40223",,terminal_output
1097
+ 1097,1153607,"TERMINAL",0,0,"1334",,terminal_output
1098
+ 1098,1154656,"TERMINAL",0,0,"2445",,terminal_output
1099
+ 1099,1155701,"TERMINAL",0,0,"3556",,terminal_output
1100
+ 1100,1156753,"TERMINAL",0,0,"4667",,terminal_output
1101
+ 1101,1157836,"TERMINAL",0,0,"5778",,terminal_output
1102
+ 1102,1158849,"TERMINAL",0,0,"6889",,terminal_output
1103
+ 1103,1159934,"TERMINAL",0,0,"79920",,terminal_output
1104
+ 1104,1161006,"TERMINAL",0,0,"840401",,terminal_output
1105
+ 1105,1162020,"TERMINAL",0,0,"9112",,terminal_output
1106
+ 1106,1163148,"TERMINAL",0,0,"50223",,terminal_output
1107
+ 1107,1164175,"TERMINAL",0,0,"1334",,terminal_output
1108
+ 1108,1165194,"TERMINAL",0,0,"2445",,terminal_output
1109
+ 1109,1166224,"TERMINAL",0,0,"3556",,terminal_output
1110
+ 1110,1167245,"TERMINAL",0,0,"4778",,terminal_output
1111
+ 1111,1168386,"TERMINAL",0,0,"6889",,terminal_output
1112
+ 1112,1169398,"TERMINAL",0,0,"79930",,terminal_output
1113
+ 1113,1170379,"TERMINAL",0,0,"850501",,terminal_output
1114
+ 1114,1171439,"TERMINAL",0,0,"9112",,terminal_output
1115
+ 1115,1172480,"TERMINAL",0,0,"20:00223",,terminal_output
1116
+ 1116,1173550,"TERMINAL",0,0,"1334",,terminal_output
1117
+ 1117,1174642,"TERMINAL",0,0,"2445",,terminal_output
1118
+ 1118,1175630,"TERMINAL",0,0,"3556",,terminal_output
1119
+ 1119,1176673,"TERMINAL",0,0,"4667",,terminal_output
1120
+ 1120,1177761,"TERMINAL",0,0,"5778",,terminal_output
1121
+ 1121,1178762,"TERMINAL",0,0,"6889",,terminal_output
1122
+ 1122,1179840,"TERMINAL",0,0,"79940",,terminal_output
1123
+ 1123,1181070,"TERMINAL",0,0,"87:007:001",,terminal_output
1124
+ 1124,1182096,"TERMINAL",0,0,"9112",,terminal_output
1125
+ 1125,1183120,"TERMINAL",0,0,"10223",,terminal_output
1126
+ 1126,1184149,"TERMINAL",0,0,"1334",,terminal_output
1127
+ 1127,1185194,"TERMINAL",0,0,"2445",,terminal_output
1128
+ 1128,1186246,"TERMINAL",0,0,"3667",,terminal_output
1129
+ 1129,1187295,"TERMINAL",0,0,"5778",,terminal_output
1130
+ 1130,1188354,"TERMINAL",0,0,"6889",,terminal_output
1131
+ 1131,1189394,"TERMINAL",0,0,"79950",,terminal_output
1132
+ 1132,1190538,"TERMINAL",0,0,"810101",,terminal_output
1133
+ 1133,1191495,"TERMINAL",0,0,"9112",,terminal_output
1134
+ 1134,1192643,"TERMINAL",0,0,"20223",,terminal_output
1135
+ 1135,1193669,"TERMINAL",0,0,"1334",,terminal_output
1136
+ 1136,1194707,"TERMINAL",0,0,"2445",,terminal_output
1137
+ 1137,1195719,"TERMINAL",0,0,"3556",,terminal_output
1138
+ 1138,1196797,"TERMINAL",0,0,"4667",,terminal_output
1139
+ 1139,1197823,"TERMINAL",0,0,"5778",,terminal_output
1140
+ 1140,1198873,"TERMINAL",0,0,"6889",,terminal_output
1141
+ 1141,1199938,"TERMINAL",0,0,"7993:00",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-5e6eb49e-ed8b-4688-9226-2f7ce3bdd3501759657457038-2025_10_05-11.44.58.692/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-614215de-0f98-45e4-a49e-9e7d7e57cff91757422920029-2025_09_09-15.02.34.03/source.csv ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,5,"train_lam.py",0,0,"from dataclasses import dataclass, field\nimport os\nfrom typing import cast\n\nimport einops\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\nimport flax.nnx as nnx\n\nfrom models.lam import LatentActionModel\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n vq_beta: float = 0.25\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = (\n 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n )\n warmup_steps: int = 5000\n lr_schedule: str = ""wsd"" # supported options: wsd, cos\n vq_reset_thresh: int = 50\n # LAM\n model_dim: int = 512\n ffn_dim: int = 2048\n latent_dim: int = 32\n num_latents: int = 6\n patch_size: int = 16\n num_blocks: int = 4\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.0\n param_dtype = jnp.float32\n dtype = jnp.bfloat16\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_lam""\n tags: list[str] = field(default_factory=lambda: [""lam""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 10000\n log_checkpoint_keep_period: int = 20000\n wandb_id: str = """"\n use_flash_attention: bool = True\n\n\nargs = tyro.cli(Args)\n\n\ndef lam_loss_fn(\n model: LatentActionModel, inputs: dict\n) -> tuple[jax.Array, tuple[jax.Array, jax.Array, dict]]:\n # --- Compute loss ---\n gt = jnp.asarray(inputs[""videos""], dtype=jnp.float32) / 255.0\n inputs[""videos""] = gt.astype(args.dtype)\n model.train()\n outputs = model(inputs, training=True)\n outputs[""recon""] = outputs[""recon""].astype(jnp.float32)\n gt_future_frames = gt[:, 1:]\n mse = jnp.square(gt_future_frames - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n\n # --- Compute validation metrics ---\n gt = gt_future_frames.clip(0, 1).reshape(-1, *gt_future_frames.shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = jnp.asarray(pix.psnr(gt, recon)).mean()\n ssim = jnp.asarray(pix.ssim(gt, recon)).mean()\n count_fn = jax.vmap(lambda i: (outputs[""indices""] == i).sum())\n index_counts = count_fn(jnp.arange(args.num_latents))\n metrics = dict(\n loss=loss,\n mse=mse,\n q_loss=q_loss,\n commitment_loss=commitment_loss,\n psnr=psnr,\n ssim=ssim,\n codebook_usage=(index_counts != 0).mean(),\n )\n return loss, (outputs[""recon""], index_counts, metrics)\n\n\n@nnx.jit\ndef train_step(\n lam: LatentActionModel,\n optimizer: nnx.Optimizer,\n inputs: dict,\n action_last_active: jax.Array,\n rng: jax.Array,\n) -> tuple[jax.Array, jax.Array, jax.Array, dict]:\n def loss_fn(\n model: LatentActionModel,\n ) -> tuple[jax.Array, tuple[jax.Array, jax.Array, dict]]:\n return lam_loss_fn(model, inputs)\n\n # --- Update model ---\n (loss, (recon, idx_counts, metrics)), grads = nnx.value_and_grad(\n loss_fn, has_aux=True\n )(lam)\n optimizer.update(grads)\n\n # --- Reset inactive latent actions ---\n codebook = lam.vq.codebook\n num_codes = len(codebook)\n active_codes = idx_counts != 0.0\n action_last_active = jnp.where(active_codes, 0, action_last_active + 1)\n p_code = active_codes / active_codes.sum()\n reset_idxs = jax.random.choice(rng, num_codes, shape=(num_codes,), p=p_code)\n do_reset = action_last_active >= args.vq_reset_thresh\n new_codebook = jnp.where(\n jnp.expand_dims(do_reset, -1), codebook[reset_idxs], codebook.value\n )\n lam.vq.codebook.value = new_codebook\n action_last_active = jnp.where(do_reset, 0, action_last_active)\n return loss, recon, action_last_active, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.key(args.seed)\n\n # --- Initialize model ---\n rng, _rng = jax.random.split(rng)\n rngs = nnx.Rngs(_rng)\n lam = LatentActionModel(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n ffn_dim=args.ffn_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n\n # Count parameters\n _, params, _ = nnx.split(lam, nnx.Param, ...)\n param_counts = count_parameters_by_component(params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(\n args.lr_schedule,\n args.init_lr,\n args.max_lr,\n args.decay_end,\n args.num_steps,\n args.warmup_steps,\n args.wsd_decay_steps,\n )\n tx = optax.adamw(\n learning_rate=lr_schedule,\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n mu_dtype=args.dtype,\n )\n optimizer = nnx.Optimizer(lam, tx)\n\n # FIXME: switch to create_hybrid_device_mesh for runs spanning multiple nodes\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n\n model_state = nnx.state(optimizer.model)\n model_sharded_state = jax.lax.with_sharding_constraint(\n model_state, replicated_sharding\n )\n nnx.update(optimizer.model, model_sharded_state)\n optimizer_state = nnx.state(optimizer, nnx.optimizer.OptState)\n optimizer_sharded_state = jax.lax.with_sharding_constraint(\n optimizer_state, replicated_sharding\n )\n nnx.update(optimizer, optimizer_sharded_state)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeSave, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointSave,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n handler_registry.add(\n ""dataloader_state"",\n grain.checkpoint.CheckpointRestore,\n cast(ocp.handlers.CheckpointHandler, grain.checkpoint.CheckpointHandler),\n )\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n image_shape = (args.image_height, args.image_width, args.image_channels)\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n abstract_optimizer = nnx.eval_shape(lambda: optimizer)\n abstract_optimizer_state = nnx.state(abstract_optimizer)\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore(abstract_optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator), # type: ignore\n ),\n )\n restored_optimizer_state = restored[""model_state""]\n nnx.update(optimizer, restored_optimizer_state)\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n\n # --- TRAIN LOOP ---\n dataloader = (\n jax.make_array_from_process_local_data(videos_sharding, elem)\n for elem in grain_iterator\n )\n print(f""Starting training from step {step}..."")\n action_last_active = jnp.zeros(args.num_latents, dtype=jnp.int32)\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng = jax.random.split(rng)\n\n inputs = dict(videos=videos, rng=_rng)\n rng, _rng = jax.random.split(rng)\n loss, recon, action_last_active, metrics = train_step(\n lam, optimizer, inputs, action_last_active, _rng\n )\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0, 1:].astype(jnp.float32) / 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n # NOTE: Process-dependent control flow deliberately happens\n # after indexing operation since it must not contain code\n # sections that lead to cross-accelerator communication.\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[0])),\n recon=wandb.Image(np.asarray(recon_seq[0])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n optimizer_state = nnx.state(optimizer)\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeSave(optimizer_state), # type: ignore\n dataloader_state=grain.checkpoint.CheckpointSave( # type: ignore\n grain_iterator # type: ignore\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
3
+ 2,832,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"",Log,tab
4
+ 3,1155,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"3:02:33 PM [info] Activating crowd-code\n3:02:34 PM [info] Recording started\n3:02:34 PM [info] Initializing git provider using file system watchers...\n3:02:34 PM [info] Git repository found\n3:02:34 PM [info] Git provider initialized successfully\n3:02:34 PM [info] Initial git state: [object Object]\n",Log,content
5
+ 4,3766,"train_lam.py",0,0,"",python,tab
6
+ 5,3771,"TERMINAL",0,0,"",,terminal_focus
7
+ 6,14658,"TERMINAL",0,0,"source /home/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/bin/activate",,terminal_command
8
+ 7,136281,"TERMINAL",0,0,"bash",,terminal_focus
9
+ 8,138228,"TERMINAL",0,0,"idling",,terminal_command
10
+ 9,138301,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: sinfo_t_idlehkn1990.localdomain: Tue Sep 9 15:04:52 2025Partition dev_cpuonly: 10 nodes idle\rPartition cpuonly: 26 nodes idle\rPartition dev_accelerated:\t 0 nodes idle\rPartition accelerated: 29 nodes idle\rPartition dev_accelerated-h100 :\t 0 nodes idle\rPartition accelerated-h100:\t 0 nodes idle\rPartition large:\t 0 nodes idle\rPartition accelerated-h200:\t 0 nodes idle",,terminal_output
11
+ 10,139401,"TERMINAL",0,0,"3\t",,terminal_output
12
+ 11,140419,"TERMINAL",0,0,"4\t",,terminal_output
13
+ 12,140811,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1990:~/Projects/jasmine",,terminal_output
14
+ 13,146318,"TERMINAL",0,0,"_node",,terminal_command
15
+ 14,146350,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1990:~/Projects/jasmine",,terminal_output
16
+ 15,150256,"TERMINAL",0,0,"salloc --time=05:00:00 --partition=accelerated --nodes=1 --gres=gpu:1 --cpus-per-task=8",,terminal_command
17
+ 16,150320,"TERMINAL",0,0,"]633;Csalloc: Granted job allocation 3480467\r\n",,terminal_output
18
+ 17,150455,"TERMINAL",0,0,"salloc: Waiting for resource configuration\r\n",,terminal_output
19
+ 18,177507,"TERMINAL",0,0,"salloc: Nodes hkn0818 are ready for job\r\n",,terminal_output
20
+ 19,178680,"TERMINAL",0,0,"]0;tum_cte0515@hkn0818:~/Projects/jasmine[?2004h[tum_cte0515@hkn0818 jasmine]$ ",,terminal_output
21
+ 20,184841,"TERMINAL",0,0,"s",,terminal_output
22
+ 21,185268,"TERMINAL",0,0,"",,terminal_output
23
+ 22,185837,"TERMINAL",0,0,"cd",,terminal_output
24
+ 23,186104,"TERMINAL",0,0,".",,terminal_output
25
+ 24,186235,"TERMINAL",0,0,".",,terminal_output
26
+ 25,186821,"TERMINAL",0,0,"",,terminal_output
27
+ 26,187026,"TERMINAL",0,0,"",,terminal_output
28
+ 27,187154,"TERMINAL",0,0," ",,terminal_output
29
+ 28,187287,"TERMINAL",0,0,".",,terminal_output
30
+ 29,187418,"TERMINAL",0,0,".",,terminal_output
31
+ 30,187533,"TERMINAL",0,0,"\r\n[?2004l\r]0;tum_cte0515@hkn0818:~/Projects[?2004h[tum_cte0515@hkn0818 Projects]$ ",,terminal_output
32
+ 31,187833,"TERMINAL",0,0,"c",,terminal_output
33
+ 32,187906,"TERMINAL",0,0,"d",,terminal_output
34
+ 33,188023,"TERMINAL",0,0," ",,terminal_output
35
+ 34,188446,"TERMINAL",0,0,"j",,terminal_output
36
+ 35,188581,"TERMINAL",0,0,"a",,terminal_output
37
+ 36,189081,"TERMINAL",0,0,"",,terminal_output
38
+ 37,189470,"TERMINAL",0,0,"f",,terminal_output
39
+ 38,189596,"TERMINAL",0,0,"ar/",,terminal_output
40
+ 39,190052,"TERMINAL",0,0,"\r\n[?2004l\r]0;tum_cte0515@hkn0818:~/Projects/jafar[?2004h[tum_cte0515@hkn0818 jafar]$ ",,terminal_output
41
+ 40,192215,"TERMINAL",0,0,"s",,terminal_output
42
+ 41,192295,"TERMINAL",0,0,"o",,terminal_output
43
+ 42,192360,"TERMINAL",0,0,"u",,terminal_output
44
+ 43,192442,"TERMINAL",0,0,"r",,terminal_output
45
+ 44,192712,"TERMINAL",0,0,"c",,terminal_output
46
+ 45,192823,"TERMINAL",0,0,"e ",,terminal_output
47
+ 46,193263,"TERMINAL",0,0,".",,terminal_output
48
+ 47,193438,"TERMINAL",0,0,"v",,terminal_output
49
+ 48,193680,"TERMINAL",0,0,"env/",,terminal_output
50
+ 49,193926,"TERMINAL",0,0,"b",,terminal_output
51
+ 50,193991,"TERMINAL",0,0,"in/",,terminal_output
52
+ 51,194269,"TERMINAL",0,0,"ac",,terminal_output
53
+ 52,194456,"TERMINAL",0,0,"tivate",,terminal_output
54
+ 53,194719,"TERMINAL",0,0,"\r\n[?2004l\r]0;tum_cte0515@hkn0818:~/Projects/jafar[?2004h(jafar) [tum_cte0515@hkn0818 jafar]$ ",,terminal_output
55
+ 54,199639,"TERMINAL",0,0,"c",,terminal_output
56
+ 55,200167,"TERMINAL",0,0,"",,terminal_output
57
+ 56,200333,"TERMINAL",0,0,"c",,terminal_output
58
+ 57,200457,"TERMINAL",0,0,"u",,terminal_output
59
+ 58,200651,"TERMINAL",0,0,"r",,terminal_output
60
+ 59,200855,"TERMINAL",0,0,"s",,terminal_output
61
+ 60,200929,"TERMINAL",0,0,"o",,terminal_output
62
+ 61,201054,"TERMINAL",0,0,"r",,terminal_output
63
+ 62,201137,"TERMINAL",0,0," ",,terminal_output
64
+ 63,201325,"TERMINAL",0,0,".",,terminal_output
65
+ 64,203292,"TERMINAL",0,0,"",,terminal_output
66
+ 65,203449,"TERMINAL",0,0,"",,terminal_output
67
+ 66,204518,"TERMINAL",0,0,"bash",,terminal_focus
68
+ 67,209503,"TERMINAL",0,0,"cursor ../jafar/",,terminal_command
69
+ 68,209549,"TERMINAL",0,0,"]633;C",,terminal_output
70
+ 69,209647,"TERMINAL",0,0,"]0;tum_cte0515@hkn1990:~/Projects/jasmine",,terminal_output
71
+ 70,296145,"TERMINAL",0,0,"srun",,terminal_focus
72
+ 71,297158,"TERMINAL",0,0,"sh",,terminal_output
73
+ 72,297269,"TERMINAL",0,0," ",,terminal_output
74
+ 73,297457,"TERMINAL",0,0,"s",,terminal_output
75
+ 74,297642,"TERMINAL",0,0,"a",,terminal_output
76
+ 75,297756,"TERMINAL",0,0,"m",,terminal_output
77
+ 76,298119,"TERMINAL",0,0,"",,terminal_output
78
+ 77,298266,"TERMINAL",0,0,"",,terminal_output
79
+ 78,298379,"TERMINAL",0,0,"",,terminal_output
80
+ 79,298493,"TERMINAL",0,0,"",,terminal_output
81
+ 80,298649,"TERMINAL",0,0,"",,terminal_output
82
+ 81,298774,"TERMINAL",0,0,"",,terminal_output
83
+ 82,298990,"TERMINAL",0,0,"p",,terminal_output
84
+ 83,299131,"TERMINAL",0,0,"y",,terminal_output
85
+ 84,299351,"TERMINAL",0,0,"t",,terminal_output
86
+ 85,299403,"TERMINAL",0,0,"h",,terminal_output
87
+ 86,299606,"TERMINAL",0,0,"o",,terminal_output
88
+ 87,299785,"TERMINAL",0,0,"n",,terminal_output
89
+ 88,299839,"TERMINAL",0,0," ",,terminal_output
90
+ 89,300340,"TERMINAL",0,0,"",,terminal_output
91
+ 90,300490,"TERMINAL",0,0,"",,terminal_output
92
+ 91,300640,"TERMINAL",0,0,"",,terminal_output
93
+ 92,300793,"TERMINAL",0,0,"",,terminal_output
94
+ 93,300915,"TERMINAL",0,0,"",,terminal_output
95
+ 94,301091,"TERMINAL",0,0,"",,terminal_output
96
+ 95,301270,"TERMINAL",0,0,"",,terminal_output
97
+ 96,304897,"slurm/jobs/mihir/horeka/preprocessing/coinrun_chunked.sh",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=1\n#SBATCH --time=10:00:00\n#SBATCH --partition=large\n#SBATCH --cpus-per-task=16\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/preprocess/coinrun/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/preprocess/coinrun/%x_%j.log\n#SBATCH --job-name=preprocess_coinrun_chunked\n\nsource .venv/bin/activate\n\npython generate_dataset.py \\n --min_episode_length 1000 \\n --output_dir /hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_test \\n --num_episodes 50",shellscript,tab
98
+ 97,315511,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=8\n#SBATCH --ntasks-per-node=4\n#SBATCH --time=48:00:00\n#SBATCH --partition=accelerated\n#SBATCH --cpus-per-task=5\n#SBATCH --gres=gpu:4\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/maskgit/dynamics-cotraining/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/maskgit/dynamics-cotraining/%x_%j.log\n#SBATCH --job-name=train_dynamics_maskgit_8_node\n#SBATCH --requeue\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\n\n# --- signal trap to requeue job before timeout ---\nrequeue_job() {\n echo ""[$(date)] caught sigusr1 (timeout warning), requeueing slurm job $SLURM_JOB_ID...""\n # optional: trigger checkpoint saving here\n # e.g., touch $checkpoint_dir/requeue_trigger\n scontrol requeue $SLURM_JOB_ID\n exit 0\n}\n\ntrap requeue_job sigusr1\n\n# set checkpoint flag based on restart count\nrestart_count=$(scontrol show job $SLURM_JOB_ID | grep -o 'Restarts=[0-9]*' | cut -d'=' -f2)\n\nif [ $restart_count -eq 0 ]; then\n restore_ckpt_flag=""--no-restore-ckpt""\nelse\n restore_ckpt_flag=""--restore-ckpt""\nfi\n\n\n\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\nsource .venv/bin/activate\n\narray_records_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_new/open_ai_minecraft_arrayrecords_chunked\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/mihir/holiday/maskgit/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\ntokenizer_ckpt_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer/train_tokenizer_1e-4/3412401\n\nenv | grep SLURM\n\nsrun python train_dynamics.py \\n --save_ckpt \\n $restore_ckpt_flag \\n --wandb_id $SLURM_JOB_ID \\n --ckpt_dir $CHECKPOINT_DIR \\n --batch_size=160 \\n --init_lr=0 \\n --dyna_type=maskgit \\n --num_latent_actions=100 \\n --max_lr=8e-5 \\n --log_image_interval=1000 \\n --log \\n --log_checkpoint_interval=1000 \\n --name=dynamics-maskgit-8-node-$slurm_job_id \\n --tags dynamics maskgit 8-node post-launch-main \\n --entity instant-uv \\n --project jafar \\n --dyna_dim=1024 \\n --dyna_num_blocks=16 \\n --dyna_num_heads=16 \\n --dyna_ffn_dim=4096 \\n --tokenizer_checkpoint=$tokenizer_ckpt_dir \\n --data_dir $array_records_dir &\n\nchild_pid=$!\n\nwait $child_pid\n",shellscript,tab
99
+ 98,317803,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1257,0,"",shellscript,selection_mouse
100
+ 99,317823,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1256,0,"",shellscript,selection_command
101
+ 100,318630,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1231,0,"",shellscript,selection_mouse
102
+ 101,318645,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1230,0,"",shellscript,selection_command
103
+ 102,318788,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1230,1,"4",shellscript,selection_mouse
104
+ 103,318793,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1231,0,"",shellscript,selection_command
105
+ 104,318985,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1229,2,".4",shellscript,selection_mouse
106
+ 105,318986,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1224,7,"da/12.4",shellscript,selection_mouse
107
+ 106,318987,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1215,16," devel/cuda/12.4",shellscript,selection_mouse
108
+ 107,318987,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1212,19,"oad devel/cuda/12.4",shellscript,selection_mouse
109
+ 108,318988,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1210,21,"nload devel/cuda/12.4",shellscript,selection_mouse
110
+ 109,318988,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1207,24,"e unload devel/cuda/12.4",shellscript,selection_mouse
111
+ 110,318989,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1205,26,"ule unload devel/cuda/12.4",shellscript,selection_mouse
112
+ 111,318990,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1173,58,"odule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4",shellscript,selection_mouse
113
+ 112,318990,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",1172,59,"module unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4",shellscript,selection_mouse
114
+ 113,323244,"TERMINAL",0,0,"module unload mpi/openmpi/5.0\r\n\rmodule unload devel/cuda/12.4",,terminal_output
115
+ 114,323792,"TERMINAL",0,0,"module unload mpi/openmpi/5.0\r\n\rmodule unload devel/cuda/12.4\r\n[?2004l\r",,terminal_output
116
+ 115,323980,"TERMINAL",0,0,"]0;tum_cte0515@hkn0818:~/Projects/jafar[?2004h(jafar) [tum_cte0515@hkn0818 jafar]$ ",,terminal_output
117
+ 116,325638,"TERMINAL",0,0,"p",,terminal_output
118
+ 117,325835,"TERMINAL",0,0,"y",,terminal_output
119
+ 118,326049,"TERMINAL",0,0,"th",,terminal_output
120
+ 119,326267,"TERMINAL",0,0,"o",,terminal_output
121
+ 120,326445,"TERMINAL",0,0,"n ",,terminal_output
122
+ 121,326587,"TERMINAL",0,0,"s",,terminal_output
123
+ 122,326984,"TERMINAL",0,0,"",,terminal_output
124
+ 123,327730,"TERMINAL",0,0,"a",,terminal_output
125
+ 124,327897,"TERMINAL",0,0,"m",,terminal_output
126
+ 125,327962,"TERMINAL",0,0,"ple.py ",,terminal_output
127
+ 126,479201,"TERMINAL",0,0,"",,terminal_output
128
+ 127,479313,"TERMINAL",0,0,"",,terminal_output
129
+ 128,479457,"TERMINAL",0,0,"",,terminal_output
130
+ 129,479719,"TERMINAL",0,0,"s",,terminal_output
131
+ 130,479798,"TERMINAL",0,0,"h",,terminal_output
132
+ 131,479946,"TERMINAL",0,0," ",,terminal_output
133
+ 132,480208,"TERMINAL",0,0,"slurm/jobs/mihir/horeka/jafar_og_reproduction/og_coinrun_dynamics_reproduction-sample.sh",,terminal_output
134
+ 133,480569,"TERMINAL",0,0,"\rslurm/jobs/mihir/horeka/jafar_og_reproduction/og_coinrun_dynamics_reproduction-sample.sh\r\n[?2004l\r\r\nNote: the module ""mpi/openmpi/5.0"" cannot be unloaded because it was not loaded.\r\n\r\n",,terminal_output
135
+ 134,480642,"TERMINAL",0,0,"\r\nNote: the module ""devel/cuda/12.4"" cannot be unloaded because it was not loaded.\r\n\r\n",,terminal_output
136
+ 135,495073,"TERMINAL",0,0,"╭─ Parsing error ────────────────────────────╮\r\n│ Argument --checkpoint: expected 1 argument │\r\n│ ────────────────────────────────────────── │\r\n│ For full helptext, run sample.py --help │\r\n╰────────────────────────────────────────────╯\r\n",,terminal_output
137
+ 136,495881,"TERMINAL",0,0,"]0;tum_cte0515@hkn0818:~/Projects/jafar[?2004h(jafar) [tum_cte0515@hkn0818 jafar]$ ",,terminal_output
138
+ 137,515622,"TERMINAL",0,0,"bash",,terminal_focus
139
+ 138,519030,"TERMINAL",0,0,"cd $ws_dir",,terminal_command
140
+ 139,519130,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared",,terminal_output
141
+ 140,519620,"TERMINAL",0,0,"ls",,terminal_command
142
+ 141,519672,"TERMINAL",0,0,"]633;C",,terminal_output
143
+ 142,519736,"TERMINAL",0,0,"checkpoints count_items.sh data data_atari data_coinrun data_minecraft data_new huggingface logs possibly_corrupt_files_in_this_workspace.txt scripts\r\n]0;tum_cte0515@hkn1990:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared",,terminal_output
144
+ 143,521863,"TERMINAL",0,0,"cd checkpoints/",,terminal_command
145
+ 144,590615,"TERMINAL",0,0,"srun",,terminal_focus
146
+ 145,591123,"TERMINAL",0,0,"sh slurm/jobs/mihir/horeka/jafar_og_reproduction/og_coinrun_dynamics_reproduction-sample.sh",,terminal_output
147
+ 146,591321,"TERMINAL",0,0,"\r\n[?2004l\r\r\nNote: the module ""mpi/openmpi/5.0"" cannot be unloaded because it was not loaded.\r\n\r\n\r\nNote: the module ""devel/cuda/12.4"" cannot be unloaded because it was not loaded.\r\n\r\n",,terminal_output
148
+ 147,605029,"TERMINAL",0,0,"2025-09-09 15:12:38.956720: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
149
+ 148,606875,"TERMINAL",0,0,"2025-09-09 15:12:40.801380: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
150
+ 149,613803,"TERMINAL",0,0,"2025-09-09 15:12:47.615654: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
151
+ 150,620537,"TERMINAL",0,0,"2025-09-09 15:12:54.464597: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
152
+ 151,623582,"TERMINAL",0,0,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/.venv/lib/python3.10/site-packages/orbax/checkpoint/_src/serialization/type_handlers.py:1269: UserWarning: Sharding info not provided when restoring. Populating sharding info from sharding file. Please note restoration time will be slightly increased due to reading from file. Note also that this option is unsafe when restoring on a different topology than the checkpoint was saved with.\r\n warnings.warn(\r\n",,terminal_output
153
+ 152,632767,"TERMINAL",0,0,"Frame 1\r\n",,terminal_output
154
+ 153,636609,"TERMINAL",0,0,"2025-09-09 15:13:10.533420: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
155
+ 154,646296,"TERMINAL",0,0,"Frame 2\r\n",,terminal_output
156
+ 155,650947,"TERMINAL",0,0,"2025-09-09 15:13:24.859501: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
157
+ 156,652638,"TERMINAL",0,0,"2025-09-09 15:13:26.514152: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
158
+ 157,660390,"TERMINAL",0,0,"Frame 3\r\n",,terminal_output
159
+ 158,665267,"TERMINAL",0,0,"2025-09-09 15:13:39.121931: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
160
+ 159,666778,"TERMINAL",0,0,"2025-09-09 15:13:40.677335: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
161
+ 160,674375,"TERMINAL",0,0,"Frame 4\r\n",,terminal_output
162
+ 161,679274,"TERMINAL",0,0,"2025-09-09 15:13:53.202302: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
163
+ 162,680926,"TERMINAL",0,0,"2025-09-09 15:13:54.848446: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
164
+ 163,688985,"TERMINAL",0,0,"Frame 5\r\n",,terminal_output
165
+ 164,694378,"TERMINAL",0,0,"2025-09-09 15:14:08.272770: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
166
+ 165,695951,"TERMINAL",0,0,"2025-09-09 15:14:09.862514: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
167
+ 166,703627,"TERMINAL",0,0,"Frame 6\r\n",,terminal_output
168
+ 167,709262,"TERMINAL",0,0,"2025-09-09 15:14:23.141537: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
169
+ 168,710977,"TERMINAL",0,0,"2025-09-09 15:14:24.889095: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
170
+ 169,718590,"TERMINAL",0,0,"Frame 7\r\n",,terminal_output
171
+ 170,723917,"TERMINAL",0,0,"2025-09-09 15:14:37.836699: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
172
+ 171,725556,"TERMINAL",0,0,"2025-09-09 15:14:39.463510: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
173
+ 172,733384,"TERMINAL",0,0,"Frame 8\r\n",,terminal_output
174
+ 173,738800,"TERMINAL",0,0,"2025-09-09 15:14:52.727758: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
175
+ 174,740402,"TERMINAL",0,0,"2025-09-09 15:14:54.299840: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
176
+ 175,749092,"TERMINAL",0,0,"Frame 9\r\n",,terminal_output
177
+ 176,754734,"TERMINAL",0,0,"2025-09-09 15:15:08.632875: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
178
+ 177,756531,"TERMINAL",0,0,"2025-09-09 15:15:10.383487: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
179
+ 178,764967,"TERMINAL",0,0,"Frame 10\r\n",,terminal_output
180
+ 179,770735,"TERMINAL",0,0,"2025-09-09 15:15:24.664649: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
181
+ 180,772393,"TERMINAL",0,0,"2025-09-09 15:15:26.310567: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
182
+ 181,781170,"TERMINAL",0,0,"Frame 11\r\n",,terminal_output
183
+ 182,787078,"TERMINAL",0,0,"2025-09-09 15:15:40.965308: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
184
+ 183,788711,"TERMINAL",0,0,"2025-09-09 15:15:42.606920: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
185
+ 184,797254,"TERMINAL",0,0,"Frame 12\r\n",,terminal_output
186
+ 185,803163,"TERMINAL",0,0,"2025-09-09 15:15:56.991416: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
187
+ 186,804697,"TERMINAL",0,0,"2025-09-09 15:15:58.566806: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
188
+ 187,813965,"TERMINAL",0,0,"Frame 13\r\n",,terminal_output
189
+ 188,819878,"TERMINAL",0,0,"2025-09-09 15:16:13.806078: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
190
+ 189,821645,"TERMINAL",0,0,"2025-09-09 15:16:15.573480: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
191
+ 190,830300,"TERMINAL",0,0,"Frame 14\r\n",,terminal_output
192
+ 191,835874,"TERMINAL",0,0,"2025-09-09 15:16:29.796506: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
193
+ 192,837625,"TERMINAL",0,0,"2025-09-09 15:16:31.539961: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
194
+ 193,846471,"TERMINAL",0,0,"Frame 15\r\n",,terminal_output
195
+ 194,852495,"TERMINAL",0,0,"2025-09-09 15:16:46.418156: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
196
+ 195,854207,"TERMINAL",0,0,"2025-09-09 15:16:48.135477: W external/xla/xla/service/gpu/autotuning/dot_search_space.cc:200] All configs were filtered out because none of them sufficiently match the hints. Maybe the hints set does not contain a good representative set of valid configs?Working around this by using the full hints set instead.\r\n",,terminal_output
197
+ 196,865530,"TERMINAL",0,0,"SSIM: 0.6239567399024963\r\n",,terminal_output
198
+ 197,869800,"TERMINAL",0,0,"]0;tum_cte0515@hkn0818:~/Projects/jafar[?2004h(jafar) [tum_cte0515@hkn0818 jafar]$ ",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-629e4b25-2201-4663-a7f2-936116295b151757499356136-2025_09_10-12.16.59.652/source.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,5,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\nimport time\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nimport optax\nimport orbax\nimport numpy as np\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\n\nts = int(time.time())\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_resolution: int = 64\n data_dir: str = ""data/coinrun_episodes""\n # Optimization\n batch_size: int = 36\n min_lr: float = 3e-6\n max_lr: float = 3e-5\n warmup_steps: int = 5000\n # Tokenizer\n tokenizer_dim: int = 512\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 8\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 8\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_num_blocks: int = 12\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_gradients: bool = False\n name: str = """"\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n wandb_id: str = """"\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n outputs = state.apply_fn(\n params, inputs, training=True, rngs={""dropout"": inputs[""dropout_rng""]}\n )\n mask = outputs[""mask""]\n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n outputs[""token_logits""], outputs[""video_tokens""]\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = outputs[""token_logits""].argmax(-1) == outputs[""video_tokens""]\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(outputs[""token_logits""])\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=outputs[""token_logits""].max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\n@jax.jit\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n rng = jax.random.PRNGKey(args.seed)\n if args.log:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_resolution, args.image_resolution, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (args.batch_size, args.seq_len, *image_shape), dtype=jnp.float32\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n init_params = restore_genie_components(\n init_params, args.tokenizer_checkpoint, args.lam_checkpoint\n )\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4)\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n # --- TRAIN LOOP ---\n dataloader = get_dataloader(args.data_dir, args.seq_len, args.batch_size)\n step = 0\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng, _mask_rng = jax.random.split(rng, 3)\n inputs = dict(\n videos=videos,\n action=jnp.zeros((args.batch_size, args.seq_len), dtype=jnp.float32),\n dropout_rng=_rng,\n mask_rng=_mask_rng,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0:\n wandb.log({""loss"": loss, ""step"": step, **metrics})\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[15])),\n recon=wandb.Image(np.asarray(recon_seq[15])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n if step % args.log_checkpoint_interval == 0:\n ckpt = {""model"": train_state}\n orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n save_args = orbax_utils.save_args_from_target(ckpt)\n orbax_checkpointer.save(\n os.path.join(os.getcwd(), args.ckpt_dir, f""genie_{ts}_{step}""),\n ckpt,\n save_args=save_args,\n )\n if step >= args.num_steps:\n break\n",python,tab
3
+ 2,2706,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:16:59 PM [info] Activating crowd-code\n12:16:59 PM [info] Recording started\n12:16:59 PM [info] Initializing git provider using file system watchers...\n12:17:00 PM [info] Git repository found\n12:17:00 PM [info] Git provider initialized successfully\n12:17:00 PM [info] Initial git state: [object Object]\n",Log,tab
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-6488ed25-a64b-4b96-ae90-de59d09eaf2d1759672300294-2025_10_05-15.52.33.721/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-65955a28-c516-4123-abaf-6681358bdea31753192468219-2025_07_22-15.55.21.96/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-6aec90c8-8d95-4bad-afcb-92c28c6ff5241753889052956-2025_07_30-17.24.41.914/source.csv ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 2,825,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"5:24:41 PM [info] Activating crowd-code\n5:24:41 PM [info] Recording started\n5:24:41 PM [info] Initializing git provider using file system watchers...\n",Log,tab
3
+ 3,828,"extension-output-pdoom-org.crowd-code-#1-crowd-code",150,0,"5:24:42 PM [info] Git repository found\n5:24:42 PM [info] Git provider initialized successfully\n",Log,content
4
+ 4,1007,"extension-output-pdoom-org.crowd-code-#1-crowd-code",245,0,"5:24:42 PM [info] Initial git state: [object Object]\n",Log,content
5
+ 5,3381,"TERMINAL",0,0,"git branch",,terminal_command
6
+ 6,3453,"TERMINAL",0,0,"]633;E;2025-07-30 17:24:45 git branch;adbf53fe-397b-40d3-9339-94ea79afad56]633;C[?1h=\r add-wandb-name-and-tags\r\n before-nnx\r\n causal-st-transformer\r\n causal-transformer-dynamics-model\r\n convert-to-jax-array-in-iter\r\n correct-batched-sampling\r\n dev\r\n dont-let-tf-see-gpu\r\n feat/explicit-image-dims\r\n fix-action-padding-lam-future-information-access\r\n fix-sampling\r\n fix-transformer-forwardpass\r\n fix/spatiotemporal-pe-once-in-STTransformer\r\n grad-norm-log-and-clip\r\n grain-dataloader\r\n logging-variants\r\n lr-schedules\r\n main\r\n maskgit-different-maskprob-per-sample\r\n metrics-logging-for-dynamics-model\r\n monkey-patch\r\n* new-arch-sampling\r\n preprocess_video\r\n refactor-tmp\r\n revised-dataloader\r\n runner\r\n runner-grain\r\n sample-from-different-topologies\r\n speedup-tfrecord-preprocessing\r\n tmp\r\n:",,terminal_output
7
+ 7,8802,"TERMINAL",0,0," add-wandb-name-and-tags\r\n before-nnx\r\n causal-st-transformer\r\n causal-transformer-dynamics-model\r\n convert-to-jax-array-in-iter\r\n correct-batched-sampling\r\n dev\r\n dont-let-tf-see-gpu\r\n feat/explicit-image-dims\r\n fix-action-padding-lam-future-information-access\r\n fix-sampling\r\n fix-transformer-forwardpass\r\n fix/spatiotemporal-pe-once-in-STTransformer\r\n grad-norm-log-and-clip\r\n grain-dataloader\r\n logging-variants\r\n lr-schedules\r\n main\r\n maskgit-different-maskprob-per-sample\r\n metrics-logging-for-dynamics-model\r\n monkey-patch\r\n* new-arch-sampling\r\n preprocess_video\r\n refactor-tmp\r\n revised-dataloader\r\n runner\r\n runner-grain\r\n sample-from-different-topologies\r\n speedup-tfrecord-preprocessing\r\n tmp\r\n:",,terminal_output
8
+ 8,9676,"TERMINAL",0,0,"\r[?1l>\r\n]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;130",,terminal_output
9
+ 9,12549,"TERMINAL",0,0,"git checkout fix/spatiotemporal-pe-once-in-STTransformer",,terminal_command
10
+ 10,12581,"TERMINAL",0,0,"]633;E;2025-07-30 17:24:54 git checkout fix/spatiotemporal-pe-once-in-STTransformer;adbf53fe-397b-40d3-9339-94ea79afad56]633;C",,terminal_output
11
+ 11,12867,"TERMINAL",0,0,"g",,terminal_output
12
+ 12,12874,"TERMINAL",0,0,"[?25li[?25h",,terminal_output
13
+ 13,12941,"TERMINAL",0,0,"[?25lSwitched to branch 'fix/spatiotemporal-pe-once-in-STTransformer'\r\n]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0[?25h",,terminal_output
14
+ 14,13779,"TERMINAL",0,0,"git diff",,terminal_command
15
+ 15,15343,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"Switched from branch 'new-arch-sampling' to 'fix/spatiotemporal-pe-once-in-STTransformer'",Log,git_branch_checkout
16
+ 16,15499,"extension-output-pdoom-org.crowd-code-#1-crowd-code",298,0,"5:24:57 PM [info] Branch checkout detected: new-arch-sampling -> fix/spatiotemporal-pe-once-in-STTransformer\n5:24:57 PM [info] Recording git checkout: Switched from branch 'new-arch-sampling' to 'fix/spatiotemporal-pe-once-in-STTransformer'\n5:24:57 PM [info] Resetting file cache due to branch checkout\n",Log,content
17
+ 17,16601,"TERMINAL",0,0,"git checkout main",,terminal_command
18
+ 18,16637,"TERMINAL",0,0,"]633;E;2025-07-30 17:24:58 git checkout main;adbf53fe-397b-40d3-9339-94ea79afad56]633;CSwitched to branch 'main'\r\nYour branch is up to date with 'origin/main'.\r\n]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0",,terminal_output
19
+ 19,20343,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"Switched from branch 'fix/spatiotemporal-pe-once-in-STTransformer' to 'main'",Log,git_branch_checkout
20
+ 20,20470,"extension-output-pdoom-org.crowd-code-#1-crowd-code",601,0,"5:25:02 PM [info] Branch checkout detected: fix/spatiotemporal-pe-once-in-STTransformer -> main\n5:25:02 PM [info] Recording git checkout: Switched from branch 'fix/spatiotemporal-pe-once-in-STTransformer' to 'main'\n5:25:02 PM [info] Resetting file cache due to branch checkout\n",Log,content
21
+ 21,78754,"TERMINAL",0,0,"git checkout fix/spatiotemporal-pe-once-in-STTransformer",,terminal_command
22
+ 22,80243,"TERMINAL",0,0,"git push",,terminal_command
23
+ 23,80344,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"Switched from branch 'main' to 'fix/spatiotemporal-pe-once-in-STTransformer'",Log,git_branch_checkout
24
+ 24,80522,"extension-output-pdoom-org.crowd-code-#1-crowd-code",878,0,"5:26:02 PM [info] Branch checkout detected: main -> fix/spatiotemporal-pe-once-in-STTransformer\n5:26:02 PM [info] Recording git checkout: Switched from branch 'main' to 'fix/spatiotemporal-pe-once-in-STTransformer'\n5:26:02 PM [info] Resetting file cache due to branch checkout\n",Log,content
25
+ 25,83258,"TERMINAL",0,0,"git push --set-upstream origin fix/spatiotemporal-pe-once-in-STTransformer",,terminal_command
26
+ 26,83333,"TERMINAL",0,0,"]633;E;2025-07-30 17:26:05 git push --set-upstream origin fix/spatiotemporal-pe-once-in-STTransformer;adbf53fe-397b-40d3-9339-94ea79afad56]633;C",,terminal_output
27
+ 27,84677,"TERMINAL",0,0,"Enumerating objects: 7, done.\r\nCounting objects: 14% (1/7)\rCounting objects: 28% (2/7)\rCounting objects: 42% (3/7)\rCounting objects: 57% (4/7)\rCounting objects: 71% (5/7)\rCounting objects: 85% (6/7)\rCounting objects: 100% (7/7)\rCounting objects: 100% (7/7), done.\r\nDelta compression using up to 152 threads\r\nCompressing objects: 25% (1/4)\rCompressing objects: 50% (2/4)\rCompressing objects: 75% (3/4)\rCompressing objects: 100% (4/4)\rCompressing objects: 100% (4/4), done.\r\nWriting objects: 25% (1/4)\rWriting objects: 50% (2/4)\rWriting objects: 75% (3/4)\rWriting objects: 100% (4/4)\rWriting objects: 100% (4/4), 870 bytes | 870.00 KiB/s, done.\r\nTotal 4 (delta 3), reused 0 (delta 0), pack-reused 0\r\n",,terminal_output
28
+ 28,84825,"TERMINAL",0,0,"remote: Resolving deltas: 0% (0/3)\rremote: Resolving deltas: 33% (1/3)\rremote: Resolving deltas: 66% (2/3)\rremote: Resolving deltas: 100% (3/3)\rremote: Resolving deltas: 100% (3/3), completed with 3 local objects.\r\nremote: This repository moved. Please use the new location:\r\nremote: git@github.com:p-doom/jasmine.git\r\n",,terminal_output
29
+ 29,84974,"TERMINAL",0,0,"remote: \r\nremote: Create a pull request for 'fix/spatiotemporal-pe-once-in-STTransformer' on GitHub by visiting:\r\nremote: https://github.com/p-doom/jasmine/pull/new/fix/spatiotemporal-pe-once-in-STTransformer\r\nremote: \r\n",,terminal_output
30
+ 30,85061,"TERMINAL",0,0,"To github.com:p-doom/jafar.git\r\n * [new branch] fix/spatiotemporal-pe-once-in-STTransformer -> fix/spatiotemporal-pe-once-in-STTransformer\r\nbranch 'fix/spatiotemporal-pe-once-in-STTransformer' set up to track 'origin/fix/spatiotemporal-pe-once-in-STTransformer'.\r\n",,terminal_output
31
+ 31,85082,"TERMINAL",0,0,"]0;tum_cte0515@hkn1991:~/Projects/jafar]633;D;0]633;P;Cwd=/home/hk-project-p0023960/tum_cte0515/Projects/jafar",,terminal_output
32
+ 32,167394,"genie.py",0,0,"from typing import Dict\n\nimport optax\nimport jax\nimport jax.numpy as jnp\nimport flax.nnx as nnx\nimport orbax.checkpoint as ocp\n\nfrom models.dynamics import DynamicsMaskGIT\nfrom models.lam import LatentActionModel\nfrom models.tokenizer import TokenizerVQVAE\n\n\nclass Genie(nnx.Module):\n """"""Genie model""""""\n\n def __init__(\n self,\n in_dim: int,\n tokenizer_dim: int,\n tokenizer_ffn_dim: int,\n latent_patch_dim: int,\n num_patch_latents: int,\n patch_size: int,\n tokenizer_num_blocks: int,\n tokenizer_num_heads: int,\n lam_dim: int,\n lam_ffn_dim: int,\n latent_action_dim: int,\n num_latent_actions: int,\n lam_patch_size: int,\n lam_num_blocks: int,\n lam_num_heads: int,\n lam_co_train: bool,\n dyna_dim: int,\n dyna_ffn_dim: int,\n dyna_num_blocks: int,\n dyna_num_heads: int,\n param_dtype: jnp.dtype,\n dtype: jnp.dtype,\n use_flash_attention: bool,\n rngs: nnx.Rngs,\n dropout: float = 0.0,\n mask_limit: float = 0.0,\n ):\n # --- Tokenizer ---\n self.in_dim = in_dim\n self.tokenizer_dim = tokenizer_dim\n self.tokenizer_ffn_dim = tokenizer_ffn_dim\n self.latent_patch_dim = latent_patch_dim\n self.num_patch_latents = num_patch_latents\n self.patch_size = patch_size\n self.tokenizer_num_blocks = tokenizer_num_blocks\n self.tokenizer_num_heads = tokenizer_num_heads\n # --- LAM ---\n self.lam_dim = lam_dim\n self.lam_ffn_dim = lam_ffn_dim\n self.latent_action_dim = latent_action_dim\n self.num_latent_actions = num_latent_actions\n self.lam_patch_size = lam_patch_size\n self.lam_num_blocks = lam_num_blocks\n self.lam_num_heads = lam_num_heads\n self.lam_co_train = lam_co_train\n # --- Dynamics ---\n self.dyna_dim = dyna_dim\n self.dyna_ffn_dim = dyna_ffn_dim\n self.dyna_num_blocks = dyna_num_blocks\n self.dyna_num_heads = dyna_num_heads\n self.param_dtype = param_dtype\n self.dtype = dtype\n self.use_flash_attention = use_flash_attention\n self.dropout = dropout\n self.mask_limit = mask_limit\n\n self.tokenizer = TokenizerVQVAE(\n in_dim=self.in_dim,\n model_dim=self.tokenizer_dim,\n ffn_dim=self.tokenizer_ffn_dim,\n latent_dim=self.latent_patch_dim,\n num_latents=self.num_patch_latents,\n patch_size=self.patch_size,\n num_blocks=self.tokenizer_num_blocks,\n num_heads=self.tokenizer_num_heads,\n dropout=0.0,\n codebook_dropout=0.0,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n self.lam = LatentActionModel(\n in_dim=self.in_dim,\n model_dim=self.lam_dim,\n ffn_dim=self.lam_ffn_dim,\n latent_dim=self.latent_patch_dim,\n num_latents=self.num_latent_actions,\n patch_size=self.lam_patch_size,\n num_blocks=self.lam_num_blocks,\n num_heads=self.lam_num_heads,\n dropout=0.0,\n codebook_dropout=0.0,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n self.dynamics = DynamicsMaskGIT(\n model_dim=self.dyna_dim,\n ffn_dim=self.dyna_ffn_dim,\n num_latents=self.num_patch_latents,\n latent_action_dim=self.latent_action_dim,\n num_blocks=self.dyna_num_blocks,\n num_heads=self.dyna_num_heads,\n dropout=self.dropout,\n mask_limit=self.mask_limit,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n use_flash_attention=self.use_flash_attention,\n rngs=rngs,\n )\n\n def __call__(\n self, batch: Dict[str, jax.Array], training: bool = True\n ) -> Dict[str, jax.Array]:\n videos_BTHWC = batch[""videos""]\n tokenizer_outputs = self.tokenizer.vq_encode(videos_BTHWC, training=False)\n token_indices_BTN = tokenizer_outputs[""indices""]\n lam_outputs = self.lam.vq_encode(videos_BTHWC, training=False)\n z_q_BTm11L = lam_outputs[""z_q""]\n action_indices_E = lam_outputs[""indices""]\n latent_actions_BTm11L = jax.lax.cond(\n self.lam_co_train,\n lambda: z_q_BTm11L,\n lambda: jax.lax.stop_gradient(z_q_BTm11L),\n )\n outputs = dict(\n video_tokens=jax.lax.stop_gradient(token_indices_BTN),\n latent_actions=latent_actions_BTm11L,\n )\n outputs[""mask_rng""] = batch[""mask_rng""]\n dyna_logits_BTNV, dyna_mask = self.dynamics(outputs, training)\n outputs[""token_logits""] = dyna_logits_BTNV\n if dyna_mask is not None:\n outputs[""mask""] = dyna_mask\n mle_indices_BTN = jnp.argmax(outputs[""token_logits""], axis=-1)\n H, W = batch[""videos""].shape[2:4]\n outputs[""recon""] = self.tokenizer.decode(mle_indices_BTN, (H, W))\n outputs[""lam_indices""] = action_indices_E\n return outputs\n\n def sample(\n self,\n batch: Dict[str, jax.Array],\n seq_len: int,\n steps: int = 25,\n temperature: float = 1,\n sample_argmax: bool = False,\n ) -> jax.Array:\n """"""\n Autoregressively samples up to `seq_len` future frames, following Figure 8 of the paper.\n\n - Input frames are tokenized once.\n - Future frames are generated autoregressively in token space.\n - All frames are detokenized in a single pass.\n\n Note:\n - For interactive or step-wise sampling, detokenization should occur after each action.\n - To maintain consistent tensor shapes across timesteps, all current and future frames are decoded at every step.\n - Temporal causal structure is preserved by\n a) reapplying the mask before each decoding step.\n b) a temporal causal mask is applied within each ST-transformer block.\n\n Dimension keys:\n B: batch size\n T: number of input (conditioning) frames\n N: number of patches per frame\n M: model dimension\n S: sequence length\n H: height\n W: width\n D: B * T * N\n E: B * (T - 1)\n """"""\n # --- Encode videos and actions ---\n videos_BTHWC = batch[""videos""]\n latent_actions_E = batch[""latent_actions""]\n tokenizer_out = self.tokenizer.vq_encode(videos_BTHWC, training=False)\n token_idxs_BTN = tokenizer_out[""indices""]\n B, T, N = token_idxs_BTN.shape\n pad_shape = (B, seq_len - T, N)\n pad = jnp.zeros(pad_shape, dtype=token_idxs_BTN.dtype)\n token_idxs_BSN = jnp.concatenate([token_idxs_BTN, pad], axis=1)\n action_tokens_EL = self.lam.vq.get_codes(latent_actions_E)\n\n def maskgit_step_fn(\n carry: tuple[jax.Array, jax.Array, jax.Array, jax.Array], step: jax.Array\n ) -> tuple[tuple[jax.Array, jax.Array, jax.Array, jax.Array], None]:\n rng, token_idxs_BSN, mask_BSN, action_tokens_EL = carry\n S, N = token_idxs_BSN.shape[1:]\n\n # --- Construct + encode video ---\n vid_embed_BSNM = self.dynamics.patch_embed(token_idxs_BSN)\n mask_token_111M = self.dynamics.mask_token.value\n mask_expanded_BSN1 = mask_BSN[..., None]\n vid_embed_BSNM = jnp.where(mask_expanded_BSN1, mask_token_111M, vid_embed_BSNM)\n\n # --- Predict transition ---\n action_tokens_BSm1L = jnp.reshape(action_tokens_EL, (B, S - 1, 1))\n act_embed_BSm1M = self.dynamics.action_up(action_tokens_BSm1L)\n # FIXME (f.srambical): We must not pad the actions, but remove the last frame (https://github.com/p-doom/jasmine/issues/122)\n vid_embed_BSNM += jnp.pad(act_embed_BSm1M, ((0, 0), (1, 0), (0, 0), (0, 0)))\n unmasked_ratio = jnp.cos(jnp.pi * (step + 1) / (steps * 2))\n step_temp = temperature * (1.0 - unmasked_ratio)\n final_logits_BSNV = self.dynamics.transformer(vid_embed_BSNM) / step_temp\n\n # --- Sample new tokens for final frame ---\n if sample_argmax:\n sampled_token_idxs_BSN = jnp.argmax(final_logits_BSNV, axis=-1)\n else:\n rng, _rng = jax.random.split(rng)\n sampled_token_idxs_BSN = jax.random.categorical(_rng, final_logits_BSNV)\n gather_fn = jax.vmap(jax.vmap(jax.vmap(lambda x, y: x[y])))\n final_token_probs_BSN = gather_fn(\n jax.nn.softmax(final_logits_BSNV), sampled_token_idxs_BSN\n )\n final_token_probs_BSN += ~mask_BSN\n # Update masked tokens only\n token_idxs_BSN = jnp.where(mask_BSN, sampled_token_idxs_BSN, token_idxs_BSN)\n\n # --- Update mask ---\n num_unmasked_tokens = jnp.round(N * (1.0 - unmasked_ratio)).astype(int)\n idx_mask_N = jnp.arange(final_token_probs_BSN.shape[-1]) > num_unmasked_tokens\n sorted_idxs_BSN = jnp.argsort(final_token_probs_BSN, axis=-1, descending=True)\n mask_update_fn = jax.vmap(lambda msk, ids: msk.at[ids].set(idx_mask_N))\n new_mask_BSN = mask_update_fn(mask_BSN, sorted_idxs_BSN)\n\n new_carry = (rng, token_idxs_BSN, new_mask_BSN, action_tokens_EL)\n return new_carry, None\n\n def generation_step_fn(\n carry: tuple[jax.Array, jax.Array], step_t: jax.Array\n ) -> tuple[tuple[jax.Array, jax.Array], None]:\n rng, current_token_idxs_BSN = carry\n rng, step_rng = jax.random.split(rng)\n\n # Mask current and future frames (i.e., t >= step_t)\n mask_S = jnp.arange(seq_len) >= step_t\n mask_BSN = jnp.broadcast_to(mask_S[None, :, None], (B, seq_len, N)).astype(\n bool\n )\n masked_token_idxs_BSN = current_token_idxs_BSN * ~mask_BSN\n\n # --- Initialize and run MaskGIT loop ---\n init_carry_maskgit = (\n step_rng,\n masked_token_idxs_BSN,\n mask_BSN,\n action_tokens_EL,\n )\n final_carry_maskgit, _ = jax.lax.scan(\n maskgit_step_fn, init_carry_maskgit, jnp.arange(steps)\n )\n updated_token_idxs = final_carry_maskgit[1]\n new_carry = (rng, updated_token_idxs)\n return new_carry, None\n\n # --- Run the autoregressive generation using jax.lax.scan ---\n initial_carry = (batch[""rng""], token_idxs_BSN)\n timesteps_to_scan = jnp.arange(T, seq_len)\n final_carry, _ = jax.lax.scan(\n generation_step_fn, initial_carry, timesteps_to_scan\n )\n final_token_idxs = final_carry[1]\n\n # --- Decode all tokens at once at the end ---\n H, W = batch[""videos""].shape[2:4]\n final_frames = self.tokenizer.decode(\n final_token_idxs,\n video_hw=(H, W),\n )\n return final_frames\n\n def vq_encode(self, batch: Dict[str, jax.Array], training: bool) -> jax.Array:\n # --- Preprocess videos ---\n video_BTHWC = batch[""videos""]\n lam_output = self.lam.vq_encode(video_BTHWC, training=training)\n lam_indices_E = lam_output[""indices""]\n return lam_indices_E\n\n\n# FIXME (f.srambical): add conversion script for old checkpoints\ndef restore_genie_components(\n optimizer: nnx.Optimizer,\n sharding: jax.sharding.NamedSharding,\n rng: jax.Array,\n args,\n) -> nnx.Optimizer:\n """"""Restore pre-trained Genie components""""""\n rngs = nnx.Rngs(rng)\n\n # dummy values since we only use tx to initialize the dummy train states\n dummy_tx = optax.adamw(\n learning_rate=optax.constant_schedule(args.max_lr),\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n )\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.PyTreeRestore, ocp.handlers.PyTreeCheckpointHandler\n )\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n step_format_fixed_length=6,\n )\n tokenizer_checkpoint_manager = ocp.CheckpointManager(\n directory=args.tokenizer_checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n dummy_tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.tokenizer_dim,\n ffn_dim=args.tokenizer_ffn_dim,\n latent_dim=args.latent_patch_dim,\n num_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n num_blocks=args.tokenizer_num_blocks,\n num_heads=args.tokenizer_num_heads,\n dropout=args.dropout,\n codebook_dropout=args.dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n dummy_tokenizer_optimizer = nnx.Optimizer(dummy_tokenizer, dummy_tx)\n dummy_tokenizer_optimizer_state = nnx.state(dummy_tokenizer_optimizer)\n abstract_sharded_tokenizer_optimizer_state = _create_abstract_sharded_pytree(\n dummy_tokenizer_optimizer_state, sharding\n )\n restored_tokenizer = tokenizer_checkpoint_manager.restore(\n step=tokenizer_checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore( # type: ignore\n abstract_sharded_tokenizer_optimizer_state # type: ignore\n ),\n ),\n )[""model_state""]\n nnx.update(dummy_tokenizer_optimizer.model, restored_tokenizer.model)\n optimizer.model.tokenizer = dummy_tokenizer_optimizer.model\n tokenizer_checkpoint_manager.close()\n\n if args.lam_checkpoint:\n lam_checkpoint_manager = ocp.CheckpointManager(\n directory=args.lam_checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n dummy_lam = LatentActionModel(\n in_dim=args.image_channels,\n model_dim=args.lam_dim,\n ffn_dim=args.lam_ffn_dim,\n latent_dim=args.latent_patch_dim,\n num_latents=args.num_latent_actions,\n patch_size=args.lam_patch_size,\n num_blocks=args.lam_num_blocks,\n num_heads=args.lam_num_heads,\n dropout=args.dropout,\n codebook_dropout=args.dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n use_flash_attention=args.use_flash_attention,\n rngs=rngs,\n )\n dummy_lam_optimizer = nnx.Optimizer(dummy_lam, dummy_tx)\n dummy_lam_optimizer_state = nnx.state(dummy_lam_optimizer)\n abstract_sharded_lam_optimizer_state = _create_abstract_sharded_pytree(\n dummy_lam_optimizer_state, sharding\n )\n restored_lam_optimizer = lam_checkpoint_manager.restore(\n step=lam_checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.PyTreeRestore( # type: ignore\n abstract_sharded_lam_optimizer_state # type: ignore\n ),\n ),\n )[""model_state""]\n nnx.update(dummy_lam_optimizer.model, restored_lam_optimizer.model)\n optimizer.model.lam = dummy_lam_optimizer.model\n # Remove the LAM decoder to save memory and avoid unnecessary computation.\n del optimizer.model.lam.decoder\n lam_checkpoint_manager.close()\n\n return optimizer\n\n\ndef _create_abstract_sharded_pytree(\n pytree_template: nnx.GraphState, sharding_spec: jax.sharding.NamedSharding\n) -> jax.Array:\n """"""Replaces arrays in a pytree with ShapeDtypeStructs having the given sharding.""""""\n\n def map_fn(leaf_template):\n if hasattr(leaf_template, ""shape"") and hasattr(leaf_template, ""dtype""):\n return jax.ShapeDtypeStruct(\n leaf_template.shape, leaf_template.dtype, sharding=sharding_spec\n )\n return leaf_template\n\n return jax.tree_util.tree_map(map_fn, pytree_template)\n",python,tab
33
+ 33,168545,"genie.py",6235,0,"",python,selection_command
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-761e4728-7320-4c5d-bc55-ad231839bb781753709851371-2025_07_28-15.39.08.844/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-76d20b24-d9be-4730-bca0-3f5c7d0460a01758996810958-2025_09_27-20.14.06.310/source.csv ADDED
The diff for this file is too large to render. See raw diff
 
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-7c8743a1-f55a-4e45-b7aa-0b3df3c9f3c91752835699286-2025_07_18-12.49.02.294/source.csv ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,4,"models/dynamics.py",0,0,"from typing import Dict, Any\n\nimport jax\nimport jax.numpy as jnp\nimport flax.linen as nn\nimport einops\n\nfrom utils.nn import STTransformer\n\n\nclass DynamicsMaskGIT(nn.Module):\n """"""MaskGIT dynamics model""""""\n\n model_dim: int\n num_latents: int\n num_blocks: int\n num_heads: int\n dropout: float\n mask_limit: float\n param_dtype: jnp.dtype\n dtype: jnp.dtype\n\n def setup(self):\n self.dynamics = STTransformer(\n self.model_dim,\n self.num_latents,\n self.num_blocks,\n self.num_heads,\n self.dropout,\n self.param_dtype,\n self.dtype,\n spacial_bert=True,\n )\n self.patch_embed = nn.Embed(self.num_latents, self.model_dim)\n self.mask_token = self.param(\n ""mask_token"",\n nn.initializers.lecun_uniform(),\n (1, 1, 1, self.model_dim),\n )\n self.action_up = nn.Dense(\n self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n\n def __call__(self, batch: Dict[str, Any], training: bool = True) -> Dict[str, Any]:\n # --- Mask videos ---\n vid_embed = self.patch_embed(batch[""video_tokens""])\n if training:\n rng1, rng2 = jax.random.split(batch[""mask_rng""])\n mask_prob = jax.random.uniform(rng1, minval=self.mask_limit)\n mask = jax.random.bernoulli(rng2, mask_prob, vid_embed.shape[:-1])\n mask = mask.at[:, 0].set(False)\n vid_embed = jnp.where(jnp.expand_dims(mask, -1), self.mask_token, vid_embed)\n else:\n mask = None\n\n # --- Predict transition ---\n act_embed = self.action_up(batch[""latent_actions""])\n vid_embed += jnp.pad(act_embed, ((0, 0), (1, 0), (0, 0), (0, 0)))\n logits = self.dynamics(vid_embed)\n return dict(token_logits=logits, mask=mask)\n\n\nclass DynamicsAutoregressive(nn.Module):\n """"""Autoregressive (causal) dynamics model""""""\n\n model_dim: int\n num_latents: int\n num_blocks: int\n num_heads: int\n dropout: float\n param_dtype: jnp.dtype\n dtype: jnp.dtype\n\n def setup(self):\n self.dynamics = STTransformer(\n self.model_dim,\n self.num_latents,\n self.num_blocks,\n self.num_heads,\n self.dropout,\n self.param_dtype,\n self.dtype,\n spacial_bert=False,\n )\n self.patch_embed = nn.Embed(self.num_latents, self.model_dim)\n self.action_up = nn.Dense(\n self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n\n def __call__(self, batch: Dict[str, Any], training: bool = True) -> Dict[str, Any]:\n vid_embed = self.patch_embed(batch[""video_tokens""])\n act_embed = self.action_up(batch[""latent_actions""])\n vid_embed += jnp.pad(act_embed, ((0, 0), (1, 0), (0, 0), (0, 0)))\n vid_embed_padded = jnp.pad(vid_embed, ((0, 0), (0, 0), (1, 0), (0, 0)))\n logits = self.dynamics(vid_embed_padded)[:,:,1:]\n mask = jnp.ones(vid_embed.shape[:-1])\n return dict(token_logits=logits, mask=mask)",python,tab
3
+ 2,402,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:49:02 PM [info] Activating crowd-code\n12:49:02 PM [info] Recording started\n12:49:02 PM [info] Initializing git provider using file system watchers...\n12:49:02 PM [info] Git repository found\n12:49:02 PM [info] Git provider initialized successfully\n12:49:02 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 3,3198,"TERMINAL",0,0,"/bin/python3 /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt",,terminal_command
5
+ 4,3233,"TERMINAL",0,0,"]633;E;2025-07-18 12:49:05 /bin/python3 /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/printEnvVariablesToFile.py /hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash/envVars.txt;3a42ff33-fe06-4226-9417-7f10804f0a18]633;C",,terminal_output
6
+ 5,3297,"TERMINAL",0,0,"]0;tum_cte0515@hkn1991:/hkfs/home/project/hk-project-p0023960/tum_cte0515/.cursor-server/extensions/ms-python.python-2024.12.3-linux-x64/python_files/deactivate/bash]633;D;0",,terminal_output
7
+ 6,4955,"models/lam.py",0,0,"from typing import Dict, Any\n\nimport jax.numpy as jnp\nimport flax.linen as nn\n\nfrom utils.preprocess import patchify, unpatchify\nfrom utils.nn import STTransformer, VectorQuantizer\n\n\nclass LatentActionModel(nn.Module):\n """"""Latent Action ST-ViVit VQ-VAE""""""\n\n in_dim: int\n model_dim: int\n latent_dim: int\n num_latents: int\n patch_size: int\n num_blocks: int\n num_heads: int\n dropout: float\n codebook_dropout: float\n param_dtype: jnp.dtype\n dtype: jnp.dtype\n\n def setup(self):\n self.patch_token_dim = self.in_dim * self.patch_size**2\n self.encoder = STTransformer(\n self.model_dim,\n self.latent_dim,\n self.num_blocks,\n self.num_heads,\n self.dropout,\n self.param_dtype,\n self.dtype,\n )\n self.action_in = self.param(\n ""action_in"",\n nn.initializers.lecun_uniform(),\n (1, 1, 1, self.patch_token_dim),\n )\n self.vq = VectorQuantizer(\n self.latent_dim,\n self.num_latents,\n self.codebook_dropout,\n )\n self.patch_up = nn.Dense(\n self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n self.action_up = nn.Dense(\n self.model_dim,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n self.decoder = STTransformer(\n self.model_dim,\n self.patch_token_dim,\n self.num_blocks,\n self.num_heads,\n self.dropout,\n self.param_dtype,\n self.dtype,\n )\n\n def __call__(self, batch: Dict[str, Any], training: bool = True) -> Dict[str, Any]:\n # --- Encode + VQ ---\n H, W = batch[""videos""].shape[2:4]\n outputs = self.vq_encode(batch[""videos""], training)\n video_action_patches = self.action_up(outputs[""z_q""]) + self.patch_up(\n outputs[""patches""][:, :-1]\n )\n del outputs[""patches""]\n\n # --- Decode ---\n video_recon = self.decoder(video_action_patches)\n video_recon = video_recon.astype(jnp.float32)\n video_recon = nn.sigmoid(video_recon)\n video_recon = video_recon.astype(self.dtype)\n outputs[""recon""] = unpatchify(video_recon, self.patch_size, H, W)\n return outputs\n\n def vq_encode(self, videos: Any, training: bool = True) -> Dict[str, Any]:\n # --- Preprocess videos ---\n B, T = videos.shape[:2]\n patches = patchify(videos, self.patch_size)\n action_pad = jnp.broadcast_to(self.action_in, (B, T, 1, self.patch_token_dim))\n padded_patches = jnp.concatenate((action_pad, patches), axis=2)\n\n # --- Encode ---\n z = self.encoder(padded_patches) # (B, T, N, E)\n # Get latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n\n # --- Vector quantize ---\n z = z.reshape(B * (T - 1), self.latent_dim)\n z_q, z, emb, indices = self.vq(z, training)\n z_q = z_q.reshape(B, T - 1, 1, self.latent_dim)\n return dict(patches=patches, z_q=z_q, z=z, emb=emb, indices=indices)\n",python,tab
8
+ 7,11679,"models/lam.py",2162,0,"",python,selection_mouse
9
+ 8,11804,"models/lam.py",2159,3,"jnp",python,selection_mouse
10
+ 9,14630,"models/lam.py",2060,0,"",python,selection_mouse
11
+ 10,14633,"models/lam.py",2059,0,"",python,selection_command
12
+ 11,15171,"models/lam.py",2107,0,"",python,selection_mouse
13
+ 12,15318,"models/lam.py",2096,20,"video_action_patches",python,selection_mouse
14
+ 13,71040,"models/lam.py",2782,0,"",python,selection_mouse
15
+ 14,71169,"models/lam.py",2778,14,"padded_patches",python,selection_mouse
16
+ 15,72501,"models/lam.py",2696,0,"",python,selection_mouse
17
+ 16,72610,"models/lam.py",2695,2,"((",python,selection_mouse
18
+ 17,79356,"models/lam.py",2538,0,"",python,selection_mouse
19
+ 18,79489,"models/lam.py",2534,8,"patchify",python,selection_mouse
20
+ 19,80076,"models/lam.py",2529,0,"",python,selection_mouse
21
+ 20,80227,"models/lam.py",2524,7,"patches",python,selection_mouse
22
+ 21,81420,"models/lam.py",2529,0,"",python,selection_mouse
23
+ 22,82156,"models/lam.py",2524,7,"patches",python,selection_mouse
24
+ 23,88062,"models/lam.py",2669,0,"",python,selection_mouse
25
+ 24,88219,"models/lam.py",2663,14,"padded_patches",python,selection_mouse
26
+ 25,95005,"models/lam.py",2831,0,"",python,selection_mouse
27
+ 26,95165,"models/lam.py",2831,6,"action",python,selection_mouse
28
+ 27,95769,"models/lam.py",2669,0,"",python,selection_mouse
29
+ 28,95909,"models/lam.py",2663,14,"padded_patches",python,selection_mouse
30
+ 29,96023,"models/lam.py",2655,72," padded_patches = jnp.concatenate((action_pad, patches), axis=2)\n",python,selection_mouse
31
+ 30,96634,"models/lam.py",2669,0,"",python,selection_mouse
32
+ 31,96635,"models/lam.py",2663,14,"padded_patches",python,selection_mouse
33
+ 32,156184,"models/lam.py",2933,0,"",python,selection_mouse
34
+ 33,156229,"models/lam.py",2932,0,"",python,selection_command
35
+ 34,156811,"models/lam.py",3093,0,"",python,selection_mouse
36
+ 35,156852,"models/lam.py",3092,0,"",python,selection_command
37
+ 36,157452,"models/lam.py",3170,0,"",python,selection_mouse
38
+ 37,157453,"models/lam.py",3169,0,"",python,selection_command
39
+ 38,158312,"models/lam.py",2933,0,"",python,selection_mouse
40
+ 39,158313,"models/lam.py",2932,0,"",python,selection_command
41
+ 40,223766,"models/lam.py",2500,0,"",python,selection_mouse
42
+ 41,223922,"models/lam.py",2499,6,"videos",python,selection_mouse
43
+ 42,224169,"models/lam.py",2499,12,"videos.shape",python,selection_mouse
44
+ 43,224209,"models/lam.py",2499,13,"videos.shape[",python,selection_mouse
45
+ 44,224256,"models/lam.py",2499,14,"videos.shape[:",python,selection_mouse
46
+ 45,224257,"models/lam.py",2499,15,"videos.shape[:2",python,selection_mouse
47
+ 46,224301,"models/lam.py",2499,16,"videos.shape[:2]",python,selection_mouse
48
+ 47,224636,"models/lam.py",2515,0,"",python,selection_mouse
49
+ 48,224640,"models/lam.py",2514,0,"",python,selection_command
50
+ 49,225043,"models/lam.py",2515,0,"",python,selection_mouse
51
+ 50,225045,"models/lam.py",2514,0,"",python,selection_command
52
+ 51,225205,"models/lam.py",2514,1,"]",python,selection_mouse
53
+ 52,225207,"models/lam.py",2515,0,"",python,selection_command
54
+ 53,225270,"models/lam.py",2514,1,"]",python,selection_mouse
55
+ 54,225271,"models/lam.py",2510,5,"e[:2]",python,selection_mouse
56
+ 55,225271,"models/lam.py",2509,6,"pe[:2]",python,selection_mouse
57
+ 56,225272,"models/lam.py",2508,7,"ape[:2]",python,selection_mouse
58
+ 57,225300,"models/lam.py",2506,9,"shape[:2]",python,selection_mouse
59
+ 58,225348,"models/lam.py",2505,10,".shape[:2]",python,selection_mouse
60
+ 59,225392,"models/lam.py",2504,11,"s.shape[:2]",python,selection_mouse
61
+ 60,225392,"models/lam.py",2503,12,"os.shape[:2]",python,selection_mouse
62
+ 61,225393,"models/lam.py",2502,13,"eos.shape[:2]",python,selection_mouse
63
+ 62,225395,"models/lam.py",2501,14,"deos.shape[:2]",python,selection_mouse
64
+ 63,225485,"models/lam.py",2500,15,"ideos.shape[:2]",python,selection_mouse
65
+ 64,225984,"models/lam.py",2500,0,"",python,selection_mouse
66
+ 65,225985,"models/lam.py",2499,6,"videos",python,selection_mouse
67
+ 66,226228,"models/lam.py",2499,7,"videos.",python,selection_mouse
68
+ 67,226249,"models/lam.py",2499,12,"videos.shape",python,selection_mouse
69
+ 68,226295,"models/lam.py",2499,13,"videos.shape[",python,selection_mouse
70
+ 69,226338,"models/lam.py",2499,14,"videos.shape[:",python,selection_mouse
71
+ 70,226339,"models/lam.py",2499,15,"videos.shape[:2",python,selection_mouse
72
+ 71,226348,"models/lam.py",2499,16,"videos.shape[:2]",python,selection_mouse
73
+ 72,226644,"models/lam.py",2515,0,"",python,selection_mouse
74
+ 73,226648,"models/lam.py",2514,0,"",python,selection_command
75
+ 74,226797,"models/lam.py",2515,0,"",python,selection_mouse
76
+ 75,226799,"models/lam.py",2514,0,"",python,selection_command
77
+ 76,226966,"models/lam.py",2514,1,"]",python,selection_mouse
78
+ 77,227008,"models/lam.py",2515,0,"",python,selection_command
79
+ 78,227009,"models/lam.py",2514,1,"]",python,selection_mouse
80
+ 79,227013,"models/lam.py",2512,3,":2]",python,selection_mouse
81
+ 80,227054,"models/lam.py",2506,9,"shape[:2]",python,selection_mouse
82
+ 81,227100,"models/lam.py",2505,10,".shape[:2]",python,selection_mouse
83
+ 82,227125,"models/lam.py",2499,16,"videos.shape[:2]",python,selection_mouse
84
+ 83,227722,"models/lam.py",2500,0,"",python,selection_mouse
85
+ 84,228365,"models/lam.py",2383,0,"",python,selection_mouse
86
+ 85,228547,"models/lam.py",2377,9,"vq_encode",python,selection_mouse
87
+ 86,230444,"models/lam.py",2396,0,"",python,selection_mouse
88
+ 87,230609,"models/lam.py",2393,6,"videos",python,selection_mouse
89
+ 88,231398,"models/lam.py",2384,0,"",python,selection_mouse
90
+ 89,231528,"models/lam.py",2377,9,"vq_encode",python,selection_mouse
91
+ 90,232096,"models/lam.py",2396,0,"",python,selection_mouse
92
+ 91,232248,"models/lam.py",2393,6,"videos",python,selection_mouse
93
+ 92,232911,"models/lam.py",2384,0,"",python,selection_mouse
94
+ 93,233063,"models/lam.py",2377,9,"vq_encode",python,selection_mouse
95
+ 94,233900,"models/lam.py",2398,0,"",python,selection_mouse
96
+ 95,234064,"models/lam.py",2393,6,"videos",python,selection_mouse
97
+ 96,234808,"models/lam.py",2384,0,"",python,selection_mouse
98
+ 97,234931,"models/lam.py",2377,9,"vq_encode",python,selection_mouse
99
+ 98,235535,"models/lam.py",2471,0,"",python,selection_mouse
100
+ 99,236162,"models/lam.py",2396,0,"",python,selection_mouse
101
+ 100,236277,"models/lam.py",2393,6,"videos",python,selection_mouse
102
+ 101,237271,"models/lam.py",2382,0,"",python,selection_mouse
103
+ 102,237422,"models/lam.py",2377,9,"vq_encode",python,selection_mouse
104
+ 103,239596,"models/lam.py",2396,0,"",python,selection_mouse
105
+ 104,239714,"models/lam.py",2393,6,"videos",python,selection_mouse
106
+ 105,243202,"models/lam.py",2460,0,"",python,selection_mouse
107
+ 106,243586,"models/lam.py",2382,0,"",python,selection_mouse
108
+ 107,243748,"models/lam.py",2377,9,"vq_encode",python,selection_mouse
109
+ 108,247136,"models/dynamics.py",0,0,"",python,tab
110
+ 109,251589,"models/dynamics.py",2886,0,"",python,selection_mouse
111
+ 110,251711,"models/dynamics.py",2883,3,"pad",python,selection_mouse
112
+ 111,252204,"models/dynamics.py",2829,0,"",python,selection_mouse
113
+ 112,252345,"models/dynamics.py",2823,9,"action_up",python,selection_mouse
114
+ 113,258257,"models/dynamics.py",3031,0,"",python,selection_mouse
115
+ 114,258490,"models/dynamics.py",3031,1,"l",python,selection_mouse
116
+ 115,258506,"models/dynamics.py",3031,3,"lf.",python,selection_mouse
117
+ 116,258553,"models/dynamics.py",3031,4,"lf.d",python,selection_mouse
118
+ 117,258581,"models/dynamics.py",3031,5,"lf.dy",python,selection_mouse
119
+ 118,258582,"models/dynamics.py",3031,6,"lf.dyn",python,selection_mouse
120
+ 119,260088,"models/dynamics.py",3040,0,"",python,selection_mouse
121
+ 120,263134,"models/dynamics.py",2987,0,"",python,selection_mouse
122
+ 121,264608,"models/dynamics.py",2830,0,"",python,selection_mouse
123
+ 122,264753,"models/dynamics.py",2823,9,"action_up",python,selection_mouse
124
+ 123,275701,"genie.py",0,0,"from typing import Dict, Any\n\nimport optax\nimport jax\nimport jax.numpy as jnp\nimport flax.linen as nn\nfrom flax.training.train_state import TrainState\nimport orbax.checkpoint as ocp\n\nfrom models.dynamics import DynamicsMaskGIT, DynamicsAutoregressive\nfrom models.lam import LatentActionModel\nfrom models.tokenizer import TokenizerVQVAE\n\nimport os\nimport grain\n\n\nclass Genie(nn.Module):\n """"""Genie model""""""\n\n # --- Tokenizer ---\n in_dim: int\n tokenizer_dim: int\n latent_patch_dim: int\n num_patch_latents: int\n patch_size: int\n tokenizer_num_blocks: int\n tokenizer_num_heads: int\n # --- LAM ---\n lam_dim: int\n latent_action_dim: int\n num_latent_actions: int\n lam_patch_size: int\n lam_num_blocks: int\n lam_num_heads: int\n lam_co_train: bool\n # --- Dynamics ---\n dyna_dim: int\n dyna_num_blocks: int\n dyna_num_heads: int\n use_maskgit: bool\n param_dtype: jnp.dtype\n dtype: jnp.dtype\n dropout: float = 0.0\n mask_limit: float = 0.0\n\n def setup(self):\n self.tokenizer = TokenizerVQVAE(\n in_dim=self.in_dim,\n model_dim=self.tokenizer_dim,\n latent_dim=self.latent_patch_dim,\n num_latents=self.num_patch_latents,\n patch_size=self.patch_size,\n num_blocks=self.tokenizer_num_blocks,\n num_heads=self.tokenizer_num_heads,\n dropout=0.0,\n codebook_dropout=0.0,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n self.lam = LatentActionModel(\n in_dim=self.in_dim,\n model_dim=self.lam_dim,\n latent_dim=self.latent_patch_dim,\n num_latents=self.num_latent_actions,\n patch_size=self.lam_patch_size,\n num_blocks=self.lam_num_blocks,\n num_heads=self.lam_num_heads,\n dropout=0.0,\n codebook_dropout=0.0,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n\n if self.use_maskgit:\n self.dynamics = DynamicsMaskGIT(\n model_dim=self.dyna_dim,\n num_latents=self.num_patch_latents,\n num_blocks=self.dyna_num_blocks,\n num_heads=self.dyna_num_heads,\n dropout=self.dropout,\n mask_limit=self.mask_limit,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n ) \n else:\n self.dynamics = DynamicsAutoregressive(\n model_dim=self.dyna_dim,\n num_latents=self.num_patch_latents,\n num_blocks=self.dyna_num_blocks,\n num_heads=self.dyna_num_heads,\n dropout=self.dropout,\n param_dtype=self.param_dtype,\n dtype=self.dtype,\n )\n\n def __call__(self, batch: Dict[str, Any], training: bool = True) -> Dict[str, Any]:\n tokenizer_outputs = self.tokenizer.vq_encode(batch[""videos""], training=False)\n lam_outputs = self.lam.vq_encode(batch[""videos""], training=False)\n latent_actions = jax.lax.cond(\n self.lam_co_train,\n lambda: lam_outputs[""z_q""],\n lambda: jax.lax.stop_gradient(lam_outputs[""z_q""])\n )\n outputs = dict(\n video_tokens=jax.lax.stop_gradient(tokenizer_outputs[""indices""]),\n latent_actions=latent_actions,\n )\n outputs[""mask_rng""] = batch[""mask_rng""]\n dyna_outputs = self.dynamics(outputs, training)\n outputs.update(dyna_outputs)\n mle_indices = jnp.argmax(outputs[""token_logits""], axis=-1)\n outputs[""recon""] = self.tokenizer.decode(\n mle_indices, batch[""videos""].shape[2:4]\n )\n outputs[""lam_indices""] = lam_outputs[""indices""]\n return outputs\n\n\n def sample_causal(\n self,\n batch: Dict[str, Any],\n seq_len: int,\n temperature: float = 1,\n sample_argmax: bool = False,\n ):\n """"""\n Autoregressively samples up to `seq_len` future frames using the causal transformer backend.\n\n - Input frames are tokenized once.\n - Future frames are generated one at a time, each conditioned on all previous frames.\n - All frames are detokenized in a single pass at the end.\n\n Args:\n batch: Dict with at least ""videos"" (B, T, H, W, C)\n seq_len: total number of frames to generate (including context)\n temperature: sampling temperature\n sample_argmax: if True, use argmax instead of sampling\n\n Returns:\n Generated video frames (B, seq_len, H, W, C)\n """"""\n # --- Encode context frames ---\n tokenizer_out = self.tokenizer.vq_encode(batch[""videos""], training=False)\n token_idxs = tokenizer_out[""indices""] # (B, T, N)\n B, T, N = token_idxs.shape\n\n # jax.debug.print(""token_idxs shape: {}"", token_idxs.shape)\n # --- Prepare initial token sequence ---\n # Pad with zeros for future frames\n pad_shape = (B, seq_len - T, N)\n token_idxs_full = jnp.concatenate(\n [token_idxs, jnp.zeros(pad_shape, dtype=token_idxs.dtype)], axis=1\n ) # (B, seq_len, N)\n\n # --- Prepare latent actions ---\n action_tokens = self.lam.vq.get_codes(batch[""latent_actions""]) # (B, S-1, )\n # --- Autoregressive generation loop ---\n rng = batch[""rng""]\n for t in range(T, seq_len):\n for n in range(30):\n dyna_inputs = {\n ""video_tokens"": token_idxs_full,\n ""latent_actions"": action_tokens\n }\n # jax.debug.print(""token_idxs_full 0: {}"", token_idxs_full[0,:,0])\n dyna_outputs = self.dynamics(dyna_inputs, training=False)\n # # dyna_outputs[""token_logits""]: (B, t, N, vocab_size)\n # # We want the logits for the last time step (frame t-1 predicting t)\n jax.debug.breakpoint()\n next_token_logits = dyna_outputs[""token_logits""][:, t, n, :].astype(jnp.float32) # (B, 1, vocab_size)\n\n # Sample or argmax for each patch\n if sample_argmax:\n next_token = jnp.argmax(next_token_logits, axis=-1) # (B, 1)\n else:\n rng, step_rng = jax.random.split(rng)\n next_token = jax.random.categorical(\n step_rng, next_token_logits / temperature, axis=-1\n ) # (B, 1)\n\n # Insert the generated tokens into the sequence\n token_idxs_full = token_idxs_full.at[:, t, n].set(next_token)\n\n # --- Decode all tokens at once at the end ---\n final_frames = self.tokenizer.decode(\n token_idxs_full, video_hw=batch[""videos""].shape[2:4]\n )\n return final_frames\n\n\n @nn.compact\n def sample_maskgit(\n self,\n batch: Dict[str, Any],\n seq_len: int,\n steps: int = 25,\n temperature: float = 1,\n sample_argmax: bool = False,\n ) -> Any:\n """"""\n Autoregressively samples up to `seq_len` future frames, following Figure 8 of the paper.\n\n - Input frames are tokenized once.\n - Future frames are generated autoregressively in token space.\n - All frames are detokenized in a single pass.\n\n Note:\n - For interactive or step-wise sampling, detokenization should occur after each action.\n - To maintain consistent tensor shapes across timesteps, all current and future frames are decoded at every step.\n - Temporal causal structure is preserved by \n a) reapplying the mask before each decoding step.\n b) a temporal causal mask is applied within each ST-transformer block.\n\n Dimension keys:\n B: batch size \n T: number of input (conditioning) frames \n N: patches per frame \n S: sequence length \n A: action space \n D: model latent dimension\n """"""\n # --- Encode videos and actions ---\n tokenizer_out = self.tokenizer.vq_encode(batch[""videos""], training=False)\n token_idxs = tokenizer_out[""indices""] # (B, T, N)\n B, T, N = token_idxs.shape\n pad_shape = (B, seq_len - T, N)\n pad = jnp.zeros(pad_shape, dtype=token_idxs.dtype)\n token_idxs = jnp.concatenate([token_idxs, pad], axis=1) # (B, S, N)\n action_tokens = self.lam.vq.get_codes(batch[""latent_actions""]) \n\n MaskGITLoop = nn.scan(\n MaskGITStep,\n variable_broadcast=""params"",\n split_rngs={""params"": False},\n in_axes=0,\n out_axes=0,\n length=steps,\n )\n \n loop_fn = MaskGITLoop(\n dynamics=self.dynamics,\n tokenizer=self.tokenizer,\n temperature=temperature,\n sample_argmax=sample_argmax,\n steps=steps,\n )\n\n def generation_step_fn(carry, step_t):\n rng, current_token_idxs = carry\n rng, step_rng = jax.random.split(rng)\n\n # Mask current and future frames (i.e., t >= step_t)\n mask = jnp.arange(seq_len) >= step_t # (S,)\n mask = jnp.broadcast_to(mask[None, :, None], (B, seq_len, N)) # (B, S, N)\n mask = mask.astype(bool)\n masked_token_idxs = current_token_idxs * ~mask\n\n # --- Initialize and run MaskGIT loop ---\n init_carry_maskgit = (\n step_rng,\n masked_token_idxs,\n mask,\n action_tokens,\n )\n final_carry_maskgit, _ = loop_fn(init_carry_maskgit, jnp.arange(steps))\n updated_token_idxs = final_carry_maskgit[1]\n new_carry = (rng, updated_token_idxs)\n return new_carry, None\n\n # --- Run the autoregressive generation using scan ---\n initial_carry = (batch[""rng""], token_idxs)\n timesteps_to_scan = jnp.arange(T, seq_len)\n final_carry, _ = jax.lax.scan(\n generation_step_fn,\n initial_carry,\n timesteps_to_scan\n )\n final_token_idxs = final_carry[1]\n\n # --- Decode all tokens at once at the end ---\n final_frames = self.tokenizer.decode(\n final_token_idxs,\n video_hw=batch[""videos""].shape[2:4],\n )\n return final_frames\n\n def vq_encode(self, batch, training) -> Dict[str, Any]:\n # --- Preprocess videos ---\n lam_output = self.lam.vq_encode(batch[""videos""], training=training)\n return lam_output[""indices""]\n\n\nclass MaskGITStep(nn.Module):\n dynamics: nn.Module\n tokenizer: nn.Module\n temperature: float\n sample_argmax: bool\n steps: int\n\n @nn.compact\n def __call__(self, carry, x):\n rng, token_idxs, mask, action_tokens = carry\n step = x\n N = token_idxs.shape[2]\n\n # --- Construct + encode video ---\n vid_embed = self.dynamics.patch_embed(token_idxs) # (B, S, N, D)\n mask_token = self.dynamics.mask_token # (1, 1, 1, D,)\n mask_expanded = mask[..., None] # (B, S, N, 1) \n vid_embed = jnp.where(mask_expanded, mask_token, vid_embed)\n\n # --- Predict transition ---\n act_embed = self.dynamics.action_up(action_tokens)\n vid_embed += jnp.pad(act_embed, ((0, 0), (1, 0), (0, 0), (0, 0)))\n unmasked_ratio = jnp.cos(jnp.pi * (step + 1) / (self.steps * 2))\n step_temp = self.temperature * (1.0 - unmasked_ratio)\n final_logits = self.dynamics.dynamics(vid_embed) / step_temp\n\n # --- Sample new tokens for final frame ---\n if self.sample_argmax:\n sampled_token_idxs = jnp.argmax(final_logits, axis=-1)\n else:\n rng, _rng = jax.random.split(rng)\n sampled_token_idxs = jax.random.categorical(_rng, final_logits)\n gather_fn = jax.vmap(jax.vmap(jax.vmap(lambda x, y: x[y])))\n final_token_probs = gather_fn(jax.nn.softmax(final_logits), sampled_token_idxs)\n final_token_probs += ~mask\n # Update masked tokens only\n token_idxs = jnp.where(mask, sampled_token_idxs, token_idxs)\n\n # --- Update mask ---\n num_unmasked_tokens = jnp.round(N * (1.0 - unmasked_ratio)).astype(int)\n idx_mask = jnp.arange(final_token_probs.shape[-1]) > num_unmasked_tokens\n sorted_idxs = jnp.argsort(final_token_probs, axis=-1, descending=True)\n mask_update_fn = jax.vmap(lambda msk, ids: msk.at[ids].set(idx_mask))\n new_mask = mask_update_fn(mask, sorted_idxs)\n\n new_carry = (rng, token_idxs, new_mask, action_tokens)\n return new_carry, None\n\ndef restore_genie_components(\n train_state: TrainState,\n sharding: jax.sharding.NamedSharding,\n grain_iterator: grain.DataLoaderIterator,\n inputs: Dict[str, jax.Array],\n rng: jax.Array,\n args,\n):\n """"""Restore pre-trained Genie components""""""\n rng, _rng = jax.random.split(rng)\n\n # dummy values since we only use tx to initialize the dummy train states\n dummy_tx = optax.adamw(\n learning_rate=optax.constant_schedule(args.max_lr),\n b1=0.9,\n b2=0.9,\n weight_decay=1e-4,\n )\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add('model_state', ocp.args.StandardRestore, ocp.handlers.StandardCheckpointHandler)\n handler_registry.add('dataloader_state', grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler)\n \n\n checkpoint_options = ocp.CheckpointManagerOptions(\n step_format_fixed_length=6,\n )\n tokenizer_checkpoint_manager = ocp.CheckpointManager(\n directory=args.tokenizer_checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n dummy_tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.tokenizer_dim,\n latent_dim=args.latent_patch_dim,\n num_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n num_blocks=args.tokenizer_num_blocks,\n num_heads=args.tokenizer_num_heads,\n dropout=args.dropout,\n codebook_dropout=args.dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n )\n tokenizer_init_params = dummy_tokenizer.init(_rng, inputs)\n dummy_tokenizer_train_state = TrainState.create(\n apply_fn=dummy_tokenizer.apply, params=tokenizer_init_params, tx=dummy_tx\n )\n abstract_sharded_tokenizer_state = _create_abstract_sharded_pytree(\n dummy_tokenizer_train_state, sharding\n )\n restored_tokenizer = tokenizer_checkpoint_manager.restore(\n step=tokenizer_checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_sharded_tokenizer_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )[""model_state""]\n restored_tokenizer_params = restored_tokenizer.params[""params""]\n train_state.params[""params""][""tokenizer""].update(restored_tokenizer_params)\n tokenizer_checkpoint_manager.close()\n\n if args.lam_checkpoint:\n lam_checkpoint_manager = ocp.CheckpointManager(\n directory=args.lam_checkpoint,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n dummy_lam = LatentActionModel(\n in_dim=args.image_channels,\n model_dim=args.lam_dim,\n latent_dim=args.latent_patch_dim,\n num_latents=args.num_latent_actions,\n patch_size=args.lam_patch_size,\n num_blocks=args.lam_num_blocks,\n num_heads=args.lam_num_heads,\n dropout=args.dropout,\n codebook_dropout=args.dropout,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n )\n lam_init_params = dummy_lam.init(_rng, inputs)\n dummy_lam_train_state = TrainState.create(\n apply_fn=dummy_lam.apply, params=lam_init_params, tx=dummy_tx\n )\n abstract_sharded_lam_state = _create_abstract_sharded_pytree(\n dummy_lam_train_state, sharding\n )\n restored_lam = lam_checkpoint_manager.restore(\n step=lam_checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_sharded_lam_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )[""model_state""]\n restored_lam_params = restored_lam.params[""params""]\n # Genie does not initialize all LAM modules, thus we omit those extra modules during restoration\n # (f.srambical) FIXME: Currently, this is a small HBM memory crunch since the LAM's decoder is loaded into HBM and immediately dicarded.\n # A workaround would be to restore to host memory first, and only move the weights to HBM after pruning the decoder\n restored_lam_params = {\n k: v\n for k, v in restored_lam_params.items()\n if k in train_state.params[""params""][""lam""]\n }\n train_state.params[""params""][""lam""].update(restored_lam_params)\n lam_checkpoint_manager.close()\n\n return train_state\n\ndef _create_abstract_sharded_pytree(pytree_template, sharding_spec):\n """"""Replaces arrays in a pytree with ShapeDtypeStructs having the given sharding.""""""\n\n def map_fn(leaf_template):\n if hasattr(leaf_template, ""shape"") and hasattr(leaf_template, ""dtype""):\n return jax.ShapeDtypeStruct(\n leaf_template.shape, leaf_template.dtype, sharding=sharding_spec\n )\n return leaf_template\n\n return jax.tree_util.tree_map(map_fn, pytree_template)",python,tab
125
+ 124,307289,"genie.py",3010,0,"",python,selection_mouse
126
+ 125,307857,"genie.py",2931,0,"",python,selection_mouse
127
+ 126,308409,"genie.py",3020,0,"",python,selection_mouse
128
+ 127,308566,"genie.py",3017,9,"vq_encode",python,selection_mouse
129
+ 128,409573,"genie.py",3604,0,"",python,selection_mouse
130
+ 129,409576,"genie.py",3603,0,"",python,selection_command
131
+ 130,410046,"genie.py",3772,0,"",python,selection_mouse
132
+ 131,410054,"genie.py",3771,0,"",python,selection_command
133
+ 132,410559,"genie.py",3797,0,"",python,selection_mouse
134
+ 133,411067,"genie.py",3772,0,"",python,selection_mouse
135
+ 134,411080,"genie.py",3771,0,"",python,selection_command
136
+ 135,412609,"TERMINAL",0,0,"bash",,terminal_focus
137
+ 136,464986,"models/dynamics.py",0,0,"",python,tab
138
+ 137,469860,"models/lam.py",0,0,"",python,tab
139
+ 138,473097,"models/lam.py",2697,0,"",python,selection_mouse
140
+ 139,473666,"models/lam.py",2613,0,"",python,selection_mouse
141
+ 140,475909,"models/lam.py",2654,0,"\n ",python,content
142
+ 141,476310,"models/lam.py",2663,0,"#",python,content
143
+ 142,476311,"models/lam.py",2664,0,"",python,selection_keyboard
144
+ 143,476601,"models/lam.py",2664,0," ",python,content
145
+ 144,476602,"models/lam.py",2665,0,"",python,selection_keyboard
146
+ 145,477268,"models/lam.py",2665,0,"D",python,content
147
+ 146,477269,"models/lam.py",2666,0,"",python,selection_keyboard
148
+ 147,477371,"models/lam.py",2666,0,"O",python,content
149
+ 148,477373,"models/lam.py",2667,0,"",python,selection_keyboard
150
+ 149,477751,"models/lam.py",2667,0," ",python,content
151
+ 150,477752,"models/lam.py",2668,0,"",python,selection_keyboard
152
+ 151,478055,"models/lam.py",2667,1,"",python,content
153
+ 152,478165,"models/lam.py",2666,1,"",python,content
154
+ 153,478312,"models/lam.py",2665,1,"",python,content
155
+ 154,479439,"models/lam.py",2665,0,"F",python,content
156
+ 155,479440,"models/lam.py",2666,0,"",python,selection_keyboard
157
+ 156,479576,"models/lam.py",2666,0,"I",python,content
158
+ 157,479577,"models/lam.py",2667,0,"",python,selection_keyboard
159
+ 158,479721,"models/lam.py",2667,0,"X",python,content
160
+ 159,479722,"models/lam.py",2668,0,"",python,selection_keyboard
161
+ 160,480012,"models/lam.py",2668,0,"M",python,content
162
+ 161,480013,"models/lam.py",2669,0,"",python,selection_keyboard
163
+ 162,480115,"models/lam.py",2669,0,"E",python,content
164
+ 163,480116,"models/lam.py",2670,0,"",python,selection_keyboard
165
+ 164,480284,"models/lam.py",2670,0," ",python,content
166
+ 165,480285,"models/lam.py",2671,0,"",python,selection_keyboard
167
+ 166,480618,"models/lam.py",2671,0,"M",python,content
168
+ 167,480619,"models/lam.py",2672,0,"",python,selection_keyboard
169
+ 168,480801,"models/lam.py",2672,0,"I",python,content
170
+ 169,480802,"models/lam.py",2673,0,"",python,selection_keyboard
171
+ 170,481171,"models/lam.py",2672,1,"",python,content
172
+ 171,481546,"models/lam.py",2672,0,"i",python,content
173
+ 172,481547,"models/lam.py",2673,0,"",python,selection_keyboard
174
+ 173,481820,"models/lam.py",2672,1,"",python,content
175
+ 174,482134,"models/lam.py",2671,1,"",python,content
176
+ 175,482288,"models/lam.py",2671,0,"m",python,content
177
+ 176,482289,"models/lam.py",2672,0,"",python,selection_keyboard
178
+ 177,482455,"models/lam.py",2672,0,"i",python,content
179
+ 178,482456,"models/lam.py",2673,0,"",python,selection_keyboard
180
+ 179,482555,"models/lam.py",2673,0,"h",python,content
181
+ 180,482556,"models/lam.py",2674,0,"",python,selection_keyboard
182
+ 181,482649,"models/lam.py",2674,0,"i",python,content
183
+ 182,482650,"models/lam.py",2675,0,"",python,selection_keyboard
184
+ 183,482729,"models/lam.py",2675,0,"r",python,content
185
+ 184,482730,"models/lam.py",2676,0,"",python,selection_keyboard
186
+ 185,482867,"models/lam.py",2676,0," ",python,content
187
+ 186,482868,"models/lam.py",2677,0,"",python,selection_keyboard
188
+ 187,483095,"models/lam.py",2677,0,"d",python,content
189
+ 188,483096,"models/lam.py",2678,0,"",python,selection_keyboard
190
+ 189,483251,"models/lam.py",2678,0,"o",python,content
191
+ 190,483252,"models/lam.py",2679,0,"",python,selection_keyboard
192
+ 191,483382,"models/lam.py",2679,0," ",python,content
193
+ 192,483383,"models/lam.py",2680,0,"",python,selection_keyboard
194
+ 193,483533,"models/lam.py",2680,0,"t",python,content
195
+ 194,483534,"models/lam.py",2681,0,"",python,selection_keyboard
196
+ 195,483598,"models/lam.py",2681,0,"h",python,content
197
+ 196,483599,"models/lam.py",2682,0,"",python,selection_keyboard
198
+ 197,483724,"models/lam.py",2682,0,"i",python,content
199
+ 198,483725,"models/lam.py",2683,0,"",python,selection_keyboard
200
+ 199,483772,"models/lam.py",2683,0,"s",python,content
201
+ 200,483773,"models/lam.py",2684,0,"",python,selection_keyboard
202
+ 201,483880,"models/lam.py",2684,0," ",python,content
203
+ 202,483881,"models/lam.py",2685,0,"",python,selection_keyboard
204
+ 203,484433,"models/lam.py",2685,0,"t",python,content
205
+ 204,484434,"models/lam.py",2686,0,"",python,selection_keyboard
206
+ 205,484520,"models/lam.py",2686,0,"h",python,content
207
+ 206,484521,"models/lam.py",2687,0,"",python,selection_keyboard
208
+ 207,484628,"models/lam.py",2687,0,"e",python,content
209
+ 208,484629,"models/lam.py",2688,0,"",python,selection_keyboard
210
+ 209,484715,"models/lam.py",2688,0," ",python,content
211
+ 210,484716,"models/lam.py",2689,0,"",python,selection_keyboard
212
+ 211,484805,"models/lam.py",2689,0,"o",python,content
213
+ 212,484806,"models/lam.py",2690,0,"",python,selection_keyboard
214
+ 213,484879,"models/lam.py",2690,0,"t",python,content
215
+ 214,484880,"models/lam.py",2691,0,"",python,selection_keyboard
216
+ 215,485012,"models/lam.py",2691,0,"h",python,content
217
+ 216,485012,"models/lam.py",2692,0,"",python,selection_keyboard
218
+ 217,485111,"models/lam.py",2692,0,"e",python,content
219
+ 218,485112,"models/lam.py",2693,0,"",python,selection_keyboard
220
+ 219,485171,"models/lam.py",2693,0,"r",python,content
221
+ 220,485173,"models/lam.py",2694,0,"",python,selection_keyboard
222
+ 221,485283,"models/lam.py",2694,0," ",python,content
223
+ 222,485284,"models/lam.py",2695,0,"",python,selection_keyboard
224
+ 223,485667,"models/lam.py",2695,0,"w",python,content
225
+ 224,485668,"models/lam.py",2696,0,"",python,selection_keyboard
226
+ 225,485881,"models/lam.py",2696,0,"a",python,content
227
+ 226,485882,"models/lam.py",2697,0,"",python,selection_keyboard
228
+ 227,486046,"models/lam.py",2697,0,"y",python,content
229
+ 228,486047,"models/lam.py",2698,0,"",python,selection_keyboard
230
+ 229,486139,"models/lam.py",2698,0," ",python,content
231
+ 230,486140,"models/lam.py",2699,0,"",python,selection_keyboard
232
+ 231,486310,"models/lam.py",2699,0,"a",python,content
233
+ 232,486311,"models/lam.py",2700,0,"",python,selection_keyboard
234
+ 233,486497,"models/lam.py",2700,0,"r",python,content
235
+ 234,486498,"models/lam.py",2701,0,"",python,selection_keyboard
236
+ 235,486789,"models/lam.py",2701,0,"o",python,content
237
+ 236,486789,"models/lam.py",2702,0,"",python,selection_keyboard
238
+ 237,486986,"models/lam.py",2702,0,"u",python,content
239
+ 238,486987,"models/lam.py",2703,0,"",python,selection_keyboard
240
+ 239,487032,"models/lam.py",2703,0,"n",python,content
241
+ 240,487034,"models/lam.py",2704,0,"",python,selection_keyboard
242
+ 241,487122,"models/lam.py",2704,0,"d",python,content
243
+ 242,487123,"models/lam.py",2705,0,"",python,selection_keyboard
244
+ 243,487824,"models/lam.py",2704,0,"",python,selection_command
245
+ 244,555157,"models/lam.py",3222,0,"",python,selection_mouse
246
+ 245,562923,"models/lam.py",2949,0,"",python,selection_mouse
247
+ 246,562925,"models/lam.py",2948,0,"",python,selection_command
248
+ 247,563531,"models/lam.py",2950,0,"",python,selection_mouse
249
+ 248,564154,"models/lam.py",2934,16," # (B, T-1, E)\n",python,selection_mouse
250
+ 249,564172,"models/lam.py",2933,17,"] # (B, T-1, E)\n",python,selection_mouse
251
+ 250,564185,"models/lam.py",2932,18,"0] # (B, T-1, E)\n",python,selection_mouse
252
+ 251,564200,"models/lam.py",2931,19," 0] # (B, T-1, E)\n",python,selection_mouse
253
+ 252,564218,"models/lam.py",2930,20,", 0] # (B, T-1, E)\n",python,selection_mouse
254
+ 253,564246,"models/lam.py",2879,71,"nt action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
255
+ 254,564264,"models/lam.py",2878,72,"ent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
256
+ 255,564309,"models/lam.py",2877,73,"tent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
257
+ 256,564354,"models/lam.py",2876,74,"atent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
258
+ 257,564355,"models/lam.py",2875,75,"latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
259
+ 258,564355,"models/lam.py",2874,76," latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
260
+ 259,564356,"models/lam.py",2873,77,"t latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
261
+ 260,564398,"models/lam.py",2872,78,"et latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
262
+ 261,564399,"models/lam.py",2871,79,"Get latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
263
+ 262,564444,"models/lam.py",2870,80," Get latent action for all future frames\n z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
264
+ 263,564450,"models/lam.py",2920,30," = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
265
+ 264,564490,"models/lam.py",2919,31,"z = z[:, 1:, 0] # (B, T-1, E)\n",python,selection_mouse
266
+ 265,564975,"models/lam.py",2919,0,"",python,selection_mouse
267
+ 266,567444,"models/lam.py",2736,0,"",python,selection_mouse
268
+ 267,568071,"models/lam.py",2739,0,"",python,selection_mouse
269
+ 268,568203,"models/lam.py",2735,11,"concatenate",python,selection_mouse
270
+ 269,568809,"models/lam.py",2753,0,"",python,selection_mouse
271
+ 270,569464,"models/lam.py",2677,0,"",python,selection_mouse
272
+ 271,569624,"models/lam.py",2677,2,"do",python,selection_mouse
273
+ 272,569807,"models/lam.py",2677,7,"do this",python,selection_mouse
274
+ 273,569847,"models/lam.py",2677,11,"do this the",python,selection_mouse
275
+ 274,569851,"models/lam.py",2677,17,"do this the other",python,selection_mouse
276
+ 275,569893,"models/lam.py",2677,18,"do this the other ",python,selection_mouse
277
+ 276,569894,"models/lam.py",2677,21,"do this the other way",python,selection_mouse
278
+ 277,569902,"models/lam.py",2677,28,"do this the other way around",python,selection_mouse
279
+ 278,570192,"models/lam.py",2705,0,"",python,selection_mouse
280
+ 279,570199,"models/lam.py",2704,0,"",python,selection_command
281
+ 280,570389,"models/lam.py",2699,6,"around",python,selection_mouse
282
+ 281,570435,"models/lam.py",2700,5,"round",python,selection_command
283
+ 282,570600,"models/lam.py",2700,58,"round\n padded_patches = jnp.concatenate((action_pad",python,selection_mouse
284
+ 283,570641,"models/lam.py",2700,46,"round\n padded_patches = jnp.concatenate",python,selection_mouse
285
+ 284,570690,"models/lam.py",2680,20,"this the other way a",python,selection_mouse
286
+ 285,570734,"models/lam.py",2679,21," this the other way a",python,selection_mouse
287
+ 286,570735,"models/lam.py",2677,23,"do this the other way a",python,selection_mouse
288
+ 287,570735,"models/lam.py",2676,24," do this the other way a",python,selection_mouse
289
+ 288,570777,"models/lam.py",2671,29,"mihir do this the other way a",python,selection_mouse
290
+ 289,570782,"models/lam.py",2700,28,"round\n padded_patches",python,selection_mouse
291
+ 290,571048,"models/lam.py",2700,14,"round\n ",python,selection_mouse
292
+ 291,571160,"models/lam.py",2663,37,"# FIXME mihir do this the other way a",python,selection_mouse
293
+ 292,571227,"models/lam.py",2664,36," FIXME mihir do this the other way a",python,selection_mouse
294
+ 293,571574,"models/lam.py",2664,0,"",python,selection_mouse
295
+ 294,571574,"models/lam.py",2664,1," ",python,selection_mouse
296
+ 295,571784,"models/lam.py",2664,6," FIXME",python,selection_mouse
297
+ 296,571784,"models/lam.py",2664,12," FIXME mihir",python,selection_mouse
298
+ 297,571816,"models/lam.py",2664,15," FIXME mihir do",python,selection_mouse
299
+ 298,571834,"models/lam.py",2664,20," FIXME mihir do this",python,selection_mouse
300
+ 299,571865,"models/lam.py",2664,21," FIXME mihir do this ",python,selection_mouse
301
+ 300,571868,"models/lam.py",2664,24," FIXME mihir do this the",python,selection_mouse
302
+ 301,571911,"models/lam.py",2664,25," FIXME mihir do this the ",python,selection_mouse
303
+ 302,571912,"models/lam.py",2664,30," FIXME mihir do this the other",python,selection_mouse
304
+ 303,571918,"models/lam.py",2606,59,"self.action_in, (B, T, 1, self.patch_token_dim))\n # ",python,selection_mouse
305
+ 304,572011,"models/lam.py",2610,55,".action_in, (B, T, 1, self.patch_token_dim))\n # ",python,selection_mouse
306
+ 305,572012,"models/lam.py",2611,54,"action_in, (B, T, 1, self.patch_token_dim))\n # ",python,selection_mouse
307
+ 306,572664,"models/lam.py",2619,0,"",python,selection_mouse
308
+ 307,573004,"models/lam.py",2705,0,"",python,selection_mouse
309
+ 308,573005,"models/lam.py",2704,0,"",python,selection_command
310
+ 309,573166,"models/lam.py",2704,1,"d",python,selection_mouse
311
+ 310,573167,"models/lam.py",2702,2,"un",python,selection_mouse
312
+ 311,573211,"models/lam.py",2705,0,"",python,selection_command
313
+ 312,573213,"models/lam.py",2698,7," around",python,selection_mouse
314
+ 313,573213,"models/lam.py",2689,16,"other way around",python,selection_mouse
315
+ 314,573223,"models/lam.py",2681,24,"his the other way around",python,selection_mouse
316
+ 315,573235,"models/lam.py",2677,28,"do this the other way around",python,selection_mouse
317
+ 316,573262,"models/lam.py",2675,30,"r do this the other way around",python,selection_mouse
318
+ 317,573268,"models/lam.py",2672,33,"ihir do this the other way around",python,selection_mouse
319
+ 318,573286,"models/lam.py",2671,34,"mihir do this the other way around",python,selection_mouse
320
+ 319,573307,"models/lam.py",2670,35," mihir do this the other way around",python,selection_mouse
321
+ 320,573350,"models/lam.py",2669,36,"E mihir do this the other way around",python,selection_mouse
322
+ 321,573437,"models/lam.py",2668,37,"ME mihir do this the other way around",python,selection_mouse
323
+ 322,573449,"models/lam.py",2667,38,"XME mihir do this the other way around",python,selection_mouse
324
+ 323,573483,"models/lam.py",2666,39,"IXME mihir do this the other way around",python,selection_mouse
325
+ 324,573529,"models/lam.py",2665,40,"FIXME mihir do this the other way around",python,selection_mouse
326
+ 325,573571,"models/lam.py",2664,41," FIXME mihir do this the other way around",python,selection_mouse
327
+ 326,573660,"models/lam.py",2663,42,"# FIXME mihir do this the other way around",python,selection_mouse
328
+ 327,574100,"models/lam.py",2663,0,"",python,selection_mouse
329
+ 328,576800,"/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jafar/train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\n\nimport einops\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n warmup_steps: int = 5000\n lr_schedule : str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 8\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 8\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_num_blocks: int = 12\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n use_maskgit: bool = False\n param_dtype: jnp.dtype = jnp.float32\n dtype: jnp.dtype = jnp.bfloat16\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n logits = outputs[""token_logits""]\n targets = outputs[""video_tokens""]\n\n # if not args.use_maskgit:\n # logits = outputs[""token_logits""][:, :, :-1]\n # targets = outputs[""video_tokens""][:, :, 1:]\n # mask = outputs[""mask""][:, :, 1:] \n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n logits, targets\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = logits.argmax(-1) == targets\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(logits)\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean() # type: ignore\n ssim = pix.ssim(gt, recon).mean() # type: ignore\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_latent_actions, fill_value=0\n )\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=logits.max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\n@jax.jit\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n use_maskgit=args.use_maskgit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n action=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len), dtype=args.dtype\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n\n param_counts = count_parameters_by_component(init_params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(args.lr_schedule, \n args.init_lr, \n args.max_lr, \n args.decay_end, \n args.num_steps, \n args.warmup_steps, \n args.wsd_decay_steps)\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4, mu_dtype=args.dtype)\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.StandardSave, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.StandardRestore, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointSave, grain.checkpoint.CheckpointHandler) # type: ignore\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler) # type: ignore\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n # Restore full dynamics model\n abstract_train_state = jax.tree_util.tree_map(\n ocp.utils.to_shape_dtype_struct, train_state\n )\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_train_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )\n train_state = restored[""model_state""]\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n train_state = restore_genie_components(\n train_state, replicated_sharding, grain_iterator, dummy_inputs, rng, args\n )\n\n # --- TRAIN LOOP ---\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator) # type: ignore\n while step < args.num_steps:\n # for videos in dataloader:\n videos = np.load(""overfit_dir/corner_8repl.npy"")\n videos = jax.make_array_from_process_local_data(videos_sharding, videos)\n while True:\n # --- Train step ---\n rng, _rng, _rng_dropout, _rng_mask = jax.random.split(rng, 4)\n\n inputs = dict(\n videos=videos,\n rng=_rng,\n dropout_rng=_rng_dropout,\n mask_rng=_rng_mask,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) #/ 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.StandardSave(train_state),\n dataloader_state=grain.checkpoint.CheckpointSave(\n grain_iterator\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
330
+ 329,579332,"models/lam.py",0,0,"",python,tab
331
+ 330,580473,"train_dynamics.py",0,0,"from dataclasses import dataclass, field\nimport os\n\nimport einops\nfrom flax.training.train_state import TrainState\nfrom jax.sharding import Mesh, PartitionSpec, NamedSharding\nfrom jax.experimental.mesh_utils import create_device_mesh\nimport optax\nimport orbax.checkpoint as ocp\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\nimport grain\n\nfrom genie import Genie, restore_genie_components\nfrom utils.dataloader import get_dataloader\nfrom utils.lr_utils import get_lr_schedule\nfrom utils.parameter_utils import count_parameters_by_component\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 200_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_height: int = 90\n image_width: int = 160\n data_dir: str = """"\n save_ckpt: bool = False\n restore_ckpt: bool = False\n # Optimization\n batch_size: int = 36\n init_lr: float = 0.0\n max_lr: float = 3e-5\n decay_end: float = 0.0\n wsd_decay_steps: int = 10000 # NOTE: wsd_decay_steps will only be used when using a wsd-schedule\n warmup_steps: int = 5000\n lr_schedule : str = ""wsd"" # supported options: wsd, cos\n # Tokenizer\n tokenizer_dim: int = 512\n latent_patch_dim: int = 32\n num_patch_latents: int = 1024\n patch_size: int = 4\n tokenizer_num_blocks: int = 8\n tokenizer_num_heads: int = 8\n tokenizer_checkpoint: str = """"\n # LAM\n lam_dim: int = 512\n latent_action_dim: int = 32\n num_latent_actions: int = 6\n lam_patch_size: int = 16\n lam_num_blocks: int = 8\n lam_num_heads: int = 8\n lam_checkpoint: str = """"\n # Dynamics\n dyna_dim: int = 512\n dyna_num_blocks: int = 12\n dyna_num_heads: int = 8\n dropout: float = 0.0\n mask_limit: float = 0.5\n use_maskgit: bool = False\n param_dtype: jnp.dtype = jnp.float32\n dtype: jnp.dtype = jnp.bfloat16\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n name: str = ""train_dynamics""\n tags: list[str] = field(default_factory=lambda: [""dynamics""])\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 25000\n log_checkpoint_keep_period: int = 20000\n log_gradients: bool = False\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef dynamics_loss_fn(params, state, inputs):\n """"""Compute masked dynamics loss""""""\n inputs[""videos""] = inputs[""videos""].astype(args.dtype) / 255.0\n outputs = state.apply_fn(\n params,\n inputs,\n training=True,\n rngs={""params"": inputs[""rng""], ""dropout"": inputs[""dropout_rng""]},\n )\n mask = outputs[""mask""]\n outputs[""token_logits""] = outputs[""token_logits""].astype(jnp.float32)\n logits = outputs[""token_logits""]\n targets = outputs[""video_tokens""]\n\n # if not args.use_maskgit:\n # logits = outputs[""token_logits""][:, :, :-1]\n # targets = outputs[""video_tokens""][:, :, 1:]\n # mask = outputs[""mask""][:, :, 1:] \n ce_loss = optax.softmax_cross_entropy_with_integer_labels(\n logits, targets\n )\n ce_loss = (mask * ce_loss).sum() / mask.sum()\n acc = logits.argmax(-1) == targets\n acc = (mask * acc).sum() / mask.sum()\n select_probs = jax.nn.softmax(logits)\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean() # type: ignore\n ssim = pix.ssim(gt, recon).mean() # type: ignore\n _, index_counts_lam = jnp.unique_counts(\n jnp.ravel(outputs[""lam_indices""]), size=args.num_latent_actions, fill_value=0\n )\n _, index_counts_tokenizer = jnp.unique_counts(\n jnp.ravel(outputs[""video_tokens""]), size=args.num_patch_latents, fill_value=0\n )\n codebook_usage_lam = (index_counts_lam != 0).mean()\n codebook_usage_tokenizer = (index_counts_tokenizer != 0).mean()\n metrics = dict(\n cross_entropy_loss=ce_loss,\n masked_token_accuracy=acc,\n select_logit=logits.max(-1).mean(),\n select_p=select_probs.max(-1).mean(),\n entropy=jax.scipy.special.entr(select_probs).sum(-1).mean(),\n psnr=psnr,\n ssim=ssim,\n codebook_usage_lam=codebook_usage_lam,\n codebook_usage_tokenizer=codebook_usage_tokenizer,\n )\n return ce_loss, (outputs[""recon""], metrics)\n\n\n@jax.jit\ndef train_step(state, inputs):\n """"""Update state and compute metrics""""""\n grad_fn = jax.value_and_grad(dynamics_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""dynamics""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n jax.distributed.initialize()\n num_devices = jax.device_count()\n if num_devices == 0:\n raise ValueError(""No JAX devices found."")\n print(f""Running on {num_devices} devices."")\n\n if args.batch_size % num_devices != 0:\n raise ValueError(\n f""Global batch size {args.batch_size} must be divisible by ""\n f""number of devices {num_devices}.""\n )\n\n per_device_batch_size_for_init = args.batch_size // num_devices\n\n rng = jax.random.PRNGKey(args.seed)\n\n # --- Initialize model ---\n genie = Genie(\n # Tokenizer\n in_dim=args.image_channels,\n tokenizer_dim=args.tokenizer_dim,\n latent_patch_dim=args.latent_patch_dim,\n num_patch_latents=args.num_patch_latents,\n patch_size=args.patch_size,\n tokenizer_num_blocks=args.tokenizer_num_blocks,\n tokenizer_num_heads=args.tokenizer_num_heads,\n # LAM\n lam_dim=args.lam_dim,\n latent_action_dim=args.latent_action_dim,\n num_latent_actions=args.num_latent_actions,\n lam_patch_size=args.lam_patch_size,\n lam_num_blocks=args.lam_num_blocks,\n lam_num_heads=args.lam_num_heads,\n lam_co_train=not args.lam_checkpoint,\n # Dynamics\n dyna_dim=args.dyna_dim,\n dyna_num_blocks=args.dyna_num_blocks,\n dyna_num_heads=args.dyna_num_heads,\n dropout=args.dropout,\n mask_limit=args.mask_limit,\n use_maskgit=args.use_maskgit,\n param_dtype=args.param_dtype,\n dtype=args.dtype,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_height, args.image_width, args.image_channels)\n dummy_inputs = dict(\n videos=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len, *image_shape),\n dtype=args.dtype,\n ),\n action=jnp.zeros(\n (per_device_batch_size_for_init, args.seq_len), dtype=args.dtype\n ),\n mask_rng=_rng,\n )\n rng, _rng = jax.random.split(rng)\n init_params = genie.init(_rng, dummy_inputs)\n\n param_counts = count_parameters_by_component(init_params)\n\n if args.log and jax.process_index() == 0:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n wandb.config.update({""model_param_count"": param_counts})\n\n print(""Parameter counts:"")\n print(param_counts)\n\n # --- Initialize optimizer ---\n lr_schedule = get_lr_schedule(args.lr_schedule, \n args.init_lr, \n args.max_lr, \n args.decay_end, \n args.num_steps, \n args.warmup_steps, \n args.wsd_decay_steps)\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4, mu_dtype=args.dtype)\n train_state = TrainState.create(apply_fn=genie.apply, params=init_params, tx=tx)\n\n device_mesh_arr = create_device_mesh((num_devices,))\n mesh = Mesh(devices=device_mesh_arr, axis_names=(""data"",))\n\n replicated_sharding = NamedSharding(mesh, PartitionSpec())\n videos_sharding = NamedSharding(mesh, PartitionSpec(""data"", None, None, None, None))\n train_state = jax.device_put(train_state, replicated_sharding)\n\n # --- Initialize checkpoint manager ---\n step = 0\n handler_registry = ocp.handlers.DefaultCheckpointHandlerRegistry()\n handler_registry.add(\n ""model_state"", ocp.args.StandardSave, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(\n ""model_state"", ocp.args.StandardRestore, ocp.handlers.StandardCheckpointHandler\n )\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointSave, grain.checkpoint.CheckpointHandler) # type: ignore\n handler_registry.add(""dataloader_state"", grain.checkpoint.CheckpointRestore, grain.checkpoint.CheckpointHandler) # type: ignore\n\n checkpoint_options = ocp.CheckpointManagerOptions(\n save_interval_steps=args.log_checkpoint_interval,\n max_to_keep=3,\n keep_period=args.log_checkpoint_keep_period,\n step_format_fixed_length=6,\n cleanup_tmp_directories=True,\n )\n\n checkpoint_manager = ocp.CheckpointManager(\n args.ckpt_dir,\n options=checkpoint_options,\n handler_registry=handler_registry,\n )\n\n # --- Create DataLoaderIterator from dataloader ---\n array_record_files = [\n os.path.join(args.data_dir, x)\n for x in os.listdir(args.data_dir)\n if x.endswith("".array_record"")\n ]\n grain_dataloader = get_dataloader(\n array_record_files,\n args.seq_len,\n # NOTE: We deliberately pass the global batch size\n # The dataloader shards the dataset across all processes\n args.batch_size,\n *image_shape,\n num_workers=8,\n prefetch_buffer_size=1,\n seed=args.seed,\n )\n initial_state = grain_dataloader._create_initial_state()\n grain_iterator = grain.DataLoaderIterator(grain_dataloader, initial_state)\n\n # --- Restore checkpoint ---\n if args.restore_ckpt:\n # Restore full dynamics model\n abstract_train_state = jax.tree_util.tree_map(\n ocp.utils.to_shape_dtype_struct, train_state\n )\n restored = checkpoint_manager.restore(\n checkpoint_manager.latest_step(),\n args=ocp.args.Composite(\n model_state=ocp.args.StandardRestore(abstract_train_state),\n dataloader_state=grain.checkpoint.CheckpointRestore(grain_iterator),\n ),\n )\n train_state = restored[""model_state""]\n grain_iterator = restored[""dataloader_state""]\n step = checkpoint_manager.latest_step() or 0\n print(f""Restored dataloader and model state from step {step}"")\n else:\n # Restore from pre-trained tokenizer (and LAM)\n train_state = restore_genie_components(\n train_state, replicated_sharding, grain_iterator, dummy_inputs, rng, args\n )\n\n # --- TRAIN LOOP ---\n dataloader = (jax.make_array_from_process_local_data(videos_sharding, elem) for elem in grain_iterator) # type: ignore\n while step < args.num_steps:\n # for videos in dataloader:\n videos = np.load(""overfit_dir/corner_8repl.npy"")\n videos = jax.make_array_from_process_local_data(videos_sharding, videos)\n while True:\n # --- Train step ---\n rng, _rng, _rng_dropout, _rng_mask = jax.random.split(rng, 4)\n\n inputs = dict(\n videos=videos,\n rng=_rng,\n dropout_rng=_rng_dropout,\n mask_rng=_rng_mask,\n )\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n metrics[""lr""] = lr_schedule(step)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0 and jax.process_index() == 0:\n wandb.log(\n {\n ""loss"": loss,\n ""step"": step,\n **metrics,\n }\n )\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0].astype(jnp.float32) #/ 255.0\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n if jax.process_index() == 0:\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[args.seq_len - 1])),\n recon=wandb.Image(np.asarray(recon_seq[args.seq_len - 1])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n # --- Checkpointing ---\n if args.save_ckpt and step % args.log_checkpoint_interval == 0:\n checkpoint_manager.save(\n step,\n args=ocp.args.Composite(\n model_state=ocp.args.StandardSave(train_state),\n dataloader_state=grain.checkpoint.CheckpointSave(\n grain_iterator\n ),\n ),\n )\n print(f""Saved checkpoint at step {step}"")\n if step >= args.num_steps:\n break\n\n checkpoint_manager.close()\n",python,tab
332
+ 331,591956,"genie.py",0,0,"",python,tab
333
+ 332,688925,"genie.py",5504,0,"",python,selection_mouse
334
+ 333,688934,"genie.py",5503,0,"",python,selection_command
335
+ 334,689596,"genie.py",5609,0,"",python,selection_mouse
336
+ 335,689637,"genie.py",5608,0,"",python,selection_command
337
+ 336,690705,"genie.py",5714,0,"",python,selection_mouse
338
+ 337,690707,"genie.py",5713,0,"",python,selection_command
339
+ 338,691487,"genie.py",5631,0,"",python,selection_mouse
340
+ 339,691487,"genie.py",5630,0,"",python,selection_command
341
+ 340,756358,"genie.py",5469,0,"",python,selection_mouse
342
+ 341,757517,"genie.py",5469,1,"2",python,content
343
+ 342,758824,"genie.py",5546,0,"",python,selection_mouse
344
+ 343,759698,"genie.py",5631,0,"",python,selection_mouse
345
+ 344,759708,"genie.py",5630,0,"",python,selection_command
346
+ 345,759993,"genie.py",5545,0,"",python,selection_mouse
347
+ 346,760169,"genie.py",5541,15,"token_idxs_full",python,selection_mouse
348
+ 347,760755,"genie.py",5600,0,"",python,selection_mouse
349
+ 348,760916,"genie.py",5596,13,"action_tokens",python,selection_mouse
350
+ 349,761613,"genie.py",5549,0,"",python,selection_mouse
351
+ 350,761767,"genie.py",5541,15,"token_idxs_full",python,selection_mouse
352
+ 351,762479,"genie.py",5602,0,"",python,selection_mouse
353
+ 352,762615,"genie.py",5596,13,"action_tokens",python,selection_mouse
354
+ 353,767312,"genie.py",5602,0,"",python,selection_mouse
355
+ 354,768315,"genie.py",5596,13,"action_tokens",python,selection_mouse
356
+ 355,776474,"TERMINAL",0,0,"bash",,terminal_focus
357
+ 356,779711,"genie.py",5603,0,"",python,selection_mouse
358
+ 357,779838,"genie.py",5596,13,"action_tokens",python,selection_mouse
359
+ 358,780696,"genie.py",5603,0,"",python,selection_mouse
360
+ 359,782745,"genie.py",5596,13,"action_tokens",python,selection_mouse
361
+ 360,783651,"genie.py",5603,0,"",python,selection_mouse
362
+ 361,784226,"genie.py",5596,13,"action_tokens",python,selection_mouse
363
+ 362,784989,"genie.py",5603,0,"",python,selection_mouse
364
+ 363,785492,"genie.py",5596,13,"action_tokens",python,selection_mouse
365
+ 364,786034,"genie.py",5603,0,"",python,selection_mouse
366
+ 365,787382,"genie.py",5596,13,"action_tokens",python,selection_mouse
367
+ 366,788115,"genie.py",5603,0,"",python,selection_mouse
368
+ 367,788525,"genie.py",5596,13,"action_tokens",python,selection_mouse
369
+ 368,789072,"genie.py",5603,0,"",python,selection_mouse
370
+ 369,789265,"genie.py",5596,13,"action_tokens",python,selection_mouse
371
+ 370,789951,"genie.py",5603,0,"",python,selection_mouse
372
+ 371,790570,"genie.py",5596,13,"action_tokens",python,selection_mouse
373
+ 372,791316,"genie.py",5603,0,"",python,selection_mouse
374
+ 373,791700,"genie.py",5596,13,"action_tokens",python,selection_mouse
375
+ 374,792268,"genie.py",5603,0,"",python,selection_mouse
376
+ 375,792451,"genie.py",5596,13,"action_tokens",python,selection_mouse
377
+ 376,793167,"genie.py",5603,0,"",python,selection_mouse
378
+ 377,794510,"genie.py",5596,13,"action_tokens",python,selection_mouse
379
+ 378,795142,"genie.py",5603,0,"",python,selection_mouse
380
+ 379,795521,"genie.py",5596,13,"action_tokens",python,selection_mouse
381
+ 380,795900,"genie.py",5558,52," ""latent_actions"": action_tokens\n",python,selection_mouse
382
+ 381,796297,"genie.py",5603,0,"",python,selection_mouse
383
+ 382,796298,"genie.py",5596,13,"action_tokens",python,selection_mouse
384
+ 383,796497,"genie.py",5558,52," ""latent_actions"": action_tokens\n",python,selection_mouse
385
+ 384,796867,"genie.py",5603,0,"",python,selection_mouse
386
+ 385,796868,"genie.py",5596,13,"action_tokens",python,selection_mouse
387
+ 386,797052,"genie.py",5558,52," ""latent_actions"": action_tokens\n",python,selection_mouse
388
+ 387,797416,"genie.py",5603,0,"",python,selection_mouse
389
+ 388,797417,"genie.py",5596,13,"action_tokens",python,selection_mouse
390
+ 389,797585,"genie.py",5558,52," ""latent_actions"": action_tokens\n",python,selection_mouse
391
+ 390,797927,"genie.py",5603,0,"",python,selection_mouse
392
+ 391,797928,"genie.py",5596,13,"action_tokens",python,selection_mouse
393
+ 392,798088,"genie.py",5558,52," ""latent_actions"": action_tokens\n",python,selection_mouse
394
+ 393,798692,"genie.py",5603,0,"",python,selection_mouse
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-7ec41ffb-ddad-4e1d-b171-0513171669281757061617849-2025_09_05-10.41.46.448/source.csv ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,4,"train_tokenizer.py",0,0,"from dataclasses import dataclass, field\n\nimport os\nimport time\n\nimport einops\nfrom flax.training import orbax_utils\nfrom flax.training.train_state import TrainState\nimport optax\nimport orbax\nfrom orbax.checkpoint import PyTreeCheckpointer\nimport numpy as np\nimport dm_pix as pix\nimport jax\nimport jax.numpy as jnp\nimport tyro\nimport wandb\n\nfrom models.tokenizer import TokenizerVQVAE\nfrom utils.dataloader import get_dataloader\n\nts = int(time.time())\n\n\n@dataclass\nclass Args:\n # Experiment\n num_steps: int = 300_000\n seed: int = 0\n seq_len: int = 16\n image_channels: int = 3\n image_resolution: int = 64\n data_dir: str = ""data/coinrun_episodes""\n checkpoint: str = """"\n # Optimization\n vq_beta: float = 0.25\n batch_size: int = 48\n min_lr: float = 3e-4\n max_lr: float = 3e-4\n warmup_steps: int = 10000\n # Tokenizer\n model_dim: int = 512\n latent_dim: int = 32\n num_latents: int = 1024\n patch_size: int = 4\n num_blocks: int = 8\n num_heads: int = 8\n dropout: float = 0.0\n codebook_dropout: float = 0.01\n # Logging\n log: bool = False\n entity: str = """"\n project: str = """"\n log_interval: int = 5\n log_image_interval: int = 250\n ckpt_dir: str = """"\n log_checkpoint_interval: int = 10000\n log_gradients: bool = False\n name: str = """"\n tags: list[str] = field(default_factory=lambda: [""tokenizer""])\n wandb_id: str = """"\n\n\nargs = tyro.cli(Args)\n\n\ndef tokenizer_loss_fn(params, state, inputs):\n # --- Compute loss ---\n outputs = state.apply_fn(\n params, inputs, training=True, rngs={""dropout"": inputs[""rng""]}\n )\n mse = jnp.square(inputs[""videos""] - outputs[""recon""]).mean()\n q_loss = jnp.square(jax.lax.stop_gradient(outputs[""emb""]) - outputs[""z""]).mean()\n commitment_loss = jnp.square(\n outputs[""emb""] - jax.lax.stop_gradient(outputs[""z""])\n ).mean()\n loss = mse + q_loss + args.vq_beta * commitment_loss\n\n # --- Compute validation metrics ---\n gt = inputs[""videos""].clip(0, 1).reshape(-1, *inputs[""videos""].shape[2:])\n recon = outputs[""recon""].clip(0, 1).reshape(-1, *outputs[""recon""].shape[2:])\n psnr = pix.psnr(gt, recon).mean()\n ssim = pix.ssim(gt, recon).mean()\n _, index_counts = jnp.unique_counts(\n jnp.ravel(outputs[""indices""]), size=args.num_latents, fill_value=0\n )\n codebook_usage = (index_counts != 0).mean()\n metrics = dict(\n loss=loss,\n mse=mse,\n q_loss=q_loss,\n commitment_loss=commitment_loss,\n psnr=psnr,\n ssim=ssim,\n codebook_usage=codebook_usage,\n )\n return loss, (outputs[""recon""], metrics)\n\n\n@jax.jit\ndef train_step(state, inputs):\n grad_fn = jax.value_and_grad(tokenizer_loss_fn, has_aux=True, allow_int=True)\n (loss, (recon, metrics)), grads = grad_fn(state.params, state, inputs)\n state = state.apply_gradients(grads=grads)\n if args.log_gradients:\n metrics[""encoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""encoder""]\n )\n metrics[""vq_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""vq""]\n )\n metrics[""decoder_gradients_std/""] = jax.tree.map(\n lambda x: x.std(), grads[""params""][""decoder""]\n )\n return state, loss, recon, metrics\n\n\nif __name__ == ""__main__"":\n rng = jax.random.PRNGKey(args.seed)\n if args.log:\n wandb_init_kwargs = {\n ""entity"": args.entity,\n ""project"": args.project,\n ""name"": args.name,\n ""tags"": args.tags,\n ""group"": ""debug"",\n ""config"": args,\n }\n if args.wandb_id:\n wandb_init_kwargs.update(\n {\n ""id"": args.wandb_id,\n ""resume"": ""allow"",\n }\n )\n wandb.init(**wandb_init_kwargs)\n\n # --- Initialize model ---\n tokenizer = TokenizerVQVAE(\n in_dim=args.image_channels,\n model_dim=args.model_dim,\n latent_dim=args.latent_dim,\n num_latents=args.num_latents,\n patch_size=args.patch_size,\n num_blocks=args.num_blocks,\n num_heads=args.num_heads,\n dropout=args.dropout,\n codebook_dropout=args.codebook_dropout,\n )\n rng, _rng = jax.random.split(rng)\n image_shape = (args.image_resolution, args.image_resolution, args.image_channels)\n inputs = dict(\n videos=jnp.zeros(\n (args.batch_size, args.seq_len, *image_shape), dtype=jnp.float32\n ),\n )\n init_params = tokenizer.init(_rng, inputs)\n\n # --- Load checkpoint ---\n step = 0\n if args.checkpoint:\n init_params[""params""].update(\n PyTreeCheckpointer().restore(args.checkpoint)[""model""][""params""][""params""]\n )\n # Assume checkpoint is of the form tokenizer_<timestamp>_<step>\n step += int(args.checkpoint.split(""_"")[-1])\n\n # --- Initialize optimizer ---\n lr_schedule = optax.warmup_cosine_decay_schedule(\n args.min_lr, args.max_lr, args.warmup_steps, args.num_steps\n )\n tx = optax.adamw(learning_rate=lr_schedule, b1=0.9, b2=0.9, weight_decay=1e-4)\n train_state = TrainState.create(apply_fn=tokenizer.apply, params=init_params, tx=tx)\n\n # --- TRAIN LOOP ---\n dataloader = get_dataloader(args.data_dir, args.seq_len, args.batch_size)\n while step < args.num_steps:\n for videos in dataloader:\n # --- Train step ---\n rng, _rng = jax.random.split(rng)\n inputs = dict(videos=videos, rng=_rng)\n train_state, loss, recon, metrics = train_step(train_state, inputs)\n print(f""Step {step}, loss: {loss}"")\n step += 1\n\n # --- Logging ---\n if args.log:\n if step % args.log_interval == 0:\n wandb.log({""loss"": loss, ""step"": step, **metrics})\n if step % args.log_image_interval == 0:\n gt_seq = inputs[""videos""][0]\n recon_seq = recon[0].clip(0, 1)\n comparison_seq = jnp.concatenate((gt_seq, recon_seq), axis=1)\n comparison_seq = einops.rearrange(\n comparison_seq * 255, ""t h w c -> h (t w) c""\n )\n log_images = dict(\n image=wandb.Image(np.asarray(gt_seq[0])),\n recon=wandb.Image(np.asarray(recon_seq[0])),\n true_vs_recon=wandb.Image(\n np.asarray(comparison_seq.astype(np.uint8))\n ),\n )\n wandb.log(log_images)\n if step % args.log_checkpoint_interval == 0:\n ckpt = {""model"": train_state}\n orbax_checkpointer = orbax.checkpoint.PyTreeCheckpointer()\n save_args = orbax_utils.save_args_from_target(ckpt)\n orbax_checkpointer.save(\n os.path.join(\n os.getcwd(), args.ckpt_dir, f""tokenizer_{ts}_{step}""\n ),\n ckpt,\n save_args=save_args,\n )\n if step >= args.num_steps:\n break\n",python,tab
3
+ 2,1363,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"10:41:46 AM [info] Activating crowd-code\n10:41:46 AM [info] Recording started\n10:41:46 AM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,1867,"extension-output-pdoom-org.crowd-code-#1-crowd-code",153,0,"10:41:47 AM [info] Git repository found\n10:41:47 AM [info] Git provider initialized successfully\n10:41:47 AM [info] Initial git state: [object Object]\n",Log,content
5
+ 4,5691,"train_tokenizer.py",0,0,"",python,tab
6
+ 5,53960,"train_tokenizer.py",138,0,"",python,selection_mouse
7
+ 6,58325,"train_tokenizer.py",7112,0,"",python,selection_mouse
8
+ 7,58366,"train_tokenizer.py",7111,0,"",python,selection_command
9
+ 8,159487,"TERMINAL",0,0,"undefined[tum_cte0515@hkn1991 jafar]$ idling",,terminal_command
10
+ 9,159551,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: sinfo_t_idlehkn1991.localdomain: Fri Sep 5 10:44:25 2025Partition dev_cpuonly: 11 nodes idle\rPartition cpuonly: 57 nodes idle\rPartition dev_accelerated:\t 1 nodes idle\rPartition accelerated: 23 nodes idle\rPartition dev_accelerated-h100 :\t 0 nodes idle\rPartition accelerated-h100:\t 0 nodes idle\rPartition large:\t 5 nodes idle\rPartition accelerated-h200:\t 4 nodes idle",,terminal_output
11
+ 10,160574,"TERMINAL",0,0,"6",,terminal_output
12
+ 11,161591,"TERMINAL",0,0,"7",,terminal_output
13
+ 12,162626,"TERMINAL",0,0,"8",,terminal_output
14
+ 13,163666,"TERMINAL",0,0,"9",,terminal_output
15
+ 14,164777,"TERMINAL",0,0,"30",,terminal_output
16
+ 15,165806,"TERMINAL",0,0,"1",,terminal_output
17
+ 16,166849,"TERMINAL",0,0,"3",,terminal_output
18
+ 17,167831,"TERMINAL",0,0,"4",,terminal_output
19
+ 18,169142,"TERMINAL",0,0,"5",,terminal_output
20
+ 19,170027,"TERMINAL",0,0,"6",,terminal_output
21
+ 20,171110,"TERMINAL",0,0,"7",,terminal_output
22
+ 21,172057,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar",,terminal_output
23
+ 22,173319,"TERMINAL",0,0,"queue",,terminal_command
24
+ 23,173390,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1991.localdomain: Fri Sep 5 10:44:39 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3465675 accelerat train_la tum_cte0 R 12:43:56\t 8 hkn[0703,0706-0707,0711-0715]3465676 accelerat train_la tum_cte0 R 12:43:56\t 8 hkn[0521-0528]3465677 accelerat train_la tum_cte0 R 12:43:56\t 8 hkn[0504,0520,0720,0722-0724,0728,0731]3466286 accelerat train_to tum_cte0 R 13:28:44\t 1 hkn07363466287 accelerat train_la tum_cte0 R 13:28:44\t 1 hkn0736",,terminal_output
25
+ 24,174408,"TERMINAL",0,0,"4077755",,terminal_output
26
+ 25,175471,"TERMINAL",0,0,"188866",,terminal_output
27
+ 26,176485,"TERMINAL",0,0,"299977",,terminal_output
28
+ 27,177528,"TERMINAL",0,0,"34:004:004:0088",,terminal_output
29
+ 28,178649,"TERMINAL",0,0,"411199",,terminal_output
30
+ 29,179612,"TERMINAL",0,0,"52225050",,terminal_output
31
+ 30,180679,"TERMINAL",0,0,"633311",,terminal_output
32
+ 31,181719,"TERMINAL",0,0,"744422",,terminal_output
33
+ 32,182779,"TERMINAL",0,0,"866644",,terminal_output
34
+ 33,183858,"TERMINAL",0,0,"5077755",,terminal_output
35
+ 34,184996,"TERMINAL",0,0,"188866",,terminal_output
36
+ 35,185902,"TERMINAL",0,0,"299977",,terminal_output
37
+ 36,186927,"TERMINAL",0,0,"310101088",,terminal_output
38
+ 37,188006,"TERMINAL",0,0,"411199",,terminal_output
39
+ 38,189079,"TERMINAL",0,0,"52229:009:00",,terminal_output
40
+ 39,190163,"TERMINAL",0,0,"633311",,terminal_output
41
+ 40,190333,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1991:~/Projects/jafar",,terminal_output
42
+ 41,200056,"TERMINAL",0,0,"cursor ../jasmine",,terminal_command
43
+ 42,200101,"TERMINAL",0,0,"]633;C",,terminal_output
44
+ 43,200182,"TERMINAL",0,0,"]0;tum_cte0515@hkn1991:~/Projects/jafar",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-92e279fe-1f26-4694-b71c-d8f950b76bd11757499356165-2025_09_10-12.16.58.191/source.csv ADDED
@@ -0,0 +1,463 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,4,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=8\n#SBATCH --ntasks-per-node=4\n#SBATCH --time=48:00:00\n#SBATCH --partition=accelerated\n#SBATCH --cpus-per-task=5\n#SBATCH --gres=gpu:4\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/maskgit/dynamics-cotraining/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/maskgit/dynamics-cotraining/%x_%j.log\n#SBATCH --job-name=train_dynamics_maskgit_8_node\n#SBATCH --requeue\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\n\n# --- signal trap to requeue job before timeout ---\nrequeue_job() {\n echo ""[$(date)] caught sigusr1 (timeout warning), requeueing slurm job $SLURM_JOB_ID...""\n # optional: trigger checkpoint saving here\n # e.g., touch $checkpoint_dir/requeue_trigger\n scontrol requeue $SLURM_JOB_ID\n exit 0\n}\n\ntrap requeue_job sigusr1\n\n# set checkpoint flag based on restart count\nrestart_count=$(scontrol show job $SLURM_JOB_ID | grep -o 'Restarts=[0-9]*' | cut -d'=' -f2)\n\nif [ $restart_count -eq 0 ]; then\n restore_ckpt_flag=""--no-restore-ckpt""\nelse\n restore_ckpt_flag=""--restore-ckpt""\nfi\n\n\n\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\nsource .venv/bin/activate\n\narray_records_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_new/open_ai_minecraft_arrayrecords_chunked\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/mihir/holiday/maskgit/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\ntokenizer_ckpt_dir=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer/train_tokenizer_1e-4/3412401\n\nenv | grep SLURM\n\nsrun python train_dynamics.py \\n --save_ckpt \\n $restore_ckpt_flag \\n --wandb_id $SLURM_JOB_ID \\n --ckpt_dir $CHECKPOINT_DIR \\n --batch_size=160 \\n --init_lr=0 \\n --dyna_type=maskgit \\n --num_latent_actions=100 \\n --max_lr=8e-5 \\n --log_image_interval=1000 \\n --log \\n --log_checkpoint_interval=1000 \\n --name=dynamics-maskgit-8-node-$slurm_job_id \\n --tags dynamics maskgit 8-node post-launch-main \\n --entity instant-uv \\n --project jafar \\n --dyna_dim=1024 \\n --dyna_num_blocks=16 \\n --dyna_num_heads=16 \\n --dyna_ffn_dim=4096 \\n --tokenizer_checkpoint=$tokenizer_ckpt_dir \\n --data_dir $array_records_dir &\n\nchild_pid=$!\n\nwait $child_pid\n",shellscript,tab
3
+ 2,3124,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"12:16:58 PM [info] Activating crowd-code\n12:16:58 PM [info] Recording started\n12:16:58 PM [info] Initializing git provider using file system watchers...\n12:16:59 PM [info] Git repository found\n12:16:59 PM [info] Git provider initialized successfully\n12:16:59 PM [info] Initial git state: [object Object]\n",Log,tab
4
+ 3,5660,"slurm/jobs/mihir/horeka/maskgit_big_runs/train_dynamics_8_nodes.sbatch",0,0,"",shellscript,tab
5
+ 4,23989,"TERMINAL",0,0,"source .venv/bin/activate",,terminal_command
6
+ 5,24001,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
7
+ 6,29626,"TERMINAL",0,0,"queue",,terminal_command
8
+ 7,29650,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1993.localdomain: Wed Sep 10 12:17:27 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)",,terminal_output
9
+ 8,30414,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
10
+ 9,31320,"TERMINAL",0,0,"idling",,terminal_command
11
+ 10,31418,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: sinfo_t_idlehkn1993.localdomain: Wed Sep 10 12:17:29 2025Partition dev_cpuonly: 10 nodes idle\rPartition cpuonly: 28 nodes idle\rPartition dev_accelerated:\t 0 nodes idle\rPartition accelerated: 29 nodes idle\rPartition dev_accelerated-h100 :\t 0 nodes idle\rPartition accelerated-h100:\t 0 nodes idle\rPartition large:\t 4 nodes idle\rPartition accelerated-h200:\t 0 nodes idle",,terminal_output
12
+ 11,32432,"TERMINAL",0,0,"30\t",,terminal_output
13
+ 12,33638,"TERMINAL",0,0,"1\t",,terminal_output
14
+ 13,34475,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
15
+ 14,38862,"slurm/jobs/mihir/horeka/preprocessing/coinrun_chunked.sh",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=1\n#SBATCH --time=10:00:00\n#SBATCH --partition=large\n#SBATCH --cpus-per-task=16\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/preprocess/coinrun/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/preprocess/coinrun/%x_%j.log\n#SBATCH --job-name=preprocess_coinrun_chunked\n\nsource .venv/bin/activate\n\npython generate_dataset.py \\n --min_episode_length 1000 \\n --output_dir /hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_test \\n --num_episodes 50",shellscript,tab
16
+ 15,61173,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=4\n#SBATCH --time=00:20:00\n#SBATCH --partition=accelerated\n#SBATCH --cpus-per-task=5\n#SBATCH --gres=gpu:1\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/%x_%j.log\n#SBATCH --job-name=train_tokenizer_1e-4\n#SBATCH --requeue\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\n\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\nsource .venv/bin/activate\n\narray_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_gt_actions_split/train\n# array_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_chunked\narray_records_dir_val=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_gt_actions_split/val\n\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\nenv | grep SLURM\n\nsrun python train_tokenizer.py \\n --save_ckpt \\n --image_height=64 \\n --image_width=64 \\n --ckpt_dir $CHECKPOINT_DIR \\n --batch_size=120 \\n --init_lr=0 \\n --max_lr=1e-4 \\n --log_image_interval=250 \\n --log_checkpoint_interval=250 \\n --log \\n --name=coinrun-tokenizer-singlechunk-$slurm_job_id \\n --tags tokenizer coinrun dev \\n --entity instant-uv \\n --project jafar \\n --warmup_steps 0 \\n --wsd_decay_steps 0 \\n --num_steps 250 \\n --data_dir $array_records_dir_train\n",shellscript,tab
17
+ 16,75516,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",442,0,"",shellscript,selection_mouse
18
+ 17,75546,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",441,0,"",shellscript,selection_command
19
+ 18,79673,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,0,"",shellscript,selection_mouse
20
+ 19,79898,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,1,"s",shellscript,selection_mouse
21
+ 20,79900,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,3,"sin",shellscript,selection_mouse
22
+ 21,79900,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,4,"sing",shellscript,selection_mouse
23
+ 22,79901,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,5,"singl",shellscript,selection_mouse
24
+ 23,80001,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,6,"single",shellscript,selection_mouse
25
+ 24,80002,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,7,"singlec",shellscript,selection_mouse
26
+ 25,80059,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,8,"singlech",shellscript,selection_mouse
27
+ 26,80120,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,9,"singlechu",shellscript,selection_mouse
28
+ 27,80144,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,10,"singlechun",shellscript,selection_mouse
29
+ 28,80300,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,11,"singlechunk",shellscript,selection_mouse
30
+ 29,81146,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,11,"",shellscript,content
31
+ 30,82064,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1551,0,"d",shellscript,content
32
+ 31,82065,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1552,0,"",shellscript,selection_keyboard
33
+ 32,82250,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1552,0,"a",shellscript,content
34
+ 33,82251,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1553,0,"",shellscript,selection_keyboard
35
+ 34,82313,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1553,0,"t",shellscript,content
36
+ 35,82314,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1554,0,"",shellscript,selection_keyboard
37
+ 36,82397,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1554,0,"a",shellscript,content
38
+ 37,82399,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1555,0,"",shellscript,selection_keyboard
39
+ 38,82493,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1555,0,"s",shellscript,content
40
+ 39,82494,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1556,0,"",shellscript,selection_keyboard
41
+ 40,82705,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1556,0,"e",shellscript,content
42
+ 41,82706,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1557,0,"",shellscript,selection_keyboard
43
+ 42,82774,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1557,0,"t",shellscript,content
44
+ 43,82775,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1558,0,"",shellscript,selection_keyboard
45
+ 44,83305,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1558,0,"-",shellscript,content
46
+ 45,83306,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1559,0,"",shellscript,selection_keyboard
47
+ 46,83659,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1559,0,"t",shellscript,content
48
+ 47,83660,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1560,0,"",shellscript,selection_keyboard
49
+ 48,83770,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1560,0,"e",shellscript,content
50
+ 49,83771,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1561,0,"",shellscript,selection_keyboard
51
+ 50,83910,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1561,0,"s",shellscript,content
52
+ 51,83911,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1562,0,"",shellscript,selection_keyboard
53
+ 52,83961,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1562,0,"t",shellscript,content
54
+ 53,83962,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1563,0,"",shellscript,selection_keyboard
55
+ 54,84571,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1562,0,"",shellscript,selection_command
56
+ 55,92932,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1760,0,"",shellscript,selection_mouse
57
+ 56,93056,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1750,23,"array_records_dir_train",shellscript,selection_mouse
58
+ 57,96922,"TERMINAL",0,0,"cd $ws_dir",,terminal_command
59
+ 58,96934,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared",,terminal_output
60
+ 59,100051,"TERMINAL",0,0,"cd data_coinrun/",,terminal_command
61
+ 60,100728,"TERMINAL",0,0,"ls",,terminal_command
62
+ 61,100779,"TERMINAL",0,0,"]633;C",,terminal_output
63
+ 62,100866,"TERMINAL",0,0,"array_records coinrun_episodes_10m coinrun_episodes_10m_chunked_2 coinrun_episodes_10m_gt_actions_split dev\r\ncoinrun_episodes coinrun_episodes_10m_chunked coinrun_episodes_10m_gt_actions coinrun_episodes_test\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun",,terminal_output
64
+ 63,105341,"TERMINAL",0,0,"cd coinrun_episodes_test",,terminal_command
65
+ 64,106167,"TERMINAL",0,0,"pwd",,terminal_command
66
+ 65,111333,"TERMINAL",0,0,"ls",,terminal_command
67
+ 66,111395,"TERMINAL",0,0,"]633;Ccoinrun_episodes_0000.array_record coinrun_episodes_0001.array_record coinrun_episodes_0002.array_record metadata.json\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_test",,terminal_output
68
+ 67,116969,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",656,0,"",shellscript,selection_mouse
69
+ 68,118998,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",656,0,"/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_test",shellscript,content
70
+ 69,120133,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",746,0,"\n",shellscript,content
71
+ 70,122782,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",747,0,"a",shellscript,content
72
+ 71,122782,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",748,0,"",shellscript,selection_keyboard
73
+ 72,123001,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",748,0,"r",shellscript,content
74
+ 73,123002,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",749,0,"",shellscript,selection_keyboard
75
+ 74,123195,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",749,0,"r",shellscript,content
76
+ 75,123196,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",750,0,"",shellscript,selection_keyboard
77
+ 76,123373,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",750,0,"a",shellscript,content
78
+ 77,123374,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",751,0,"",shellscript,selection_keyboard
79
+ 78,123549,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",751,0,"y",shellscript,content
80
+ 79,123550,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",752,0,"",shellscript,selection_keyboard
81
+ 80,123722,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",752,0,"_",shellscript,content
82
+ 81,123723,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",753,0,"",shellscript,selection_keyboard
83
+ 82,124747,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",747,6,"array_records_dir_train",shellscript,content
84
+ 83,125466,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",770,0,"=",shellscript,content
85
+ 84,125466,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",771,0,"",shellscript,selection_keyboard
86
+ 85,125945,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",770,0,"",shellscript,selection_command
87
+ 86,126439,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",747,0,"",shellscript,selection_command
88
+ 87,127192,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",747,0,"#",shellscript,content
89
+ 88,127192,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",748,0,"",shellscript,selection_keyboard
90
+ 89,127255,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",748,0," ",shellscript,content
91
+ 90,127256,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",749,0,"",shellscript,selection_keyboard
92
+ 91,127525,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",748,0,"",shellscript,selection_command
93
+ 92,137035,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1638,0,"",shellscript,selection_command
94
+ 93,139810,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1559,0,"",shellscript,selection_mouse
95
+ 94,139818,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1558,0,"",shellscript,selection_command
96
+ 95,174447,"TERMINAL",0,0,"cat metadata.json",,terminal_command
97
+ 96,187629,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1400,0,"",shellscript,selection_mouse
98
+ 97,187634,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1399,0,"",shellscript,selection_command
99
+ 98,192227,"TERMINAL",0,0,"dev",,terminal_command
100
+ 99,202007,"TERMINAL",0,0,"git branch",,terminal_command
101
+ 100,202122,"TERMINAL",0,0,"]633;C[?1h=\r action-mapper\r\n add-wandb-name-and-tags\r\n before-nnx\r\n causal-mem-reduce\r\n causal-spatiotemporal-kv-cache\r\n causal-st-transformer\r\n causal-transformer-dynamics-model\r\n causal-transformer-nnx-no-kv-cache\r\n coinrun-gt-actions\r\n convert-to-jax-array-in-iter\r\n correct-batched-sampling\r\n dev\r\n:",,terminal_output
102
+ 101,202673,"TERMINAL",0,0,"\r dont-let-tf-see-gpu\r\n:",,terminal_output
103
+ 102,203441,"TERMINAL",0,0,"\r feat/darkness-filter\r\n:\r feat/explicit-image-dims\r\n:\r fix-action-padding-lam-future-information-access\r\n:\r fix-sampling\r\n:\r fix-transformer-forwardpass\r\n:\r fix/spatiotemporal-pe-once-in-STTransformer\r\n:\r grad-norm-log-and-clip\r\n:\r grain-dataloader\r\n:\r* input_pipeline/add-npy2array_record\r\n:\r logging-variants\r\n:\r lr-schedules\r\n:",,terminal_output
104
+ 103,203710,"TERMINAL",0,0,"\r main\r\n:\r maskgit-different-maskprob-per-sample\r\n:",,terminal_output
105
+ 104,203828,"TERMINAL",0,0,"\r maskgit-sampling-iterative-unmasking-fix\r\n:\r metrics-logging-for-dynamics-model\r\n:\r monkey-patch\r\n:\r new-arch-sampling\r\n:\r preprocess_video\r\n:",,terminal_output
106
+ 105,203835,"TERMINAL",0,0,"\r refactor-tmp\r\n:\r revised-dataloader\r\n:\r runner\r\n:",,terminal_output
107
+ 106,203954,"TERMINAL",0,0,"\r runner-grain\r\n:\r sample-ali-branch\r\n:\r sample-from-different-topologies\r\n:",,terminal_output
108
+ 107,204315,"TERMINAL",0,0,"\rM main\r\n\r:",,terminal_output
109
+ 108,204550,"TERMINAL",0,0,"\rM lr-schedules\r\n\r:",,terminal_output
110
+ 109,205135,"TERMINAL",0,0,"\rM logging-variants\r\n\r:\rM* input_pipeline/add-npy2array_record\r\n\r:",,terminal_output
111
+ 110,205246,"TERMINAL",0,0,"\rM grain-dataloader\r\n\r:\rM grad-norm-log-and-clip\r\n\r:\rM fix/spatiotemporal-pe-once-in-STTransformer\r\n\r:",,terminal_output
112
+ 111,205453,"TERMINAL",0,0,"\rM fix-transformer-forwardpass\r\n\r:",,terminal_output
113
+ 112,206225,"TERMINAL",0,0,"\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
114
+ 113,210801,"TERMINAL",0,0,"sync-runner",,terminal_command
115
+ 114,210870,"TERMINAL",0,0,"]633;Csending incremental file list\r\n",,terminal_output
116
+ 115,215172,"TERMINAL",0,0,"r",,terminal_output
117
+ 116,215388,"TERMINAL",0,0,"u",,terminal_output
118
+ 117,215581,"TERMINAL",0,0,"n",,terminal_output
119
+ 118,215996,"TERMINAL",0,0,"n",,terminal_output
120
+ 119,216184,"TERMINAL",0,0,"./\r\nREADME.md\r\natari.log\r\ngenerate_dataset.py\r\ngenie.py\r\nrequirements.txt\r\nsample.py\r\ntrain_dynamics.py\r\ntrain_lam.py\r\ntrain_tokenizer.py\r\n",,terminal_output
121
+ 120,216446,"TERMINAL",0,0,"e",,terminal_output
122
+ 121,216499,"TERMINAL",0,0,"r",,terminal_output
123
+ 122,217367,"TERMINAL",0,0,"input_pipeline/download/\r\ninput_pipeline/download/download_array_records.sh\r\ninput_pipeline/download/openai/\r\ninput_pipeline/download/openai/download_actions_files.py\r\ninput_pipeline/preprocess/\r\ninput_pipeline/preprocess/pngs_to_array_records.py\r\ninput_pipeline/preprocess/video_to_array_records.py\r\nmodels/\r\nmodels/dynamics.py\r\nmodels/lam.py\r\nmodels/tokenizer.py\r\nslurm/jobs/mihir/horeka/\r\nslurm/jobs/mihir/horeka/coinrun/train_dyn_single_gpu.sh\r\nslurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh\r\nslurm/jobs/mihir/horeka/lam/coinrun/tmp\r\nslurm/jobs/mihir/horeka/lamap/\r\nslurm/jobs/mihir/horeka/lamap/coinrun_lam_base.sbatch\r\nslurm/jobs/mihir/horeka/lamap/coinrun_lam_base_dev.sh\r\nslurm/jobs/mihir/horeka/preprocessing/\r\nslurm/jobs/mihir/horeka/preprocessing/coinrun_chunked.sh\r\nslurm/jobs/mihir/horeka/preprocessing/preprocess_atari.sbatch\r\nslurm/jobs/mihir/horeka/preprocessing/preprocess_minecraft_multi_chunk.sbatch\r\nslurm/jobs/mihir/horeka/preprocessing/preprocess_minecraft_single_chunk.sbatch\r\ntests/\r\ntests/test_dataloader.py\r\nutils/\r\nutils/dataloader.py\r\nutils/lr_utils.py\r\nutils/nn.py\r\nutils/parameter_utils.py\r\nutils/preprocess.py\r\n",,terminal_output
124
+ 123,217724,"TERMINAL",0,0,"\r\nsent 317,315 bytes received 839 bytes 42,420.53 bytes/sec\r\ntotal size is 128,665,823 speedup is 404.41\r\n]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
125
+ 124,218194,"TERMINAL",0,0,"runner",,terminal_command
126
+ 125,221290,"TERMINAL",0,0,"sbatch slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",,terminal_command
127
+ 126,221368,"TERMINAL",0,0,"]633;CSubmitted batch job 3482644\r\n]0;tum_cte0515@hkn1993:~/Projects/jasmine_jobs",,terminal_output
128
+ 127,224747,"TERMINAL",0,0,"dev",,terminal_command
129
+ 128,225736,"TERMINAL",0,0,"queue",,terminal_command
130
+ 129,225829,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1993.localdomain: Wed Sep 10 12:20:43 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3482644 accelerat train_to tum_cte0 PD\t0:00\t 1 (None)",,terminal_output
131
+ 130,226945,"TERMINAL",0,0,"4\t",,terminal_output
132
+ 131,227019,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
133
+ 132,228854,"TERMINAL",0,0,"idling",,terminal_command
134
+ 133,228898,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: sinfo_t_idlehkn1993.localdomain: Wed Sep 10 12:20:46 2025Partition dev_cpuonly: 10 nodes idle\rPartition cpuonly: 21 nodes idle\rPartition dev_accelerated:\t 1 nodes idle\rPartition accelerated: 26 nodes idle\rPartition dev_accelerated-h100 :\t 0 nodes idle\rPartition accelerated-h100:\t 0 nodes idle\rPartition large:\t 4 nodes idle\rPartition accelerated-h200:\t 0 nodes idle",,terminal_output
135
+ 134,229911,"TERMINAL",0,0,"7\t",,terminal_output
136
+ 135,231057,"TERMINAL",0,0,"8\t",,terminal_output
137
+ 136,231792,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
138
+ 137,234616,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1169,0,"",shellscript,selection_mouse
139
+ 138,234626,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1168,0,"",shellscript,selection_command
140
+ 139,236891,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",111,0,"",shellscript,selection_mouse
141
+ 140,237873,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",111,0,"d",shellscript,content
142
+ 141,237875,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",112,0,"",shellscript,selection_keyboard
143
+ 142,238030,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",112,0,"e",shellscript,content
144
+ 143,238031,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",113,0,"",shellscript,selection_keyboard
145
+ 144,238265,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",113,0,"v",shellscript,content
146
+ 145,238267,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",114,0,"",shellscript,selection_keyboard
147
+ 146,238452,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",114,0,":",shellscript,content
148
+ 147,238453,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",115,0,"",shellscript,selection_keyboard
149
+ 148,239090,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",114,1,"",shellscript,content
150
+ 149,239374,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",114,0,"_",shellscript,content
151
+ 150,239375,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",115,0,"",shellscript,selection_keyboard
152
+ 151,239546,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",114,0,"",shellscript,selection_command
153
+ 152,247615,"TERMINAL",0,0,"sbatch slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",,terminal_command
154
+ 153,247667,"TERMINAL",0,0,"]633;C",,terminal_output
155
+ 154,247712,"TERMINAL",0,0,"Submitted batch job 3482647\r\n]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
156
+ 155,249746,"TERMINAL",0,0,"queue",,terminal_command
157
+ 156,249824,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1993.localdomain: Wed Sep 10 12:21:07 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3482644 accelerat train_to tum_cte0 PD\t0:00\t 1 (None)3482647 dev_accel train_to tum_cte0 PD\t0:00\t 1 (None)",,terminal_output
158
+ 157,250836,"TERMINAL",0,0,"8\t",,terminal_output
159
+ 158,251401,"TERMINAL",0,0,"9\t",,terminal_output
160
+ 159,252587,"TERMINAL",0,0,"10\t",,terminal_output
161
+ 160,253384,"TERMINAL",0,0,"1\t",,terminal_output
162
+ 161,254366,"TERMINAL",0,0,"2\t",,terminal_output
163
+ 162,255768,"TERMINAL",0,0,"3\t",,terminal_output
164
+ 163,256389,"TERMINAL",0,0,"4\t",,terminal_output
165
+ 164,257583,"TERMINAL",0,0,"5\t",,terminal_output
166
+ 165,258532,"TERMINAL",0,0,"6\t",,terminal_output
167
+ 166,259563,"TERMINAL",0,0,"7\t",,terminal_output
168
+ 167,260772,"TERMINAL",0,0,"8\t",,terminal_output
169
+ 168,261809,"TERMINAL",0,0,"9 Rhkn0817 Rhkn0401",,terminal_output
170
+ 169,262715,"TERMINAL",0,0,"2011",,terminal_output
171
+ 170,263698,"TERMINAL",0,0,"122",,terminal_output
172
+ 171,264824,"TERMINAL",0,0,"233",,terminal_output
173
+ 172,266036,"TERMINAL",0,0,"344",,terminal_output
174
+ 173,267051,"TERMINAL",0,0,"455",,terminal_output
175
+ 174,268023,"TERMINAL",0,0,"566",,terminal_output
176
+ 175,269152,"TERMINAL",0,0,"677",,terminal_output
177
+ 176,269932,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
178
+ 177,271743,"TERMINAL",0,0,"scancel 3482647",,terminal_command
179
+ 178,273551,"TERMINAL",0,0,"queue",,terminal_command
180
+ 179,273672,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1993.localdomain: Wed Sep 10 12:21:31 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3482644 accelerat train_to tum_cte0 R\t0:12\t 1 hkn08173482647 dev_accel train_to tum_cte0 CG\t0:10\t 1 hkn0401",,terminal_output
181
+ 180,274783,"TERMINAL",0,0,"23",,terminal_output
182
+ 181,275816,"TERMINAL",0,0,"34",,terminal_output
183
+ 182,276724,"TERMINAL",0,0,"45",,terminal_output
184
+ 183,277771,"TERMINAL",0,0,"56",,terminal_output
185
+ 184,278845,"TERMINAL",0,0,"67",,terminal_output
186
+ 185,279974,"TERMINAL",0,0,"78",,terminal_output
187
+ 186,280965,"TERMINAL",0,0,"89",,terminal_output
188
+ 187,281946,"TERMINAL",0,0,"921",,terminal_output
189
+ 188,282997,"TERMINAL",0,0,"412",,terminal_output
190
+ 189,284101,"TERMINAL",0,0,"23",,terminal_output
191
+ 190,285163,"TERMINAL",0,0,"34",,terminal_output
192
+ 191,286171,"TERMINAL",0,0,"45",,terminal_output
193
+ 192,287241,"TERMINAL",0,0,"56",,terminal_output
194
+ 193,288245,"TERMINAL",0,0,"67",,terminal_output
195
+ 194,289328,"TERMINAL",0,0,"78",,terminal_output
196
+ 195,290315,"TERMINAL",0,0,"89",,terminal_output
197
+ 196,291476,"TERMINAL",0,0,"930",,terminal_output
198
+ 197,292455,"TERMINAL",0,0,"501",,terminal_output
199
+ 198,293620,"TERMINAL",0,0,"12",,terminal_output
200
+ 199,294567,"TERMINAL",0,0,"23",,terminal_output
201
+ 200,295616,"TERMINAL",0,0,"34",,terminal_output
202
+ 201,296699,"TERMINAL",0,0,"45",,terminal_output
203
+ 202,297921,"TERMINAL",0,0,"56",,terminal_output
204
+ 203,298894,"TERMINAL",0,0,"\r67",,terminal_output
205
+ 204,300073,"TERMINAL",0,0,"78",,terminal_output
206
+ 205,300891,"TERMINAL",0,0,"89",,terminal_output
207
+ 206,301977,"TERMINAL",0,0,"940",,terminal_output
208
+ 207,303149,"TERMINAL",0,0,"2:001",,terminal_output
209
+ 208,304050,"TERMINAL",0,0,"13",,terminal_output
210
+ 209,305117,"TERMINAL",0,0,"34",,terminal_output
211
+ 210,306284,"TERMINAL",0,0,"45",,terminal_output
212
+ 211,307253,"TERMINAL",0,0,"56",,terminal_output
213
+ 212,308301,"TERMINAL",0,0,"67",,terminal_output
214
+ 213,309194,"TERMINAL",0,0,"78",,terminal_output
215
+ 214,310308,"TERMINAL",0,0,"89",,terminal_output
216
+ 215,311648,"TERMINAL",0,0,"950",,terminal_output
217
+ 216,312324,"TERMINAL",0,0,"101",,terminal_output
218
+ 217,313431,"TERMINAL",0,0,"12",,terminal_output
219
+ 218,314407,"TERMINAL",0,0,"23",,terminal_output
220
+ 219,315524,"TERMINAL",0,0,"34",,terminal_output
221
+ 220,316647,"TERMINAL",0,0,"45",,terminal_output
222
+ 221,317636,"TERMINAL",0,0,"56",,terminal_output
223
+ 222,318576,"TERMINAL",0,0,"67",,terminal_output
224
+ 223,319737,"TERMINAL",0,0,"78",,terminal_output
225
+ 224,320817,"TERMINAL",0,0,"89",,terminal_output
226
+ 225,322348,"TERMINAL",0,0,"91:00",,terminal_output
227
+ 226,322575,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1700,0,"",shellscript,selection_mouse
228
+ 227,322612,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",1699,0,"",shellscript,selection_command
229
+ 228,322935,"TERMINAL",0,0,"201",,terminal_output
230
+ 229,323973,"TERMINAL",0,0,"12",,terminal_output
231
+ 230,325218,"TERMINAL",0,0,"",,terminal_focus
232
+ 231,325509,"TERMINAL",0,0,"23",,terminal_output
233
+ 232,326120,"TERMINAL",0,0,"34",,terminal_output
234
+ 233,327369,"TERMINAL",0,0,"46",,terminal_output
235
+ 234,328332,"TERMINAL",0,0,"67",,terminal_output
236
+ 235,328998,"TERMINAL",0,0,"source /home/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/bin/activate",,terminal_command
237
+ 236,329132,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
238
+ 237,329190,"TERMINAL",0,0,"logs",,terminal_command
239
+ 238,329282,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir",,terminal_output
240
+ 239,329373,"TERMINAL",0,0,"78",,terminal_output
241
+ 240,330304,"TERMINAL",0,0,"89",,terminal_output
242
+ 241,331470,"TERMINAL",0,0,"910",,terminal_output
243
+ 242,332525,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",0,0,"",shellscript,tab
244
+ 243,332880,"TERMINAL",0,0,"301",,terminal_output
245
+ 244,333323,"TERMINAL",0,0,"12",,terminal_output
246
+ 245,334277,"TERMINAL",0,0,"23",,terminal_output
247
+ 246,335925,"TERMINAL",0,0,"34",,terminal_output
248
+ 247,336549,"TERMINAL",0,0,"45",,terminal_output
249
+ 248,337407,"TERMINAL",0,0,"56",,terminal_output
250
+ 249,338539,"TERMINAL",0,0,"67",,terminal_output
251
+ 250,339614,"TERMINAL",0,0,"78",,terminal_output
252
+ 251,340593,"TERMINAL",0,0,"89",,terminal_output
253
+ 252,341627,"TERMINAL",0,0,"920",,terminal_output
254
+ 253,342604,"TERMINAL",0,0,"401",,terminal_output
255
+ 254,343758,"TERMINAL",0,0,"12",,terminal_output
256
+ 255,344553,"TERMINAL",0,0,"cd coinrun/tokenizer/",,terminal_command
257
+ 256,344755,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
258
+ 257,344836,"TERMINAL",0,0,"23",,terminal_output
259
+ 258,345816,"TERMINAL",0,0,"ls",,terminal_command
260
+ 259,345934,"TERMINAL",0,0,"]633;Ctrain_tokenizer_1e-4_3414046.log train_tokenizer_1e-4_3482644.log train_tokenizer_1e-4_3482647.log\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
261
+ 260,345982,"TERMINAL",0,0,"34",,terminal_output
262
+ 261,346913,"TERMINAL",0,0,"45",,terminal_output
263
+ 262,347913,"TERMINAL",0,0,"56",,terminal_output
264
+ 263,349088,"TERMINAL",0,0,"67",,terminal_output
265
+ 264,349962,"TERMINAL",0,0,"79",,terminal_output
266
+ 265,351152,"TERMINAL",0,0,"930",,terminal_output
267
+ 266,352109,"TERMINAL",0,0,"501",,terminal_output
268
+ 267,352869,"TERMINAL",0,0,"tail -f train_tokenizer_1e-4_3482644.log",,terminal_command
269
+ 268,352975,"TERMINAL",0,0,"]633;C num_devices = jax.device_count()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\r\n return int(get_backend(backend).device_count())\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\r\n return _get_backend_uncached(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\r\n bs = backends()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\r\n raise RuntimeError(err_msg)\r\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\r\n",,terminal_output
270
+ 269,353132,"TERMINAL",0,0,"12",,terminal_output
271
+ 270,354488,"TERMINAL",0,0,"23",,terminal_output
272
+ 271,355378,"TERMINAL",0,0,"34",,terminal_output
273
+ 272,356434,"TERMINAL",0,0,"45",,terminal_output
274
+ 273,356838,"TERMINAL",0,0,"^C\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
275
+ 274,357606,"TERMINAL",0,0,"56",,terminal_output
276
+ 275,358469,"TERMINAL",0,0,"watch",,terminal_focus
277
+ 276,358548,"TERMINAL",0,0,"67",,terminal_output
278
+ 277,359403,"TERMINAL",0,0,"78",,terminal_output
279
+ 278,359637,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
280
+ 279,361610,"TERMINAL",0,0,"scancel 3482644",,terminal_command
281
+ 280,361666,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
282
+ 281,362935,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",0,0,"",shellscript,tab
283
+ 282,364016,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",634,0,"",shellscript,selection_mouse
284
+ 283,364034,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",633,0,"",shellscript,selection_command
285
+ 284,366006,"TERMINAL",0,0,"bash",,terminal_focus
286
+ 285,369355,"TERMINAL",0,0,"bash",,terminal_focus
287
+ 286,376821,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",0,0,"",shellscript,tab
288
+ 287,378682,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",635,0,"",shellscript,selection_command
289
+ 288,381176,"TERMINAL",0,0,"sbatch slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",,terminal_command
290
+ 289,383036,"TERMINAL",0,0,"bash",,terminal_focus
291
+ 290,384023,"TERMINAL",0,0,"bash",,terminal_focus
292
+ 291,385355,"TERMINAL",0,0,"queue",,terminal_command
293
+ 292,385425,"TERMINAL",0,0,"]633;C[?1049h(B[?7hEvery 1.0s: squeue --mehkn1993.localdomain: Wed Sep 10 12:23:23 2025JOBID PARTITION NAME USER ST\tTIME NODES NODELIST(REASON)3482644 accelerat train_to tum_cte0 CG\t1:40\t 1 hkn08173482648 dev_accel train_to tum_cte0 R\t0:04\t 1 hkn0401",,terminal_output
294
+ 293,386467,"TERMINAL",0,0,"45",,terminal_output
295
+ 294,386791,"TERMINAL",0,0,"bash",,terminal_focus
296
+ 295,387303,"TERMINAL",0,0,"56",,terminal_output
297
+ 296,388315,"TERMINAL",0,0,"67",,terminal_output
298
+ 297,388656,"TERMINAL",0,0,"ls",,terminal_command
299
+ 298,388730,"TERMINAL",0,0,"]633;Ctrain_tokenizer_1e-4_3414046.log train_tokenizer_1e-4_3482644.log train_tokenizer_1e-4_3482647.log\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
300
+ 299,389462,"TERMINAL",0,0,"78",,terminal_output
301
+ 300,390448,"TERMINAL",0,0,"89",,terminal_output
302
+ 301,391051,"TERMINAL",0,0,"ls",,terminal_command
303
+ 302,391098,"TERMINAL",0,0,"]633;Ctrain_tokenizer_1e-4_3414046.log train_tokenizer_1e-4_3482644.log train_tokenizer_1e-4_3482647.log\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
304
+ 303,391576,"TERMINAL",0,0,"910",,terminal_output
305
+ 304,392609,"TERMINAL",0,0,"301",,terminal_output
306
+ 305,393716,"TERMINAL",0,0,"12",,terminal_output
307
+ 306,394835,"TERMINAL",0,0,"23",,terminal_output
308
+ 307,395882,"TERMINAL",0,0,"34",,terminal_output
309
+ 308,397039,"TERMINAL",0,0,"45",,terminal_output
310
+ 309,397883,"TERMINAL",0,0,"56",,terminal_output
311
+ 310,398873,"TERMINAL",0,0,"67",,terminal_output
312
+ 311,399115,"TERMINAL",0,0,"tail -f train_tokenizer_1e-4_3482648.log",,terminal_command
313
+ 312,399214,"TERMINAL",0,0,"]633;Ctail: cannot open 'train_tokenizer_1e-4_3482648.log' for reading: No such file or directory\r\ntail: no files remaining\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
314
+ 313,400134,"TERMINAL",0,0,"78",,terminal_output
315
+ 314,400982,"TERMINAL",0,0,"89",,terminal_output
316
+ 315,401513,"TERMINAL",0,0,"tail -f train_tokenizer_1e-4_3482648.log",,terminal_command
317
+ 316,401618,"TERMINAL",0,0,"]633;Ctail: cannot open 'train_tokenizer_1e-4_3482648.log' for reading: No such file or directory\r\ntail: no files remaining\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
318
+ 317,402363,"TERMINAL",0,0,"920",,terminal_output
319
+ 318,403391,"TERMINAL",0,0,"402",,terminal_output
320
+ 319,404432,"TERMINAL",0,0,"23",,terminal_output
321
+ 320,405435,"TERMINAL",0,0,"34",,terminal_output
322
+ 321,406724,"TERMINAL",0,0,"45",,terminal_output
323
+ 322,407758,"TERMINAL",0,0,"\r58 dev_accel R\t0:26401",,terminal_output
324
+ 323,408155,"TERMINAL",0,0,"lw",,terminal_command
325
+ 324,408223,"TERMINAL",0,0,"]633;Cbash: lw: command not found...\r\n",,terminal_output
326
+ 325,408732,"TERMINAL",0,0,"67",,terminal_output
327
+ 326,409500,"TERMINAL",0,0,"]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
328
+ 327,409714,"TERMINAL",0,0,"78",,terminal_output
329
+ 328,410600,"TERMINAL",0,0,"89",,terminal_output
330
+ 329,410919,"TERMINAL",0,0,"^C",,terminal_command
331
+ 330,411007,"TERMINAL",0,0,"]633;C]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
332
+ 331,411549,"TERMINAL",0,0,"ls",,terminal_command
333
+ 332,411676,"TERMINAL",0,0,"]633;Ctrain_tokenizer_1e-4_3414046.log train_tokenizer_1e-4_3482647.log\r\ntrain_tokenizer_1e-4_3482644.log train_tokenizer_1e-4_3482648.log\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
334
+ 333,411725,"TERMINAL",0,0,"930",,terminal_output
335
+ 334,412872,"TERMINAL",0,0,"501",,terminal_output
336
+ 335,413968,"TERMINAL",0,0,"12",,terminal_output
337
+ 336,414808,"TERMINAL",0,0,"23",,terminal_output
338
+ 337,415081,"TERMINAL",0,0,"tail -f train_tokenizer_1e-4_3482648.log",,terminal_command
339
+ 338,415163,"TERMINAL",0,0,"]633;CSLURM_NNODES=1\r\nSLURM_SUBMIT_HOST=hkn1993.localdomain\r\nSLURM_JOB_ID=3482648\r\nSLURM_NODEID=0\r\nSLURM_CONF=/etc/slurm/slurm.conf\r\nSLURM_JOB_NAME=train_tokenizer_1e-4\r\nSLURM_NTASKS_PER_NODE=4\r\nSLURM_JOB_GID=502226\r\nSLURM_JOB_NODELIST=hkn0401\r\nGpuFreq=control_disabled\r\n",,terminal_output
340
+ 339,415604,"TERMINAL",0,0,"34",,terminal_output
341
+ 340,416706,"TERMINAL",0,0,"45",,terminal_output
342
+ 341,417794,"TERMINAL",0,0,"56",,terminal_output
343
+ 342,418820,"TERMINAL",0,0,"67",,terminal_output
344
+ 343,419823,"TERMINAL",0,0,"78",,terminal_output
345
+ 344,420920,"TERMINAL",0,0,"89",,terminal_output
346
+ 345,422085,"TERMINAL",0,0,"940",,terminal_output
347
+ 346,423090,"TERMINAL",0,0,"4:001",,terminal_output
348
+ 347,424162,"TERMINAL",0,0,"12",,terminal_output
349
+ 348,425508,"TERMINAL",0,0,"23",,terminal_output
350
+ 349,426448,"TERMINAL",0,0,"34",,terminal_output
351
+ 350,427243,"TERMINAL",0,0,"46",,terminal_output
352
+ 351,428362,"TERMINAL",0,0,"67",,terminal_output
353
+ 352,428476,"TERMINAL",0,0,"2025-09-10 12:24:06.019374: W external/xla/xla/service/platform_util.cc:220] unable to create StreamExecutor for CUDA:1: CUDA error: Failed call to cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\r\nTraceback (most recent call last):\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 742, in backends\r\n backend = _init_backend(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 828, in _init_backend\r\n backend = registration.factory()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 528, in factory\r\n return xla_client.make_c_api_client(\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jaxlib/xla_client.py"", line 153, in make_c_api_client\r\n2025-09-10 12:24:06.023260: W external/xla/xla/service/platform_util.cc:220] unable to create StreamExecutor for CUDA:3: CUDA error: Failed call to cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\r\nTraceback (most recent call last):\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 742, in backends\r\n backend = _init_backend(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 828, in _init_backend\r\n return _xla.get_c_api_client(plugin_name, options, distributed_client)\r\njaxlib._jax.XlaRuntimeError: INTERNAL: no supported devices found for platform CUDA\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/train_tokenizer.py"", line 145, in <module>\r\n backend = registration.factory()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 528, in factory\r\n num_devices = jax.device_count()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\r\n return xla_client.make_c_api_client(\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jaxlib/xla_client.py"", line 153, in make_c_api_client\r\n return int(get_backend(backend).device_count())\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\r\n return _xla.get_c_api_client(plugin_name, options, distributed_client)\r\njaxlib._jax.XlaRuntimeError: INTERNAL: no supported devices found for platform CUDA\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/train_tokenizer.py"", line 145, in <module>\r\n return _get_backend_uncached(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\r\n num_devices = jax.device_count()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\r\n bs = backends()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\r\n return int(get_backend(backend).device_count())\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\r\n raise RuntimeError(err_msg)\r\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\r\n return _get_backend_uncached(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\r\n bs = backends()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\r\n raise RuntimeError(err_msg)\r\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\r\n2025-09-10 12:24:06.035570: W external/xla/xla/service/platform_util.cc:220] unable to create StreamExecutor for CUDA:2: CUDA error: Failed call to cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\r\nTraceback (most recent call last):\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 742, in backends\r\n backend = _init_backend(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 828, in _init_backend\r\n backend = registration.factory()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 528, in factory\r\n return xla_client.make_c_api_client(\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jaxlib/xla_client.py"", line 153, in make_c_api_client\r\n return _xla.get_c_api_client(plugin_name, options, distributed_client)\r\njaxlib._jax.XlaRuntimeError: INTERNAL: no supported devices found for platform CUDA\r\n\r\nDuring handling of the above exception, another exception occurred:\r\n\r\nTraceback (most recent call last):\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/train_tokenizer.py"", line 145, in <module>\r\n num_devices = jax.device_count()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\r\n return int(get_backend(backend).device_count())\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\r\n return _get_backend_uncached(platform)\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\r\n bs = backends()\r\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\r\n raise RuntimeError(err_msg)\r\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\r\n",,terminal_output
354
+ 353,429404,"TERMINAL",0,0,"78",,terminal_output
355
+ 354,430463,"TERMINAL",0,0,"89",,terminal_output
356
+ 355,431556,"TERMINAL",0,0,"950",,terminal_output
357
+ 356,432737,"TERMINAL",0,0,"101",,terminal_output
358
+ 357,433906,"TERMINAL",0,0,"12",,terminal_output
359
+ 358,435071,"TERMINAL",0,0,"23",,terminal_output
360
+ 359,435948,"TERMINAL",0,0,"34",,terminal_output
361
+ 360,436767,"TERMINAL",0,0,"45",,terminal_output
362
+ 361,438034,"TERMINAL",0,0,"56",,terminal_output
363
+ 362,439498,"TERMINAL",0,0,"67",,terminal_output
364
+ 363,440592,"TERMINAL",0,0,"78",,terminal_output
365
+ 364,441652,"TERMINAL",0,0,"89",,terminal_output
366
+ 365,442246,"TERMINAL",0,0,"91:00",,terminal_output
367
+ 366,443079,"TERMINAL",0,0,"201",,terminal_output
368
+ 367,444770,"TERMINAL",0,0,"12",,terminal_output
369
+ 368,445738,"TERMINAL",0,0,"23",,terminal_output
370
+ 369,446864,"TERMINAL",0,0,"34",,terminal_output
371
+ 370,447823,"TERMINAL",0,0,"45",,terminal_output
372
+ 371,449009,"TERMINAL",0,0,"56",,terminal_output
373
+ 372,449577,"TERMINAL",0,0,"78",,terminal_output
374
+ 373,450598,"TERMINAL",0,0,"89",,terminal_output
375
+ 374,451909,"TERMINAL",0,0,"910",,terminal_output
376
+ 375,453162,"TERMINAL",0,0,"301",,terminal_output
377
+ 376,453568,"TERMINAL",0,0,"watch",,terminal_focus
378
+ 377,454215,"TERMINAL",0,0,"12",,terminal_output
379
+ 378,454538,"TERMINAL",0,0,"23",,terminal_output
380
+ 379,454763,"TERMINAL",0,0,"[?1049l\r[?1l>]0;tum_cte0515@hkn1993:~/Projects/jasmine",,terminal_output
381
+ 380,457423,"TERMINAL",0,0,"scancel 3482648",,terminal_command
382
+ 381,458058,"TERMINAL",0,0,"tail",,terminal_focus
383
+ 382,458199,"TERMINAL",0,0,"srun: Job step aborted: Waiting up to 32 seconds for job step to finish.\r\nslurmstepd: error: *** JOB 3482648 ON hkn0401 CANCELLED AT 2025-09-10T12:24:35 ***\r\nsrun: got SIGCONT\r\nsrun: forcing job termination\r\nslurmstepd: error: *** STEP 3482648.0 ON hkn0401 CANCELLED AT 2025-09-10T12:24:35 ***\r\n",,terminal_output
384
+ 383,458489,"TERMINAL",0,0,"^C\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
385
+ 384,461173,"TERMINAL",0,0,"ls",,terminal_command
386
+ 385,461483,"TERMINAL",0,0,"]633;Ctrain_tokenizer_1e-4_3414046.log train_tokenizer_1e-4_3482647.log\r\ntrain_tokenizer_1e-4_3482644.log train_tokenizer_1e-4_3482648.log\r\n]0;tum_cte0515@hkn1993:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer",,terminal_output
387
+ 386,463277,"/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/train_tokenizer_1e-4_3482648.log",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=4\n#SBATCH --time=00:20:00\n#SBATCH --partition=dev_accelerated\n#SBATCH --cpus-per-task=5\n#SBATCH --gres=gpu:1\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/%x_%j.log\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/%x_%j.log\n#SBATCH --job-name=train_tokenizer_1e-4\n#SBATCH --requeue\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\n\n# Log the sbatch script\ncat $0\n\nmodule unload mpi/openmpi/5.0\nmodule unload devel/cuda/12.4\nsource .venv/bin/activate\n\narray_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_test\n# array_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_gt_actions_split/train\n# array_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_chunked\narray_records_dir_val=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_gt_actions_split/val\n\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\nCHECKPOINT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer/$job_name/$slurm_job_id\nmkdir -p $CHECKPOINT_DIR\n\nenv | grep SLURM\n\nsrun python train_tokenizer.py \\n --save_ckpt \\n --image_height=64 \\n --image_width=64 \\n --ckpt_dir $CHECKPOINT_DIR \\n --batch_size=120 \\n --init_lr=0 \\n --max_lr=1e-4 \\n --log_image_interval=250 \\n --log_checkpoint_interval=250 \\n --log \\n --name=coinrun-tokenizer-dataset-test-$slurm_job_id \\n --tags tokenizer coinrun dev \\n --entity instant-uv \\n --project jafar \\n --warmup_steps 0 \\n --wsd_decay_steps 0 \\n --num_steps 250 \\n --data_dir $array_records_dir_train\nSLURM_JOB_USER=tum_cte0515\nSLURM_TASKS_PER_NODE=4\nSLURM_JOB_UID=999226\nSLURM_TASK_PID=3106821\nSLURM_JOB_GPUS=0\nSLURM_LOCALID=0\nSLURM_SUBMIT_DIR=/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine\nSLURMD_NODENAME=hkn0401\nSLURM_JOB_START_TIME=1757499799\nSLURM_CLUSTER_NAME=hk\nSLURM_JOB_END_TIME=1757500999\nSLURM_CPUS_ON_NODE=24\nSLURM_JOB_CPUS_PER_NODE=24\nSLURM_GPUS_ON_NODE=1\nSLURM_GTIDS=0\nSLURM_JOB_PARTITION=dev_accelerated\nSLURM_TRES_PER_TASK=cpu=5\nSLURM_OOM_KILL_STEP=0\nSLURM_JOB_NUM_NODES=1\nSLURM_JOBID=3482648\nSLURM_JOB_QOS=normal\nSLURM_PROCID=0\nSLURM_CPUS_PER_TASK=5\nSLURM_NTASKS=4\nSLURM_TOPOLOGY_ADDR=hkibb.hkibbi1.hkibbi1e11.hkn0401\nSLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.switch.node\nSLURM_SCRIPT_CONTEXT=prolog_task\nSLURM_NODELIST=hkn0401\nSLURM_JOB_ACCOUNT=hk-project-p0023960\nSLURM_PRIO_PROCESS=0\nSLURM_NPROCS=4\nSLURM_NNODES=1\nSLURM_SUBMIT_HOST=hkn1993.localdomain\nSLURM_JOB_ID=3482648\nSLURM_NODEID=0\nSLURM_CONF=/etc/slurm/slurm.conf\nSLURM_JOB_NAME=train_tokenizer_1e-4\nSLURM_NTASKS_PER_NODE=4\nSLURM_JOB_GID=502226\nSLURM_JOB_NODELIST=hkn0401\nGpuFreq=control_disabled\n2025-09-10 12:24:06.019374: W external/xla/xla/service/platform_util.cc:220] unable to create StreamExecutor for CUDA:1: CUDA error: Failed call to cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\nTraceback (most recent call last):\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 742, in backends\n backend = _init_backend(platform)\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 828, in _init_backend\n backend = registration.factory()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 528, in factory\n return xla_client.make_c_api_client(\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jaxlib/xla_client.py"", line 153, in make_c_api_client\n2025-09-10 12:24:06.023260: W external/xla/xla/service/platform_util.cc:220] unable to create StreamExecutor for CUDA:3: CUDA error: Failed call to cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\nTraceback (most recent call last):\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 742, in backends\n backend = _init_backend(platform)\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 828, in _init_backend\n return _xla.get_c_api_client(plugin_name, options, distributed_client)\njaxlib._jax.XlaRuntimeError: INTERNAL: no supported devices found for platform CUDA\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/train_tokenizer.py"", line 145, in <module>\n backend = registration.factory()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 528, in factory\n num_devices = jax.device_count()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\n return xla_client.make_c_api_client(\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jaxlib/xla_client.py"", line 153, in make_c_api_client\n return int(get_backend(backend).device_count())\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\n return _xla.get_c_api_client(plugin_name, options, distributed_client)\njaxlib._jax.XlaRuntimeError: INTERNAL: no supported devices found for platform CUDA\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/train_tokenizer.py"", line 145, in <module>\n return _get_backend_uncached(platform)\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\n num_devices = jax.device_count()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\n bs = backends()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\n return int(get_backend(backend).device_count())\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\n raise RuntimeError(err_msg)\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\n return _get_backend_uncached(platform)\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\n bs = backends()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\n raise RuntimeError(err_msg)\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\n2025-09-10 12:24:06.035570: W external/xla/xla/service/platform_util.cc:220] unable to create StreamExecutor for CUDA:2: CUDA error: Failed call to cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal\nTraceback (most recent call last):\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 742, in backends\n backend = _init_backend(platform)\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 828, in _init_backend\n backend = registration.factory()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 528, in factory\n return xla_client.make_c_api_client(\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jaxlib/xla_client.py"", line 153, in make_c_api_client\n return _xla.get_c_api_client(plugin_name, options, distributed_client)\njaxlib._jax.XlaRuntimeError: INTERNAL: no supported devices found for platform CUDA\n\nDuring handling of the above exception, another exception occurred:\n\nTraceback (most recent call last):\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/train_tokenizer.py"", line 145, in <module>\n num_devices = jax.device_count()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 907, in device_count\n return int(get_backend(backend).device_count())\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 876, in get_backend\n return _get_backend_uncached(platform)\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 855, in _get_backend_uncached\n bs = backends()\n File ""/hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/.venv/lib/python3.10/site-packages/jax/_src/xla_bridge.py"", line 758, in backends\n raise RuntimeError(err_msg)\nRuntimeError: Unable to initialize backend 'cuda': INTERNAL: no supported devices found for platform CUDA (you may need to uninstall the failing plugin package, or set JAX_PLATFORMS=cpu to skip this backend.)\nsrun: Job step aborted: Waiting up to 32 seconds for job step to finish.\nslurmstepd: error: *** JOB 3482648 ON hkn0401 CANCELLED AT 2025-09-10T12:24:35 ***\nsrun: got SIGCONT\nsrun: forcing job termination\nslurmstepd: error: *** STEP 3482648.0 ON hkn0401 CANCELLED AT 2025-09-10T12:24:35 ***\n",log,tab
388
+ 387,485481,"TERMINAL",0,0,"bash",,terminal_focus
389
+ 388,486531,"TERMINAL",0,0,"bash",,terminal_focus
390
+ 389,499618,"TERMINAL",0,0,"salloc --time=01:00:00 --partition=dev_accelerated --nodes=1 --gres=gpu:1 --cpus-per-task=8",,terminal_command
391
+ 390,499686,"TERMINAL",0,0,"]633;Csalloc: Pending job allocation 3482653\r\nsalloc: job 3482653 queued and waiting for resources\r\n",,terminal_output
392
+ 391,500971,"TERMINAL",0,0,"salloc: job 3482653 has been allocated resources\r\nsalloc: Granted job allocation 3482653\r\n",,terminal_output
393
+ 392,501073,"TERMINAL",0,0,"salloc: Waiting for resource configuration\r\n",,terminal_output
394
+ 393,503080,"TERMINAL",0,0,"s",,terminal_output
395
+ 394,503220,"TERMINAL",0,0,"o",,terminal_output
396
+ 395,503324,"TERMINAL",0,0,"u",,terminal_output
397
+ 396,503379,"TERMINAL",0,0,"r",,terminal_output
398
+ 397,503609,"TERMINAL",0,0,"c",,terminal_output
399
+ 398,503739,"TERMINAL",0,0,"e",,terminal_output
400
+ 399,503850,"TERMINAL",0,0," ",,terminal_output
401
+ 400,503927,"TERMINAL",0,0,".",,terminal_output
402
+ 401,504031,"TERMINAL",0,0,"v",,terminal_output
403
+ 402,504533,"TERMINAL",0,0,"e",,terminal_output
404
+ 403,504676,"TERMINAL",0,0,"n",,terminal_output
405
+ 404,504866,"TERMINAL",0,0,"v",,terminal_output
406
+ 405,505245,"TERMINAL",0,0,"/",,terminal_output
407
+ 406,505439,"TERMINAL",0,0,"b",,terminal_output
408
+ 407,505799,"TERMINAL",0,0,"i",,terminal_output
409
+ 408,505912,"TERMINAL",0,0,"n",,terminal_output
410
+ 409,506619,"TERMINAL",0,0,"/",,terminal_output
411
+ 410,506849,"TERMINAL",0,0,"a",,terminal_output
412
+ 411,506986,"TERMINAL",0,0,"c",,terminal_output
413
+ 412,507149,"TERMINAL",0,0,"c",,terminal_output
414
+ 413,507284,"TERMINAL",0,0,"e",,terminal_output
415
+ 414,507360,"TERMINAL",0,0,"l",,terminal_output
416
+ 415,507783,"TERMINAL",0,0,"e",,terminal_output
417
+ 416,507961,"TERMINAL",0,0,"r",,terminal_output
418
+ 417,508262,"TERMINAL",0,0,"a",,terminal_output
419
+ 418,508527,"TERMINAL",0,0,"t",,terminal_output
420
+ 419,508662,"TERMINAL",0,0,"e",,terminal_output
421
+ 420,509062,"TERMINAL",0,0,"\r\n",,terminal_output
422
+ 421,513649,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",0,0,"",shellscript,tab
423
+ 422,518757,"TERMINAL",0,0,"sh",,terminal_output
424
+ 423,518865,"TERMINAL",0,0," ",,terminal_output
425
+ 424,519419,"TERMINAL",0,0,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",,terminal_output
426
+ 425,520348,"TERMINAL",0,0,"\r\n",,terminal_output
427
+ 426,522468,"slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",0,0,"",shellscript,tab
428
+ 427,528106,"TERMINAL",0,0,"salloc: Nodes hkn0403 are ready for job\r\n",,terminal_output
429
+ 428,528277,"TERMINAL",0,0,"source .venv/bin/accelerate\r\nsh slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh\r\n",,terminal_output
430
+ 429,529767,"TERMINAL",0,0,"]0;tum_cte0515@hkn0403:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer[?2004h[tum_cte0515@hkn0403 tokenizer]$ source .venv/bin/accelerate\r\n[?2004l\rbash: .venv/bin/accelerate: No such file or directory\r\n]0;tum_cte0515@hkn0403:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer[?2004h[tum_cte0515@hkn0403 tokenizer]$ sh slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh\r\n[?2004l\rsh: slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh: No such file or directory\r\n]0;tum_cte0515@hkn0403:/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer[?2004h[tum_cte0515@hkn0403 tokenizer]$ ",,terminal_output
431
+ 430,533110,"TERMINAL",0,0,"d",,terminal_output
432
+ 431,533581,"TERMINAL",0,0,"e",,terminal_output
433
+ 432,535138,"TERMINAL",0,0,"v",,terminal_output
434
+ 433,535365,"TERMINAL",0,0,"\r\n[?2004l\r]0;tum_cte0515@hkn0403:~/Projects/jasmine[?2004h[tum_cte0515@hkn0403 jasmine]$ ",,terminal_output
435
+ 434,535668,"TERMINAL",0,0,"dev",,terminal_output
436
+ 435,535948,"TERMINAL",0,0,"sh slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",,terminal_output
437
+ 436,536284,"TERMINAL",0,0,"\rource .venv/bin/accelerate",,terminal_output
438
+ 437,536890,"TERMINAL",0,0,"\r\n[?2004l\rbash: .venv/bin/accelerate: No such file or directory\r\n]0;tum_cte0515@hkn0403:~/Projects/jasmine[?2004h[tum_cte0515@hkn0403 jasmine]$ ",,terminal_output
439
+ 438,537365,"TERMINAL",0,0,"source .venv/bin/accelerate",,terminal_output
440
+ 439,537540,"TERMINAL",0,0,"dev",,terminal_output
441
+ 440,538048,"TERMINAL",0,0,"source .venv/bin/accelerate",,terminal_output
442
+ 441,538858,"TERMINAL",0,0,"",,terminal_output
443
+ 442,542000,"TERMINAL",0,0,"source .venv/bin/accelerate",,terminal_output
444
+ 443,542619,"TERMINAL",0,0,"",,terminal_output
445
+ 444,543719,"TERMINAL",0,0,"",,terminal_output
446
+ 445,543863,"TERMINAL",0,0,"",,terminal_output
447
+ 446,544014,"TERMINAL",0,0,"",,terminal_output
448
+ 447,544278,"TERMINAL",0,0,"",,terminal_output
449
+ 448,544423,"TERMINAL",0,0,"",,terminal_output
450
+ 449,544824,"TERMINAL",0,0,"",,terminal_output
451
+ 450,545254,"TERMINAL",0,0,"",,terminal_output
452
+ 451,545374,"TERMINAL",0,0,"tivate",,terminal_output
453
+ 452,545932,"TERMINAL",0,0,"\r\n[?2004l\r]0;tum_cte0515@hkn0403:~/Projects/jasmine[?2004h(jasmine) [tum_cte0515@hkn0403 jasmine]$ ",,terminal_output
454
+ 453,546405,"TERMINAL",0,0,"source .venv/bin/activate",,terminal_output
455
+ 454,546639,"TERMINAL",0,0,"celerate",,terminal_output
456
+ 455,547159,"TERMINAL",0,0,"dev",,terminal_output
457
+ 456,547780,"TERMINAL",0,0,"sh slurm/jobs/mihir/horeka/coinrun/train_tokenizer_single_gpu.sh",,terminal_output
458
+ 457,548519,"TERMINAL",0,0,"\r\n[?2004l\r#!/usr/bin/env bash\r\n\r\n#SBATCH --nodes=1\r\n#SBATCH --ntasks-per-node=4\r\n#SBATCH --time=00:20:00\r\n#SBATCH --partition=dev_accelerated\r\n#SBATCH --cpus-per-task=5\r\n#SBATCH --gres=gpu:1\r\n#SBATCH --output=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/%x_%j.log\r\n#SBATCH --error=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer/%x_%j.log\r\n#SBATCH --job-name=train_tokenizer_1e-4\r\n#SBATCH --requeue\r\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\r\n\r\n# Log the sbatch script\r\ncat $0\r\n\r\nmodule unload mpi/openmpi/5.0\r\nmodule unload devel/cuda/12.4\r\nsource .venv/bin/activate\r\n\r\narray_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_test\r\n# array_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_gt_actions_split/train\r\n# array_records_dir_train=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_chunked\r\narray_records_dir_val=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/data_coinrun/coinrun_episodes_10m_gt_actions_split/val\r\n\r\n\r\njob_name=$SLURM_JOB_NAME\r\nslurm_job_id=$SLURM_JOB_ID\r\n\r\nCHECKPOINT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/checkpoints/big-runs/tokenizer/$job_name/$slurm_job_id\r\nmkdir -p $CHECKPOINT_DIR\r\n\r\nenv | grep SLURM\r\n\r\nsrun python train_tokenizer.py \\r\n --save_ckpt \\r\n --image_height=64 \\r\n --image_width=64 \\r\n --ckpt_dir $CHECKPOINT_DIR \\r\n --batch_size=120 \\r\n --init_lr=0 \\r\n --max_lr=1e-4 \\r\n --log_image_interval=250 \\r\n --log_checkpoint_interval=250 \\r\n --log \\r\n --name=coinrun-tokenizer-dataset-test-$slurm_job_id \\r\n --tags tokenizer coinrun dev \\r\n --entity instant-uv \\r\n --project jafar \\r\n --warmup_steps 0 \\r\n --wsd_decay_steps 0 \\r\n --num_steps 250 \\r\n --data_dir $array_records_dir_train\r\n",,terminal_output
459
+ 458,548758,"TERMINAL",0,0,"SLURM_STEP_NUM_TASKS=1\r\nSLURM_JOB_USER=tum_cte0515\r\nSLURM_TASKS_PER_NODE=1\r\nSLURM_JOB_UID=999226\r\nSLURM_TASK_PID=67647\r\nSLURM_JOB_GPUS=0\r\nSLURM_LOCALID=0\r\nSLURM_SUBMIT_DIR=/hkfs/work/workspace/scratch/tum_ind3695-jafa_ws_shared/logs/logs_mihir/coinrun/tokenizer\r\nSLURMD_NODENAME=hkn0403\r\nSLURM_JOB_START_TIME=1757499919\r\nSLURM_STEP_NODELIST=hkn0403\r\nSLURM_CLUSTER_NAME=hk\r\nSLURM_JOB_END_TIME=1757503519\r\nSLURM_PMI2_SRUN_PORT=32775\r\nSLURM_CPUS_ON_NODE=8\r\nSLURM_JOB_CPUS_PER_NODE=8\r\nSLURM_GPUS_ON_NODE=1\r\nSLURM_GTIDS=0\r\nSLURM_JOB_PARTITION=dev_accelerated\r\nSLURM_TRES_PER_TASK=cpu=8\r\nSLURM_OOM_KILL_STEP=0\r\nSLURM_JOB_NUM_NODES=1\r\nSLURM_STEPID=4294967290\r\nSLURM_JOBID=3482653\r\nSLURM_PTY_PORT=44507\r\nSLURM_JOB_QOS=normal\r\nSLURM_LAUNCH_NODE_IPADDR=10.0.7.201\r\nSLURM_PTY_WIN_ROW=32\r\nSLURM_PMI2_PROC_MAPPING=(vector,(0,1,1))\r\nSLURMD_DEBUG=2\r\nSLURM_PROCID=0\r\nSLURM_CPUS_PER_TASK=8\r\nSLURM_TOPOLOGY_ADDR=hkibb.hkibbi1.hkibbi1e11.hkn0403\r\nSLURM_TOPOLOGY_ADDR_PATTERN=switch.switch.switch.node\r\nSLURM_SRUN_COMM_HOST=10.0.7.201\r\nSLURM_SCRIPT_CONTEXT=prolog_task\r\nSLURM_PTY_WIN_COL=129\r\nSLURM_NODELIST=hkn0403\r\nSLURM_SRUN_COMM_PORT=43229\r\nSLURM_STEP_ID=4294967290\r\nSLURM_JOB_ACCOUNT=hk-project-p0023960\r\nSLURM_PRIO_PROCESS=0\r\nSLURM_NNODES=1\r\nSLURM_SUBMIT_HOST=hkn1993.localdomain\r\nSLURM_JOB_ID=3482653\r\nSLURM_NODEID=0\r\nSLURM_STEP_NUM_NODES=1\r\nSLURM_STEP_TASKS_PER_NODE=1\r\nSLURM_MPI_TYPE=pmi2\r\nSLURM_PMI2_STEP_NODES=hkn0403\r\nSLURM_CONF=/etc/slurm/slurm.conf\r\nSLURM_JOB_NAME=interactive\r\nSLURM_STEP_LAUNCHER_PORT=43229\r\nSLURM_JOB_GID=502226\r\nSLURM_JOB_NODELIST=hkn0403\r\n",,terminal_output
460
+ 459,548839,"TERMINAL",0,0,"GpuFreq=control_disabled\r\n",,terminal_output
461
+ 460,571084,"TERMINAL",0,0,"wandb: Currently logged in as: mihir-mahajan2002 (instant-uv) to https://api.wandb.ai. Use `wandb login --relogin` to force relogin\r\n",,terminal_output
462
+ 461,572176,"TERMINAL",0,0,"wandb: creating run\r\nwandb: Tracking run with wandb version 0.21.3\r\nwandb: Run data is saved locally in /hkfs/home/project/hk-project-p0023960/tum_cte0515/Projects/jasmine/wandb/run-20250910_122628-qot85m4u\r\nwandb: Run `wandb offline` to turn off syncing.\r\nwandb: Syncing run coinrun-tokenizer-dataset-test-3482653\r\nwandb: ⭐️ View project at https://wandb.ai/instant-uv/jafar\r\nwandb: 🚀 View run at https://wandb.ai/instant-uv/jafar/runs/qot85m4u\r\n",,terminal_output
463
+ 462,573635,"TERMINAL",0,0,"Running on 1 devices.\r\nCounting all components: ['decoder', 'encoder', 'vq']\r\nParameter counts:\r\n{'decoder': 16858736, 'encoder': 16858752, 'vq': 32768, 'total': 33750256}\r\nStarting training from step 0...\r\n",,terminal_output
927a8af5474e5654810c00ce2e09fd2de87d3e5722f33fa1090d867db114e403/crowd-code-9c2d9ac2-2076-4ff2-8381-5264acd089541759350296590-2025_10_01-22.25.31.836/source.csv ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ Sequence,Time,File,RangeOffset,RangeLength,Text,Language,Type
2
+ 1,5,"slurm/jobs/franz/berlin/coinrun/submission_debug/coinrun_dynamics_base_patch_size_4_action_prepend.sh",0,0,"#!/usr/bin/env bash\n\n#SBATCH --nodes=1\n#SBATCH --ntasks-per-node=1\n#SBATCH --time=24:00:00\n#SBATCH --cpus-per-task=8\n#SBATCH --gres=gpu:1\n#SBATCH --output=/fast/project/HFMI_SynergyUnit/jafar_ws/logs/franz/coinrun/dynamics/%x_%j.log\n#SBATCH --error=/fast/project/HFMI_SynergyUnit/jafar_ws/logs/franz/coinrun/dynamics/%x_%j.log\n#SBATCH --job-name=dynamics_coinrun_mila_submission_patch_size_4_action_prepend_branch\n#SBATCH --requeue\n#SBATCH --signal=b:usr1@300 # 5 min before timeout\n\n# --- signal trap to requeue job before timeout ---\nrequeue_job() {\n echo ""[$(date)] caught sigusr1 (timeout warning), requeueing slurm job $SLURM_JOB_ID...""\n # optional: trigger checkpoint saving here\n # e.g., touch $checkpoint_dir/requeue_trigger\n scontrol requeue $SLURM_JOB_ID\n exit 0\n}\n\ntrap requeue_job sigusr1\n\n# set checkpoint flag based on restart count\nrestart_count=$(scontrol show job $SLURM_JOB_ID | grep -o 'Restarts=[0-9]*' | cut -d'=' -f2)\n\nif [ $restart_count -eq 0 ]; then\n restore_ckpt_flag=""--no-restore-ckpt""\nelse\n restore_ckpt_flag=""--restore-ckpt""\nfi\n\n\n\n# Log the sbatch script\ncat $0\n\nsource .venv/bin/activate\n\njob_name=$SLURM_JOB_NAME\nslurm_job_id=$SLURM_JOB_ID\n\ntags=""coinrun dynamics 500m_dataset mila_submission debug patch_size_4 action_prepend_branch""\n\narray_records_dir=""/fast/project/HFMI_SynergyUnit/jafar_ws/data/coinrun/array_records_500m_seed_w_increment""\ntokenizer_ckpt_dir=""/fast/project/HFMI_SynergyUnit/jafar_ws/checkpoints/coinrun/tokenizer/tokenizer_coinrun_500m_dataset_29490/""\nCHECKPOINT_DIR=""/fast/project/HFMI_SynergyUnit/jafar_ws/checkpoints/coinrun/dynamics/${job_name}/${slurm_job_id}""\nmkdir -p $CHECKPOINT_DIR\n\nenv | grep SLURM\n\n# Check if the current branch is the main branch\ncurrent_branch=$(git rev-parse --abbrev-ref HEAD)\nif [ ""$current_branch"" != ""prepend-action-maskgit"" ]; then\n echo ""This script must be run from the prepend-action-maskgit branch. Current branch is $current_branch. Exiting.""\n exit 1\nfi\n\nsrun python jasmine/train_dynamics.py \\n --patch_size=4 \\n --save_ckpt \\n $restore_ckpt_flag \\n --wandb_id $SLURM_JOB_ID \\n --ckpt_dir $CHECKPOINT_DIR \\n --name=""${job_name}_${slurm_job_id}"" \\n --tags ${tags} \\n --entity instant-uv \\n --project jafar \\n --tokenizer_checkpoint=""${tokenizer_ckpt_dir}"" \\n --val_data_dir=""${array_records_dir}/val"" \\n --data_dir=""${array_records_dir}/train"" &\n\nchild_pid=$!\n\nwait $child_pid\n\n",shellscript,tab
3
+ 2,330,"extension-output-pdoom-org.crowd-code-#1-crowd-code",0,0,"10:25:31 PM [info] Activating crowd-code\n10:25:31 PM [info] Recording started\n10:25:31 PM [info] Initializing git provider using file system watchers...\n",Log,tab
4
+ 3,567,"extension-output-pdoom-org.crowd-code-#1-crowd-code",153,0,"10:25:32 PM [info] Git repository found\n10:25:32 PM [info] Git provider initialized successfully\n10:25:32 PM [info] Initial git state: [object Object]\n",Log,content
5
+ 4,373443,"slurm/jobs/franz/berlin/coinrun/submission_debug/coinrun_dynamics_base_patch_size_4_action_prepend.sh",0,0,"",shellscript,tab
6
+ 5,373446,"slurm/jobs/franz/berlin/coinrun/submission_debug/coinrun_dynamics_base_patch_size_4_action_prepend.sh",955,0,"",shellscript,selection_mouse
7
+ 6,1320333,"slurm/jobs/franz/berlin/coinrun/submission_debug/coinrun_dynamics_base_patch_size_4_action_prepend.sh",0,0,"Switched from branch 'prepend-action-maskgit' to 'main'",shellscript,git_branch_checkout
8
+ 7,1360341,"slurm/jobs/franz/berlin/coinrun/submission_debug/coinrun_dynamics_base_patch_size_4_action_prepend.sh",0,0,"Switched from branch 'main' to 'dynamics_coinrun_500m_dataset_29519'",shellscript,git_branch_checkout