Candle commited on
Commit
79edece
·
1 Parent(s): cfa713b

erosion max

Browse files
Files changed (1) hide show
  1. correct_fgr.py +73 -18
correct_fgr.py CHANGED
@@ -52,28 +52,78 @@ def apply_minimum_filter(alpha_channel, radius=4):
52
  return filtered
53
 
54
 
55
- def apply_minimum_filter_to_rgb(rgb_image, mask, radius=4):
56
  """
57
  Apply minimum filter to RGB image using a mask selection.
58
  Only pixels where mask is white (255) will be affected.
59
- """
60
- # Create kernel for minimum filter
61
- kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1))
62
 
63
- # Apply erosion (minimum filter) to each color channel
 
 
 
 
 
64
  filtered_rgb = rgb_image.copy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- # Only apply filter where mask is white (255)
 
 
 
 
 
 
 
 
67
  mask_binary = (mask == 255).astype(np.uint8)
68
 
69
- for channel in range(3): # B, G, R channels
70
- # Apply erosion to the channel
71
- eroded_channel = cv2.erode(rgb_image[:, :, channel], kernel, iterations=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
 
73
- # Use the mask to selectively apply the filtered result
74
- filtered_rgb[:, :, channel] = np.where(mask_binary,
75
- eroded_channel,
76
- rgb_image[:, :, channel])
77
 
78
  return filtered_rgb
79
 
@@ -141,7 +191,7 @@ def apply_boundary_blur(rgb_image, boundary_mask, blur_sigma=0.5):
141
 
142
 
143
  def process_foreground_correction(expanded_path, automatte_path, fgr_output_path, masked_output_path,
144
- threshold=230, contract_pixels=1, minimum_radius=2, blur_sigma=0.5):
145
  """
146
  Process a single image pair for foreground correction.
147
 
@@ -154,6 +204,7 @@ def process_foreground_correction(expanded_path, automatte_path, fgr_output_path
154
  contract_pixels: Number of pixels to contract alpha channel
155
  minimum_radius: Radius for minimum filter operation
156
  blur_sigma: Gaussian blur sigma for boundary smoothing
 
157
  """
158
  # Load the expanded image (RGB)
159
  expanded_img = cv2.imread(expanded_path, cv2.IMREAD_COLOR)
@@ -186,7 +237,7 @@ def process_foreground_correction(expanded_path, automatte_path, fgr_output_path
186
  selection_mask = invert_selection(contracted_alpha)
187
 
188
  # Step 5: Apply minimum filter to RGB image using the selection mask
189
- filtered_rgb = apply_minimum_filter_to_rgb(expanded_img, selection_mask, radius=minimum_radius)
190
 
191
  # Step 6: Apply Gaussian blur on ±0.5 region of selection mask boundaries
192
  boundary_mask = create_boundary_mask(selection_mask, boundary_width=1)
@@ -266,10 +317,13 @@ def main():
266
  help="Threshold value for alpha binarization (default: 230)")
267
  parser.add_argument("--contract-pixels", type=int, default=1,
268
  help="Number of pixels to contract alpha channel (default: 1)")
269
- parser.add_argument("--minimum-radius", type=int, default=3,
270
- help="Radius for minimum filter operation (default: 2)")
271
  parser.add_argument("--blur-sigma", type=float, default=0.5,
272
  help="Gaussian blur sigma for boundary smoothing (default: 0.5)")
 
 
 
273
  parser.add_argument("--sample", type=str, default=None,
274
  help="Process only specific sample (e.g., 'sample-000')")
275
 
@@ -304,7 +358,8 @@ def main():
304
  threshold=args.threshold,
305
  contract_pixels=args.contract_pixels,
306
  minimum_radius=args.minimum_radius,
307
- blur_sigma=args.blur_sigma):
 
308
  successful += 1
309
  else:
310
  failed += 1
 
52
  return filtered
53
 
54
 
55
+ def apply_minimum_filter_to_rgb(rgb_image, mask, radius=4, method='erosion'):
56
  """
57
  Apply minimum filter to RGB image using a mask selection.
58
  Only pixels where mask is white (255) will be affected.
 
 
 
59
 
60
+ Args:
61
+ rgb_image: Input RGB image
62
+ mask: Binary mask (white = process, black = leave unchanged)
63
+ radius: Filter radius in pixels
64
+ method: 'erosion' (standard), 'radial' (distance-based), 'opening', 'closing'
65
+ """
66
  filtered_rgb = rgb_image.copy()
67
+ mask_binary = (mask == 255).astype(np.uint8)
68
+
69
+ if method == 'radial':
70
+ # Distance transform based radial approach
71
+ return apply_radial_filter_to_rgb(rgb_image, mask, radius)
72
+ elif method == 'opening':
73
+ # Morphological opening (erosion + dilation)
74
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1))
75
+ for channel in range(3):
76
+ opened_channel = cv2.morphologyEx(rgb_image[:, :, channel], cv2.MORPH_OPEN, kernel)
77
+ filtered_rgb[:, :, channel] = np.where(mask_binary, opened_channel, rgb_image[:, :, channel])
78
+ elif method == 'closing':
79
+ # Morphological closing (dilation + erosion)
80
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1))
81
+ for channel in range(3):
82
+ closed_channel = cv2.morphologyEx(rgb_image[:, :, channel], cv2.MORPH_CLOSE, kernel)
83
+ filtered_rgb[:, :, channel] = np.where(mask_binary, closed_channel, rgb_image[:, :, channel])
84
+ else: # 'erosion' (default)
85
+ # Standard erosion (minimum filter)
86
+ kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2*radius+1, 2*radius+1))
87
+ for channel in range(3):
88
+ eroded_channel = cv2.erode(rgb_image[:, :, channel], kernel, iterations=1)
89
+ filtered_rgb[:, :, channel] = np.where(mask_binary, eroded_channel, rgb_image[:, :, channel])
90
 
91
+ return filtered_rgb
92
+
93
+
94
+ def apply_radial_filter_to_rgb(rgb_image, mask, radius=4):
95
+ """
96
+ Apply radial minimum filter using distance transform.
97
+ This method works more radially than standard morphological erosion.
98
+ """
99
+ filtered_rgb = rgb_image.copy()
100
  mask_binary = (mask == 255).astype(np.uint8)
101
 
102
+ # Create distance transform of the mask
103
+ dist_transform = cv2.distanceTransform(mask_binary, cv2.DIST_L2, 5)
104
+
105
+ # Create a radial kernel based on distance
106
+ height, width = rgb_image.shape[:2]
107
+ y, x = np.ogrid[:height, :width]
108
+
109
+ for channel in range(3):
110
+ channel_data = rgb_image[:, :, channel].astype(np.float32)
111
+ filtered_channel = channel_data.copy()
112
+
113
+ # For each pixel in the mask, find minimum in radial neighborhood
114
+ mask_coords = np.where(mask_binary > 0)
115
+
116
+ for my, mx in zip(mask_coords[0], mask_coords[1]):
117
+ # Create circular mask around current pixel
118
+ distances = np.sqrt((y - my)**2 + (x - mx)**2)
119
+ circle_mask = distances <= radius
120
+
121
+ # Find minimum value in the circular neighborhood
122
+ if np.any(circle_mask):
123
+ min_val = np.min(channel_data[circle_mask])
124
+ filtered_channel[my, mx] = min_val
125
 
126
+ filtered_rgb[:, :, channel] = filtered_channel.astype(np.uint8)
 
 
 
127
 
128
  return filtered_rgb
129
 
 
191
 
192
 
193
  def process_foreground_correction(expanded_path, automatte_path, fgr_output_path, masked_output_path,
194
+ threshold=230, contract_pixels=1, minimum_radius=2, blur_sigma=0.5, filter_method='erosion'):
195
  """
196
  Process a single image pair for foreground correction.
197
 
 
204
  contract_pixels: Number of pixels to contract alpha channel
205
  minimum_radius: Radius for minimum filter operation
206
  blur_sigma: Gaussian blur sigma for boundary smoothing
207
+ filter_method: Method for minimum filter ('erosion', 'radial', 'opening', 'closing')
208
  """
209
  # Load the expanded image (RGB)
210
  expanded_img = cv2.imread(expanded_path, cv2.IMREAD_COLOR)
 
237
  selection_mask = invert_selection(contracted_alpha)
238
 
239
  # Step 5: Apply minimum filter to RGB image using the selection mask
240
+ filtered_rgb = apply_minimum_filter_to_rgb(expanded_img, selection_mask, radius=minimum_radius, method=filter_method)
241
 
242
  # Step 6: Apply Gaussian blur on ±0.5 region of selection mask boundaries
243
  boundary_mask = create_boundary_mask(selection_mask, boundary_width=1)
 
317
  help="Threshold value for alpha binarization (default: 230)")
318
  parser.add_argument("--contract-pixels", type=int, default=1,
319
  help="Number of pixels to contract alpha channel (default: 1)")
320
+ parser.add_argument("--minimum-radius", type=int, default=50,
321
+ help="Radius for minimum filter operation (default: 3)")
322
  parser.add_argument("--blur-sigma", type=float, default=0.5,
323
  help="Gaussian blur sigma for boundary smoothing (default: 0.5)")
324
+ parser.add_argument("--filter-method", type=str, default="erosion",
325
+ choices=["erosion", "radial", "opening", "closing"],
326
+ help="Method for minimum filter (default: erosion). 'radial' works more radially.")
327
  parser.add_argument("--sample", type=str, default=None,
328
  help="Process only specific sample (e.g., 'sample-000')")
329
 
 
358
  threshold=args.threshold,
359
  contract_pixels=args.contract_pixels,
360
  minimum_radius=args.minimum_radius,
361
+ blur_sigma=args.blur_sigma,
362
+ filter_method=args.filter_method):
363
  successful += 1
364
  else:
365
  failed += 1