File size: 8,619 Bytes
6f9b699 76e58f7 6f9b699 76e58f7 6f9b699 76e58f7 6f9b699 76e58f7 6f9b699 76e58f7 6f9b699 76e58f7 6f9b699 76e58f7 6f9b699 3faa7ee 6f9b699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
#!/usr/bin/env python3
"""
Transform repo-style schema JSON into a Hugging Face–friendly "long list":
- Top-level keys like "002125_filename" are moved into each record's INFO:
INFO.ID = "002125"
INFO.FILENAME = "filename"
- Normalize tables and columns to consistent lists (not dicts).
- Ensure presence of standard fields with sensible defaults.
- Output as JSON (list) or JSON Lines.
Usage:
python transform_to_hf.py input.json -o output.json # JSON array
python transform_to_hf.py input.json -o output.jsonl --jsonl # JSONL
"""
import argparse
import json
import sys
from typing import Any, Dict, List, Optional
import gzip
# -------- Defaults & helpers --------
DEFAULT_COLUMN = {
"TYPE": None,
"NULLABLE": True,
"UNIQUE": False,
"DEFAULT": None,
"CHECKS": [],
"IS_PRIMARY": False,
"IS_INDEX": False,
"VALUES": None,
}
DEFAULT_TABLE = {
"PRIMARY_KEYS": [],
"FOREIGN_KEYS": [],
"CHECKS": [],
"INDEXES": [],
}
from typing import Tuple, Set
from huggingface_hub import HfApi, HfFolder
from datasets import Dataset
def _normalize_index_like(x) -> List[str]:
"""
Normalize index-like fields (INDEXES, PRIMARY_KEYS) into a list[str].
- Single column indexes expressed as ["col"] or [["col"]] -> ["col"]
- Composite indexes like ["a","b"] or [["a","b"]] -> ["a,b"]
- Scalars pass through -> ["scalar"]
"""
if x is None:
return []
if not isinstance(x, list):
x = [x]
out: List[str] = []
for item in x:
if item is None:
continue
if isinstance(item, (list, tuple, set)):
flat = [_strify_scalar(v) for v in item if v is not None]
if len(flat) == 1:
out.append(flat[0])
elif len(flat) > 1:
out.append(",".join(flat))
else:
out.append(_strify_scalar(item))
return out
def _strify_scalar(x):
if x is None:
return None
if isinstance(x, (dict, list, tuple, set)):
# stable textual form for complex values
return json.dumps(x, ensure_ascii=False)
return str(x)
def _strify_list(x):
if x is None:
return None
if not isinstance(x, list):
x = [x]
return [_strify_scalar(v) for v in x]
def split_id_filename(key: str):
"""Split '002125_filename.ext' into ('002125', 'filename.ext') if possible."""
if "_" in key:
id_part, filename = key.split("_", 1)
return id_part, filename
return None, key # no obvious ID; put the whole key as filename
def norm_list(x, *, default_empty_list=True):
if x is None:
return [] if default_empty_list else None
if isinstance(x, list):
return x
# tolerate single item -> list
return [x]
def coalesce(a, b):
"""Merge dictionaries with 'a' taking precedence where keys overlap."""
out = dict(b or {})
out.update(a or {})
return out
def normalize_column(col_name: str, col_payload: Dict[str, Any]) -> Dict[str, Any]:
# Normalize keys, handle weird VALUES’ key variants
payload = {}
weird_values_keys = [k for k in col_payload.keys() if str(k).strip("’'\"").upper() == "VALUES"]
for k, v in (col_payload or {}).items():
key_up = str(k).strip().upper().strip("’\"")
if key_up == "VALUES" or k in weird_values_keys:
payload["VALUES"] = v
else:
payload[key_up] = v
base = DEFAULT_COLUMN.copy()
base.update(payload)
# Coerce heterogeneous fields to stable types
checks = _strify_list(base.get("CHECKS")) or []
values = _strify_list(base.get("VALUES")) # None or list[str]
default_val = _strify_scalar(base.get("DEFAULT"))
ctype = _strify_scalar(base.get("TYPE"))
normalized = {
"NAME": col_name,
"TYPE": ctype,
"NULLABLE": bool(base.get("NULLABLE", True)),
"UNIQUE": bool(base.get("UNIQUE", False)),
"DEFAULT": default_val,
"CHECKS": checks,
"IS_PRIMARY": bool(base.get("IS_PRIMARY", False)),
"IS_INDEX": bool(base.get("IS_INDEX", False)),
"VALUES": values,
}
return normalized
def normalize_table(table_name: str, table_payload: Dict[str, Any]) -> Dict[str, Any]:
tp = {(k.strip().upper() if isinstance(k, str) else k): v
for k, v in (table_payload or {}).items()}
columns_obj = tp.get("COLUMNS", {}) or {}
columns_list: List[Dict[str, Any]] = []
if isinstance(columns_obj, dict):
for col_name, col_payload in columns_obj.items():
columns_list.append(normalize_column(str(col_name), col_payload or {}))
elif isinstance(columns_obj, list):
for c in columns_obj:
if isinstance(c, dict):
col_name = (
c.get("NAME") or c.get("name") or
c.get("COLUMN_NAME") or c.get("column_name") or "unknown"
)
columns_list.append(normalize_column(str(col_name), c or {}))
base = DEFAULT_TABLE.copy()
base["PRIMARY_KEYS"] = list(base.get("PRIMARY_KEYS", [])) + list(tp.get("PRIMARY_KEYS", []) or [])
base["FOREIGN_KEYS"] = list(tp.get("FOREIGN_KEYS", []) or [])
base["CHECKS"] = list(tp.get("CHECKS", []) or [])
base["INDEXES"] = list(tp.get("INDEXES", []) or [])
# Normalize FKs
norm_fks = []
for fk in base["FOREIGN_KEYS"]:
if not isinstance(fk, dict):
continue
fk_up = {(k.strip().upper() if isinstance(k, str) else k): v for k, v in fk.items()}
norm_fks.append({
"COLUMNS": _strify_list(fk_up.get("COLUMNS")) or [],
"FOREIGN_TABLE": _strify_scalar(fk_up.get("FOREIGN_TABLE")),
"REFERRED_COLUMNS": _strify_list(fk_up.get("REFERRED_COLUMNS")) or [],
"ON_DELETE": _strify_scalar(fk_up.get("ON_DELETE")),
"ON_UPDATE": _strify_scalar(fk_up.get("ON_UPDATE")),
})
# ✅ Use the new normalizer here
norm_pks = _normalize_index_like(base["PRIMARY_KEYS"])
norm_indexes = _normalize_index_like(base["INDEXES"])
return {
"TABLE_NAME": table_name,
"COLUMNS": columns_list,
"PRIMARY_KEYS": norm_pks,
"FOREIGN_KEYS": norm_fks,
"CHECKS": _strify_list(base["CHECKS"]) or [],
"INDEXES": norm_indexes,
}
def normalize_record(key: str, payload: Dict[str, Any]) -> Dict[str, Any]:
id_part, filename = split_id_filename(key)
# Merge INFO with synthesized fields
info_in = payload.get("INFO", {}) or {}
info_norm = dict(info_in) # shallow copy
if id_part:
info_norm.setdefault("ID", id_part)
info_norm.setdefault("FILENAME", filename)
# Normalize TABLES -> list of tables
tables_obj = payload.get("TABLES", {}) or {}
tables_list = []
if isinstance(tables_obj, dict):
for tname, tpayload in tables_obj.items():
tables_list.append(normalize_table(tname, tpayload or {}))
elif isinstance(tables_obj, list):
# Already a list; ensure each is normalized and has TABLE_NAME
for t in tables_obj:
if isinstance(t, dict):
tname = t.get("TABLE_NAME") or t.get("name") or "unknown"
tables_list.append(normalize_table(tname, t))
normalized = {
"ID": info_norm.get("ID", None),
"FILENAME": info_norm.get("FILENAME", None),
"URL": info_in.get("URL", None),
"LICENSE": info_in["LICENSE"] if "LICENSE" in info_in else "UNKNOWN",
"PERMISSIVE": bool(info_in.get("PERMISSIVE", False)),
"TABLES": tables_list,
}
return normalized
def transform(data: Dict[str, Any]) -> List[Dict[str, Any]]:
if not isinstance(data, dict):
raise ValueError("Expected top-level object to be a dict mapping keys like '002125_filename' to records.")
out: List[Dict[str, Any]] = []
for key, payload in data.items():
out.append(normalize_record(str(key), payload or {}))
return out
# -------- CLI --------
def main():
with gzip.open("schemapile-perm.json.gz", "rt", encoding="utf-8") as f:
data = json.loads(f.read())
records = transform(data)
# Emit
fh = open("data.jsonl", "w", encoding="utf-8")
close = True
try:
for rec in records:
fh.write(json.dumps(rec, ensure_ascii=False) + "\n")
finally:
if close:
fh.close()
# Upload to Hugging Face Hub using the datasets library
# Load the JSONL file into a Hugging Face Dataset
dataset = Dataset.from_json("data.jsonl")
if __name__ == "__main__":
main() |