File size: 5,984 Bytes
3a303bb 5b3fe5c 3a303bb d2479e9 8f6b9e6 d2479e9 322df93 4d94265 8f6b9e6 d2479e9 3a303bb 4d94265 3a303bb 4d94265 3a303bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
---
viewer: false
tags: [uv-script, computer-vision, object-detection, sam3, image-processing]
license: apache-2.0
---
# SAM3 Object Detection
Detect objects in images using Meta's [sam3](https://huggingface.co/facebook/sam3) (Segment Anything Model 3) with text prompts. Process HuggingFace datasets with zero-shot object detection using natural language descriptions.
## Quick Start
**Requires GPU.** Use HuggingFace Jobs for cloud execution:
```bash
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
input-dataset \
output-dataset \
--class-name photograph
```
## Example Output
Here's an example of detected objects (photographs in historical newspapers) with bounding boxes and confidence scores:
<div style="max-width: 400px;">
<img src="./example-detection.png" alt="Example Detection" style="width: 100%; height: auto;"/>
_Photograph detected in a historical newspaper with bounding box and confidence score. Generated from [davanstrien/newspapers-image-predictions](https://huggingface.co/datasets/davanstrien/newspapers-image-predictions)._
</div>
## Local Execution
If you have a CUDA GPU locally:
```bash
uv run detect-objects.py INPUT OUTPUT --class-name CLASSNAME
```
## Arguments
**Required:**
- `input_dataset` - Input HF dataset ID
- `output_dataset` - Output HF dataset ID
- `--class-name` - Object class to detect (e.g., `"photograph"`, `"animal"`, `"table"`)
**Common options:**
- `--confidence-threshold FLOAT` - Min confidence (default: 0.5)
- `--batch-size INT` - Batch size (default: 4)
- `--max-samples INT` - Limit samples for testing
- `--image-column STR` - Image column name (default: "image")
- `--private` - Make output private
<details>
<summary>All options</summary>
```
--mask-threshold FLOAT Mask generation threshold (default: 0.5)
--split STR Dataset split (default: "train")
--shuffle Shuffle before processing
--model STR Model ID (default: "facebook/sam3")
--dtype STR Precision: float32|float16|bfloat16
--hf-token STR HF token (or use HF_TOKEN env var)
```
</details>
## HuggingFace Jobs Examples
### Historical Newspapers
Detect photographs in historical newspaper scans:
```bash
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
davanstrien/newspapers-with-images-after-photography \
my-username/newspapers-detected \
--class-name photograph \
--confidence-threshold 0.6 \
--batch-size 8
```
### Document Tables
Extract tables from document scans:
```bash
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
my-documents \
documents-with-tables \
--class-name table
```
### Wildlife Camera Traps
Detect animals in camera trap images:
```bash
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
wildlife-images \
wildlife-detections \
--class-name animal \
--confidence-threshold 0.5
```
### Quick Testing
Test on a small subset before full run:
```bash
hf jobs uv run --flavor a100-large \
-s HF_TOKEN=HF_TOKEN \
https://huggingface.co/datasets/uv-scripts/sam3/raw/main/detect-objects.py \
large-dataset \
test-output \
--class-name object \
--max-samples 20
```
### Using Different GPU Flavors
```bash
# L4 (cost-effective)
--flavor l4x1
# A100 (fastest)
--flavor a100
```
See [HF Jobs pricing](https://huggingface.co/pricing#spaces-compute).
## Output Format
Adds `objects` column with ClassLabel-based detections:
```python
{
"objects": [
{
"bbox": [x, y, width, height],
"category": 0, # Always 0 for single class
"score": 0.87
}
]
}
```
Load and use:
```python
from datasets import load_dataset
ds = load_dataset("username/output", split="train")
# ClassLabel feature preserves your class name
class_name = ds.features["objects"].feature["category"].names[0]
print(f"Detected class: {class_name}")
for sample in ds:
for obj in sample["objects"]:
print(f"{class_name}: {obj['score']:.2f} at {obj['bbox']}")
```
## Detecting Multiple Object Types
To detect multiple object types, run the script multiple times with different `--class-name` values:
```bash
# Detect photographs
hf jobs uv run ... --class-name photograph
# Detect illustrations
hf jobs uv run ... --class-name illustration
# Merge results as needed
```
## Performance
| GPU | Batch Size | ~Images/sec |
| --- | ---------- | ----------- |
| L4 | 4-8 | 2-4 |
| A10 | 8-16 | 4-6 |
_Varies by image size and detection complexity_
## Common Use Cases
- **Documents:** `--class-name table` or `--class-name figure`
- **Newspapers:** `--class-name photograph` or `--class-name illustration`
- **Wildlife:** `--class-name animal` or `--class-name bird`
- **Products:** `--class-name product` or `--class-name label`
## Troubleshooting
- **No CUDA:** Use HF Jobs (see examples above)
- **OOM errors:** Reduce `--batch-size`
- **Few detections:** Lower `--confidence-threshold` or try different class descriptions
- **Wrong column:** Use `--image-column your_column_name`
## About SAM3
[SAM3](https://huggingface.co/facebook/sam3) is Meta's zero-shot vision model. Describe any object in natural language and it will detect it—no training required.
**Note:** This script uses transformers from git (SAM3 not yet in stable release).
## See Also
More UV scripts at [huggingface.co/uv-scripts](https://huggingface.co/uv-scripts):
- **dataset-creation** - Create HF datasets from files
- **vllm** - Fast LLM inference
- **ocr** - Document OCR
## License
Apache 2.0
|