File size: 6,918 Bytes
2063000 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
#!/usr/bin/env python3
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "matplotlib",
# "pillow",
# ]
# ///
"""
Visualize object detection predictions from a HuggingFace dataset.
This script loads a dataset with object detection predictions and visualizes
the bounding boxes on sample images.
Examples:
# Visualize the first sample with detections
uv run visualize-detections.py my-username/detected-objects --first-with-detections
# Visualize a specific sample
uv run visualize-detections.py my-username/detected-objects --index 0
# Visualize multiple random samples
uv run visualize-detections.py my-username/detected-objects --num-samples 5
# Save visualizations to files instead of displaying
uv run visualize-detections.py my-username/detected-objects --num-samples 3 --output-dir ./visualizations
# Visualize specific split
uv run visualize-detections.py my-username/detected-objects --split train --num-samples 5
"""
import argparse
import random
from pathlib import Path
import matplotlib.patches as patches
import matplotlib.pyplot as plt
from datasets import load_dataset
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser(
description="Visualize object detection predictions",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog=__doc__,
)
parser.add_argument(
"dataset_id", help="HuggingFace dataset ID (e.g., 'username/dataset')"
)
parser.add_argument(
"--index",
type=int,
default=None,
help="Index of sample to visualize (default: random)",
)
parser.add_argument(
"--num-samples",
type=int,
default=1,
help="Number of samples to visualize (default: 1)",
)
parser.add_argument(
"--first-with-detections",
action="store_true",
help="Find and visualize the first sample with detections",
)
parser.add_argument(
"--split", default="train", help="Dataset split to use (default: 'train')"
)
parser.add_argument(
"--image-column",
default="image",
help="Name of the image column (default: 'image')",
)
parser.add_argument(
"--objects-column",
default="objects",
help="Name of the objects column (default: 'objects')",
)
parser.add_argument(
"--output-dir",
type=str,
default=None,
help="Directory to save visualizations (default: show interactively)",
)
parser.add_argument(
"--figsize-width",
type=int,
default=15,
help="Figure width in inches (default: 15)",
)
parser.add_argument(
"--figsize-height",
type=int,
default=20,
help="Figure height in inches (default: 20)",
)
parser.add_argument(
"--bbox-color",
default="red",
help="Color for bounding boxes (default: 'red')",
)
parser.add_argument(
"--show-scores",
action="store_true",
default=True,
help="Show confidence scores on bounding boxes",
)
return parser.parse_args()
def visualize_sample(
sample,
image_column="image",
objects_column="objects",
figsize=(15, 20),
bbox_color="red",
show_scores=True,
title=None,
):
"""Visualize a single sample with bounding boxes."""
image = sample[image_column]
objects = sample[objects_column]
fig, ax = plt.subplots(1, figsize=figsize)
ax.imshow(image, cmap="gray" if image.mode == "L" else None)
# Draw bounding boxes
num_detections = len(objects["bbox"])
for i in range(num_detections):
bbox = objects["bbox"][i]
score = objects["score"][i]
category = objects["category"][i]
x, y, w, h = bbox
rect = patches.Rectangle(
(x, y), w, h, linewidth=2, edgecolor=bbox_color, facecolor="none"
)
ax.add_patch(rect)
if show_scores:
label = f"{score:.2f}"
ax.text(
x,
y - 5,
label,
color=bbox_color,
fontsize=10,
bbox=dict(facecolor="white", alpha=0.7),
)
# Set title
if title:
ax.set_title(title, fontsize=14, pad=20)
else:
ax.set_title(f"Detections: {num_detections}", fontsize=14, pad=20)
ax.axis("off")
plt.tight_layout()
return fig, ax
def main():
args = parse_args()
# Load dataset
print(f"๐ Loading dataset: {args.dataset_id} (split: {args.split})")
dataset = load_dataset(args.dataset_id, split=args.split)
print(f"โ
Loaded {len(dataset)} samples")
# Determine indices to visualize
if args.index is not None:
indices = [args.index]
elif args.first_with_detections:
# Find first sample with detections
print("๐ Finding first sample with detections...")
first_idx = None
for idx in range(len(dataset)):
sample = dataset[idx]
if len(sample[args.objects_column]["bbox"]) > 0:
first_idx = idx
break
if first_idx is None:
print("โ No samples with detections found in dataset")
return
print(f"โ
Found first sample with detections at index {first_idx}")
indices = [first_idx]
else:
# Select random samples
indices = random.sample(range(len(dataset)), min(args.num_samples, len(dataset)))
# Create output directory if saving
if args.output_dir:
output_path = Path(args.output_dir)
output_path.mkdir(parents=True, exist_ok=True)
print(f"๐พ Saving visualizations to: {output_path}")
# Visualize samples
figsize = (args.figsize_width, args.figsize_height)
for idx in indices:
sample = dataset[idx]
num_detections = len(sample[args.objects_column]["bbox"])
print(f"\n๐ผ๏ธ Sample {idx}: {num_detections} detections")
# Create visualization
title = f"Sample {idx} - {num_detections} detections"
fig, ax = visualize_sample(
sample,
image_column=args.image_column,
objects_column=args.objects_column,
figsize=figsize,
bbox_color=args.bbox_color,
show_scores=args.show_scores,
title=title,
)
# Save or show
if args.output_dir:
output_file = output_path / f"sample_{idx}.png"
plt.savefig(output_file, dpi=150, bbox_inches="tight")
print(f" Saved: {output_file}")
plt.close(fig)
else:
plt.show()
if args.output_dir:
print(f"\nโ
Saved {len(indices)} visualizations to {args.output_dir}")
if __name__ == "__main__":
main()
|