YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

MiniMax-M2 Model Repository

This is the official MiniMax-M2 model repository containing a 230B parameter MoE model with 10B active parameters, optimized for coding and agentic workflows.

Model Information

  • Model Type: Mixture of Experts (MoE)
  • Total Parameters: 230B
  • Active Parameters: 10B
  • Architecture: Transformer-based MoE
  • License: Modified MIT
  • Pipeline Tag: text-generation

Usage

This model can be used with various inference frameworks:

Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("your-username/MiniMax-M2")
tokenizer = AutoTokenizer.from_pretrained("your-username/MiniMax-M2")

vLLM

from vllm import LLM, SamplingParams

llm = LLM(model="your-username/MiniMax-M2")

SGLang

from sglang import function, system, user, assistant, gen, select

@function
def multi_turn_question(s, question):
    s += system("You are a helpful assistant.")
    s += user(question)
    s += assistant(gen("answer", max_tokens=256))
    return s["answer"]

Model Details

  • Context Length: 128K tokens
  • Thinking Format: Uses <think>...</think> tags for reasoning
  • Recommended Parameters:
    • Temperature: 1.0
    • Top-p: 0.95
    • Top-k: 40

Deployment Guides

See the docs/ directory for detailed deployment guides:

License

This model is released under the Modified MIT License. See the license file for details.

Downloads last month
12
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support