File size: 13,367 Bytes
9de65e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1a15a
9de65e5
 
9d1a15a
 
 
 
 
 
9de65e5
 
 
 
 
 
 
 
 
 
9d1a15a
 
 
9de65e5
9d1a15a
 
9de65e5
 
 
 
 
9d1a15a
9de65e5
9d1a15a
 
9de65e5
 
 
9d1a15a
 
 
9de65e5
9d1a15a
 
 
 
 
 
 
 
 
9de65e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55d677f
 
 
9de65e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
---
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - binary-analysis
  - file-type-detection
  - byte-level
  - classification
  - mime-type
  - roformer
  - rope
  - security
pipeline_tag: text-classification
base_model: magic-bert-50m-roformer-mlm
model-index:
  - name: magic-bert-50m-roformer-classification
    results:
      - task:
          type: text-classification
          name: File Type Classification
        metrics:
          - name: Probing Accuracy
            type: accuracy
            value: 93.7
          - name: Silhouette Score
            type: silhouette
            value: 0.663
          - name: F1 (Weighted)
            type: f1
            value: 0.933
---

# Magic-BERT 50M RoFormer Classification

A RoFormer-based transformer model fine-tuned for binary file type classification. This model achieves 93.7% classification accuracy across 106 MIME types, making it the **recommended choice for production file type detection**.

## Why Not Just Use libmagic?

For intact files starting at byte 0, libmagic works well. But libmagic matches *signatures at fixed offsets*. Magic-BERT learns *structural patterns* throughout the file, enabling use cases where you don't have clean file boundaries:

- **Network streams**: Classifying packet payloads mid-connection, before headers arrive
- **Disk forensics**: Identifying file types during carving, when scanning raw disk images without filesystem metadata
- **Fragment analysis**: Working with partial files, slack space, or corrupted data
- **Adversarial contexts**: Detecting file types when magic bytes are stripped, spoofed, or deliberately misleading

## Model Description

This model extends magic-bert-50m-roformer-mlm with contrastive learning fine-tuning. It uses Rotary Position Embeddings (RoPE) and produces highly discriminative embeddings for file type classification.

| Property | Value |
|----------|-------|
| Parameters | 42.0M (+ 0.45M classifier head) |
| Hidden Size | 512 |
| Projection Dimension | 256 |
| Number of Classes | 106 MIME types |
| Base Model | magic-bert-50m-roformer-mlm |
| Position Encoding | RoPE (Rotary Position Embeddings) |

### Tokenizer

The tokenizer uses the Binary BPE methodology introduced in [Bommarito (2025)](https://arxiv.org/abs/2511.17573). The original Binary BPE tokenizers (available at [mjbommar/binary-tokenizer-001-64k](https://huggingface.co/mjbommar/binary-tokenizer-001-64k)) were trained exclusively on executable binaries (ELF, PE, Mach-O). This tokenizer uses the same BPE training approach but was trained on a diverse corpus spanning 106 file types.

## Intended Uses

**Primary use cases:**
- Production file type classification
- MIME type detection from binary content
- Embedding-based file similarity search
- Security analysis and content filtering

This is the recommended model for file classification tasks due to its combination of high accuracy (93.7%) and parameter efficiency (42M parameters).

## Detailed Use Cases

### Network Traffic Analysis
When inspecting packet payloads, you often see file data mid-stream—TCP reassembly may give you bytes 1500-3000 of a PDF before you ever see byte 0. Traditional signature matching fails here. Classification embeddings can identify file types from interior content.

### Disk Forensics & File Carving
During disk image analysis, you scan raw bytes looking for file boundaries. Tools like Scalpel rely on header/footer signatures, but many files lack clear footers. This model can score byte ranges for file type probability, helping identify carved fragments or validate carving results.

### Incident Response
Malware often strips or modifies magic bytes to evade detection. Polyglot files (valid as multiple types) exploit signature-based tools. Learning structural patterns provides a second opinion that doesn't rely solely on the first few bytes.

### Similarity Search
The embedding space (256-dimensional, L2-normalized) enables similarity search across file collections: "find files structurally similar to this sample" for malware clustering, duplicate detection, or content-based retrieval.

## Architecture: RoPE vs Absolute Position Embeddings

This model uses **Rotary Position Embeddings (RoPE)**, which encode position through rotation matrices in attention. This differs from the Magic-BERT variant which uses absolute position embeddings.

| Metric | RoFormer (this) | Magic-BERT |
|--------|-----------------|------------|
| Classification Accuracy | **93.7%** | 89.7% |
| Silhouette Score | **0.663** | 0.55 |
| F1 (Weighted) | **0.933** | 0.886 |
| Parameters | **42.5M** | 59M |
| Fill-mask Retention | 14.5% | **41.8%** |

This model achieves higher classification accuracy with fewer parameters, making it the preferred choice for production deployment when only classification is needed.

## MLM vs Classification: Two-Phase Training

This is the **Phase 2 (Classification)** model built on RoFormer. The training pipeline has two phases:

| Phase | Model | Task | Purpose |
|-------|-------|------|---------|
| Phase 1 | magic-bert-50m-roformer-mlm | Masked Language Modeling | Learn byte-level patterns and file structure |
| **Phase 2** | **This model** | Contrastive Learning | Optimize embeddings for file type discrimination |

### Two-Phase Training

| Phase | Steps | Learning Rate | Objective |
|-------|-------|---------------|-----------|
| 1: MLM Pre-training | 100,000 | 1e-4 | Masked Language Modeling |
| 2: Contrastive Fine-tuning | 50,000 | 1e-6 | Supervised Contrastive Loss |

**Phase 2 specifics:**
- Frozen: Embeddings + first 4 transformer layers
- Learning rate: 100x lower than Phase 1
- Result: Significantly improved embedding quality for classification

## Evaluation Results

### Classification Performance

| Metric | Value |
|--------|-------|
| Linear Probe Accuracy | **93.7%** |
| F1 (Macro) | 0.829 |
| F1 (Weighted) | 0.933 |

### Embedding Quality

| Metric | Value |
|--------|-------|
| Silhouette Score | **0.663** |
| Separation Ratio | 4.00 |
| Intra-class Distance | 7.24 |
| Inter-class Distance | 28.98 |

The silhouette score of 0.663 indicates well-separated clusters, suitable for embedding-based retrieval and similarity search.

### Phase 1 → Phase 2 Improvement

| Metric | Phase 1 | Phase 2 | Change |
|--------|---------|---------|--------|
| Probing Accuracy | 85.0% | 93.7% | +8.7% |
| Silhouette Score | 0.328 | 0.663 | +102% |
| Separation Ratio | 2.65 | 4.00 | +51% |

## Supported MIME Types (106 Classes)

The model classifies files into 106 MIME types across these categories:

| Category | Count | Examples | Typical Accuracy |
|----------|-------|----------|------------------|
| application/ | 41 | PDF, ZIP, GZIP, Office docs, executables | >90% |
| text/ | 24 | Python, C, Java, HTML, XML, shell scripts | >80% |
| image/ | 18 | PNG, JPEG, GIF, WebP, TIFF, PSD | >95% |
| video/ | 9 | MP4, WebM, MKV, AVI, MOV | >90% |
| audio/ | 8 | MP3, FLAC, WAV, OGG, M4A | >90% |
| font/ | 3 | SFNT, WOFF, WOFF2 | >85% |
| other | 3 | biosig/atf, inode/x-empty, message/rfc822 | varies |

<details>
<summary>Click to expand full MIME type list</summary>

**application/** (41 types):
- application/SIMH-tape-data, application/encrypted, application/gzip
- application/javascript, application/json, application/msword
- application/mxf, application/octet-stream, application/pdf
- application/pgp-keys, application/postscript
- application/vnd.microsoft.portable-executable, application/vnd.ms-excel
- application/vnd.ms-opentype, application/vnd.ms-powerpoint
- application/vnd.oasis.opendocument.spreadsheet
- application/vnd.openxmlformats-officedocument.* (3 variants)
- application/vnd.rn-realmedia, application/vnd.wordperfect
- application/wasm, application/x-7z-compressed, application/x-archive
- application/x-bzip2, application/x-coff, application/x-dbf
- application/x-dosexec, application/x-executable
- application/x-gettext-translation, application/x-ms-ne-executable
- application/x-ndjson, application/x-object, application/x-ole-storage
- application/x-sharedlib, application/x-shockwave-flash
- application/x-tar, application/x-wine-extension-ini
- application/zip, application/zlib, application/zstd

**text/** (24 types):
- text/csv, text/html, text/plain, text/rtf, text/troff
- text/x-Algol68, text/x-asm, text/x-c, text/x-c++
- text/x-diff, text/x-file, text/x-fortran, text/x-java
- text/x-m4, text/x-makefile, text/x-msdos-batch, text/x-perl
- text/x-php, text/x-po, text/x-ruby, text/x-script.python
- text/x-shellscript, text/x-tex, text/xml

**image/** (18 types):
- image/bmp, image/fits, image/gif, image/heif, image/jpeg
- image/png, image/svg+xml, image/tiff, image/vnd.adobe.photoshop
- image/vnd.microsoft.icon, image/webp, image/x-eps, image/x-exr
- image/x-jp2-codestream, image/x-portable-bitmap
- image/x-portable-greymap, image/x-tga, image/x-xpixmap

**video/** (9 types):
- video/3gpp, video/mp4, video/mpeg, video/quicktime, video/webm
- video/x-ivf, video/x-matroska, video/x-ms-asf, video/x-msvideo

**audio/** (8 types):
- audio/amr, audio/flac, audio/mpeg, audio/ogg, audio/x-ape
- audio/x-hx-aac-adts, audio/x-m4a, audio/x-wav

**font/** (3 types):
- font/sfnt, font/woff, font/woff2

**other** (3 types):
- biosig/atf, inode/x-empty, message/rfc822

</details>

## How to Use

```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch

model = AutoModelForSequenceClassification.from_pretrained(
    "mjbommar/magic-bert-50m-roformer-classification", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("mjbommar/magic-bert-50m-roformer-classification")

model.eval()

# Classify a file
with open("example.pdf", "rb") as f:
    data = f.read(512)

# Decode bytes to string using latin-1 (preserves all byte values 0-255)
text = data.decode("latin-1")
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)

with torch.no_grad():
    outputs = model(**inputs)
    predicted_id = outputs.logits.argmax(-1).item()
    confidence = torch.softmax(outputs.logits, dim=-1).max().item()

print(f"Predicted class: {predicted_id}")
print(f"Confidence: {confidence:.2%}")
```

### Embedding-Based Similarity Search

```python
# Get normalized embeddings (256-dim, L2-normalized)
with torch.no_grad():
    embeddings = model.get_embeddings(inputs["input_ids"], inputs["attention_mask"])
    # embeddings shape: [batch_size, 256]

# Compute cosine similarity
similarity = torch.mm(embeddings1, embeddings2.T)
```

### Loading MIME Type Labels

```python
from huggingface_hub import hf_hub_download
import json

mime_path = hf_hub_download("mjbommar/magic-bert-50m-roformer-classification", "mime_type_mapping.json")
with open(mime_path) as f:
    id_to_mime = {int(k): v for k, v in json.load(f).items()}

print(f"Predicted MIME type: {id_to_mime[predicted_id]}")
```

## Limitations

1. **MLM capability sacrificed:** Fill-mask accuracy drops to 14.5% after classification fine-tuning. Use the MLM variant if byte prediction is needed.

2. **Position bias:** Still present (~46% accuracy drop at offset 1000), though less relevant for classification than for fill-mask tasks.

3. **Ambiguous formats:** ZIP-based formats (DOCX, XLSX, JAR, APK) share similar structure and may be confused.

4. **Rare types:** Lower accuracy on underrepresented file types in training data.

## Model Selection Guide

| Use Case | Recommended Model | Reason |
|----------|-------------------|--------|
| **Production classification** | **This model** | Highest accuracy (93.7%), efficient (42M params) |
| Classification + fill-mask | magic-bert-50m-classification | Retains 41.8% fill-mask capability |
| Fill-mask / byte prediction | magic-bert-50m-roformer-mlm | Optimized for MLM |
| Research baseline | magic-bert-50m-mlm | Best perplexity (1.05) |

## Related Models

- **[magic-bert-50m-roformer-mlm](https://huggingface.co/mjbommar/magic-bert-50m-roformer-mlm)**: Base model before classification fine-tuning
- **[magic-bert-50m-mlm](https://huggingface.co/mjbommar/magic-bert-50m-mlm)**: Absolute position embedding variant (MLM)
- **[magic-bert-50m-classification](https://huggingface.co/mjbommar/magic-bert-50m-classification)**: Magic-BERT variant that retains better fill-mask capability (89.7% accuracy)

## Related Work

This model builds on the Binary BPE tokenization approach:

- **Binary BPE Paper**: [Bommarito (2025)](https://arxiv.org/abs/2511.17573) introduced byte-level BPE tokenization for binary analysis, demonstrating 2-3x compression over raw bytes for executable content.
- **Binary BPE Tokenizers**: Pre-trained tokenizers for executables are available at [mjbommar/binary-tokenizer-001-64k](https://huggingface.co/mjbommar/binary-tokenizer-001-64k).

**Key difference**: The original Binary BPE work focused on executable binaries (ELF, PE, Mach-O). Magic-BERT extends this to general file type understanding across 106 diverse formats, using a tokenizer trained on the broader dataset.

## Citation

A paper describing Magic-BERT, the training methodology, and the dataset is forthcoming.

```bibtex
@article{bommarito2025binarybpe,
  title={Binary BPE: A Family of Cross-Platform Tokenizers for Binary Analysis},
  author={Bommarito, Michael J., II},
  journal={arXiv preprint arXiv:2511.17573},
  year={2025}
}
```