File size: 13,367 Bytes
9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 9d1a15a 9de65e5 55d677f 9de65e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- binary-analysis
- file-type-detection
- byte-level
- classification
- mime-type
- roformer
- rope
- security
pipeline_tag: text-classification
base_model: magic-bert-50m-roformer-mlm
model-index:
- name: magic-bert-50m-roformer-classification
results:
- task:
type: text-classification
name: File Type Classification
metrics:
- name: Probing Accuracy
type: accuracy
value: 93.7
- name: Silhouette Score
type: silhouette
value: 0.663
- name: F1 (Weighted)
type: f1
value: 0.933
---
# Magic-BERT 50M RoFormer Classification
A RoFormer-based transformer model fine-tuned for binary file type classification. This model achieves 93.7% classification accuracy across 106 MIME types, making it the **recommended choice for production file type detection**.
## Why Not Just Use libmagic?
For intact files starting at byte 0, libmagic works well. But libmagic matches *signatures at fixed offsets*. Magic-BERT learns *structural patterns* throughout the file, enabling use cases where you don't have clean file boundaries:
- **Network streams**: Classifying packet payloads mid-connection, before headers arrive
- **Disk forensics**: Identifying file types during carving, when scanning raw disk images without filesystem metadata
- **Fragment analysis**: Working with partial files, slack space, or corrupted data
- **Adversarial contexts**: Detecting file types when magic bytes are stripped, spoofed, or deliberately misleading
## Model Description
This model extends magic-bert-50m-roformer-mlm with contrastive learning fine-tuning. It uses Rotary Position Embeddings (RoPE) and produces highly discriminative embeddings for file type classification.
| Property | Value |
|----------|-------|
| Parameters | 42.0M (+ 0.45M classifier head) |
| Hidden Size | 512 |
| Projection Dimension | 256 |
| Number of Classes | 106 MIME types |
| Base Model | magic-bert-50m-roformer-mlm |
| Position Encoding | RoPE (Rotary Position Embeddings) |
### Tokenizer
The tokenizer uses the Binary BPE methodology introduced in [Bommarito (2025)](https://arxiv.org/abs/2511.17573). The original Binary BPE tokenizers (available at [mjbommar/binary-tokenizer-001-64k](https://huggingface.co/mjbommar/binary-tokenizer-001-64k)) were trained exclusively on executable binaries (ELF, PE, Mach-O). This tokenizer uses the same BPE training approach but was trained on a diverse corpus spanning 106 file types.
## Intended Uses
**Primary use cases:**
- Production file type classification
- MIME type detection from binary content
- Embedding-based file similarity search
- Security analysis and content filtering
This is the recommended model for file classification tasks due to its combination of high accuracy (93.7%) and parameter efficiency (42M parameters).
## Detailed Use Cases
### Network Traffic Analysis
When inspecting packet payloads, you often see file data mid-stream—TCP reassembly may give you bytes 1500-3000 of a PDF before you ever see byte 0. Traditional signature matching fails here. Classification embeddings can identify file types from interior content.
### Disk Forensics & File Carving
During disk image analysis, you scan raw bytes looking for file boundaries. Tools like Scalpel rely on header/footer signatures, but many files lack clear footers. This model can score byte ranges for file type probability, helping identify carved fragments or validate carving results.
### Incident Response
Malware often strips or modifies magic bytes to evade detection. Polyglot files (valid as multiple types) exploit signature-based tools. Learning structural patterns provides a second opinion that doesn't rely solely on the first few bytes.
### Similarity Search
The embedding space (256-dimensional, L2-normalized) enables similarity search across file collections: "find files structurally similar to this sample" for malware clustering, duplicate detection, or content-based retrieval.
## Architecture: RoPE vs Absolute Position Embeddings
This model uses **Rotary Position Embeddings (RoPE)**, which encode position through rotation matrices in attention. This differs from the Magic-BERT variant which uses absolute position embeddings.
| Metric | RoFormer (this) | Magic-BERT |
|--------|-----------------|------------|
| Classification Accuracy | **93.7%** | 89.7% |
| Silhouette Score | **0.663** | 0.55 |
| F1 (Weighted) | **0.933** | 0.886 |
| Parameters | **42.5M** | 59M |
| Fill-mask Retention | 14.5% | **41.8%** |
This model achieves higher classification accuracy with fewer parameters, making it the preferred choice for production deployment when only classification is needed.
## MLM vs Classification: Two-Phase Training
This is the **Phase 2 (Classification)** model built on RoFormer. The training pipeline has two phases:
| Phase | Model | Task | Purpose |
|-------|-------|------|---------|
| Phase 1 | magic-bert-50m-roformer-mlm | Masked Language Modeling | Learn byte-level patterns and file structure |
| **Phase 2** | **This model** | Contrastive Learning | Optimize embeddings for file type discrimination |
### Two-Phase Training
| Phase | Steps | Learning Rate | Objective |
|-------|-------|---------------|-----------|
| 1: MLM Pre-training | 100,000 | 1e-4 | Masked Language Modeling |
| 2: Contrastive Fine-tuning | 50,000 | 1e-6 | Supervised Contrastive Loss |
**Phase 2 specifics:**
- Frozen: Embeddings + first 4 transformer layers
- Learning rate: 100x lower than Phase 1
- Result: Significantly improved embedding quality for classification
## Evaluation Results
### Classification Performance
| Metric | Value |
|--------|-------|
| Linear Probe Accuracy | **93.7%** |
| F1 (Macro) | 0.829 |
| F1 (Weighted) | 0.933 |
### Embedding Quality
| Metric | Value |
|--------|-------|
| Silhouette Score | **0.663** |
| Separation Ratio | 4.00 |
| Intra-class Distance | 7.24 |
| Inter-class Distance | 28.98 |
The silhouette score of 0.663 indicates well-separated clusters, suitable for embedding-based retrieval and similarity search.
### Phase 1 → Phase 2 Improvement
| Metric | Phase 1 | Phase 2 | Change |
|--------|---------|---------|--------|
| Probing Accuracy | 85.0% | 93.7% | +8.7% |
| Silhouette Score | 0.328 | 0.663 | +102% |
| Separation Ratio | 2.65 | 4.00 | +51% |
## Supported MIME Types (106 Classes)
The model classifies files into 106 MIME types across these categories:
| Category | Count | Examples | Typical Accuracy |
|----------|-------|----------|------------------|
| application/ | 41 | PDF, ZIP, GZIP, Office docs, executables | >90% |
| text/ | 24 | Python, C, Java, HTML, XML, shell scripts | >80% |
| image/ | 18 | PNG, JPEG, GIF, WebP, TIFF, PSD | >95% |
| video/ | 9 | MP4, WebM, MKV, AVI, MOV | >90% |
| audio/ | 8 | MP3, FLAC, WAV, OGG, M4A | >90% |
| font/ | 3 | SFNT, WOFF, WOFF2 | >85% |
| other | 3 | biosig/atf, inode/x-empty, message/rfc822 | varies |
<details>
<summary>Click to expand full MIME type list</summary>
**application/** (41 types):
- application/SIMH-tape-data, application/encrypted, application/gzip
- application/javascript, application/json, application/msword
- application/mxf, application/octet-stream, application/pdf
- application/pgp-keys, application/postscript
- application/vnd.microsoft.portable-executable, application/vnd.ms-excel
- application/vnd.ms-opentype, application/vnd.ms-powerpoint
- application/vnd.oasis.opendocument.spreadsheet
- application/vnd.openxmlformats-officedocument.* (3 variants)
- application/vnd.rn-realmedia, application/vnd.wordperfect
- application/wasm, application/x-7z-compressed, application/x-archive
- application/x-bzip2, application/x-coff, application/x-dbf
- application/x-dosexec, application/x-executable
- application/x-gettext-translation, application/x-ms-ne-executable
- application/x-ndjson, application/x-object, application/x-ole-storage
- application/x-sharedlib, application/x-shockwave-flash
- application/x-tar, application/x-wine-extension-ini
- application/zip, application/zlib, application/zstd
**text/** (24 types):
- text/csv, text/html, text/plain, text/rtf, text/troff
- text/x-Algol68, text/x-asm, text/x-c, text/x-c++
- text/x-diff, text/x-file, text/x-fortran, text/x-java
- text/x-m4, text/x-makefile, text/x-msdos-batch, text/x-perl
- text/x-php, text/x-po, text/x-ruby, text/x-script.python
- text/x-shellscript, text/x-tex, text/xml
**image/** (18 types):
- image/bmp, image/fits, image/gif, image/heif, image/jpeg
- image/png, image/svg+xml, image/tiff, image/vnd.adobe.photoshop
- image/vnd.microsoft.icon, image/webp, image/x-eps, image/x-exr
- image/x-jp2-codestream, image/x-portable-bitmap
- image/x-portable-greymap, image/x-tga, image/x-xpixmap
**video/** (9 types):
- video/3gpp, video/mp4, video/mpeg, video/quicktime, video/webm
- video/x-ivf, video/x-matroska, video/x-ms-asf, video/x-msvideo
**audio/** (8 types):
- audio/amr, audio/flac, audio/mpeg, audio/ogg, audio/x-ape
- audio/x-hx-aac-adts, audio/x-m4a, audio/x-wav
**font/** (3 types):
- font/sfnt, font/woff, font/woff2
**other** (3 types):
- biosig/atf, inode/x-empty, message/rfc822
</details>
## How to Use
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
model = AutoModelForSequenceClassification.from_pretrained(
"mjbommar/magic-bert-50m-roformer-classification", trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained("mjbommar/magic-bert-50m-roformer-classification")
model.eval()
# Classify a file
with open("example.pdf", "rb") as f:
data = f.read(512)
# Decode bytes to string using latin-1 (preserves all byte values 0-255)
text = data.decode("latin-1")
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
confidence = torch.softmax(outputs.logits, dim=-1).max().item()
print(f"Predicted class: {predicted_id}")
print(f"Confidence: {confidence:.2%}")
```
### Embedding-Based Similarity Search
```python
# Get normalized embeddings (256-dim, L2-normalized)
with torch.no_grad():
embeddings = model.get_embeddings(inputs["input_ids"], inputs["attention_mask"])
# embeddings shape: [batch_size, 256]
# Compute cosine similarity
similarity = torch.mm(embeddings1, embeddings2.T)
```
### Loading MIME Type Labels
```python
from huggingface_hub import hf_hub_download
import json
mime_path = hf_hub_download("mjbommar/magic-bert-50m-roformer-classification", "mime_type_mapping.json")
with open(mime_path) as f:
id_to_mime = {int(k): v for k, v in json.load(f).items()}
print(f"Predicted MIME type: {id_to_mime[predicted_id]}")
```
## Limitations
1. **MLM capability sacrificed:** Fill-mask accuracy drops to 14.5% after classification fine-tuning. Use the MLM variant if byte prediction is needed.
2. **Position bias:** Still present (~46% accuracy drop at offset 1000), though less relevant for classification than for fill-mask tasks.
3. **Ambiguous formats:** ZIP-based formats (DOCX, XLSX, JAR, APK) share similar structure and may be confused.
4. **Rare types:** Lower accuracy on underrepresented file types in training data.
## Model Selection Guide
| Use Case | Recommended Model | Reason |
|----------|-------------------|--------|
| **Production classification** | **This model** | Highest accuracy (93.7%), efficient (42M params) |
| Classification + fill-mask | magic-bert-50m-classification | Retains 41.8% fill-mask capability |
| Fill-mask / byte prediction | magic-bert-50m-roformer-mlm | Optimized for MLM |
| Research baseline | magic-bert-50m-mlm | Best perplexity (1.05) |
## Related Models
- **[magic-bert-50m-roformer-mlm](https://huggingface.co/mjbommar/magic-bert-50m-roformer-mlm)**: Base model before classification fine-tuning
- **[magic-bert-50m-mlm](https://huggingface.co/mjbommar/magic-bert-50m-mlm)**: Absolute position embedding variant (MLM)
- **[magic-bert-50m-classification](https://huggingface.co/mjbommar/magic-bert-50m-classification)**: Magic-BERT variant that retains better fill-mask capability (89.7% accuracy)
## Related Work
This model builds on the Binary BPE tokenization approach:
- **Binary BPE Paper**: [Bommarito (2025)](https://arxiv.org/abs/2511.17573) introduced byte-level BPE tokenization for binary analysis, demonstrating 2-3x compression over raw bytes for executable content.
- **Binary BPE Tokenizers**: Pre-trained tokenizers for executables are available at [mjbommar/binary-tokenizer-001-64k](https://huggingface.co/mjbommar/binary-tokenizer-001-64k).
**Key difference**: The original Binary BPE work focused on executable binaries (ELF, PE, Mach-O). Magic-BERT extends this to general file type understanding across 106 diverse formats, using a tokenizer trained on the broader dataset.
## Citation
A paper describing Magic-BERT, the training methodology, and the dataset is forthcoming.
```bibtex
@article{bommarito2025binarybpe,
title={Binary BPE: A Family of Cross-Platform Tokenizers for Binary Analysis},
author={Bommarito, Michael J., II},
journal={arXiv preprint arXiv:2511.17573},
year={2025}
}
```
|