1 GenSelect: A Generative Approach to Best-of-N Generative reward models with parallel sampling have enabled effective test-time scaling for reasoning tasks. Current approaches employ pointwise scoring of individual solutions or pairwise comparisons. However, pointwise methods underutilize LLMs' comparative abilities, while pairwise methods scale inefficiently with larger sampling budgets. We introduce GenSelect, where the LLM uses long reasoning to select the best solution among N candidates. This leverages LLMs' comparative strengths while scaling efficiently across parallel sampling budgets. For math reasoning, we demonstrate that reasoning models, such as QwQ and DeepSeek-R1-0528, excel at GenSelect, outperforming existing scoring approaches with simple prompting. 5 authors · Jul 23
25 AIMO-2 Winning Solution: Building State-of-the-Art Mathematical Reasoning Models with OpenMathReasoning dataset This paper presents our winning submission to the AI Mathematical Olympiad - Progress Prize 2 (AIMO-2) competition. Our recipe for building state-of-the-art mathematical reasoning models relies on three key pillars. First, we create a large-scale dataset comprising 540K unique high-quality math problems, including olympiad-level problems, and their 3.2M long-reasoning solutions. Second, we develop a novel method to integrate code execution with long reasoning models through iterative training, generation, and quality filtering, resulting in 1.7M high-quality Tool-Integrated Reasoning solutions. Third, we create a pipeline to train models to select the most promising solution from many candidates. We show that such generative solution selection (GenSelect) can significantly improve upon majority voting baseline. Combining these ideas, we train a series of models that achieve state-of-the-art results on mathematical reasoning benchmarks. To facilitate further research, we release our code, models, and the complete OpenMathReasoning dataset under a commercially permissive license. 8 authors · Apr 23 2
- Scaling Generative Verifiers For Natural Language Mathematical Proof Verification And Selection Large language models have achieved remarkable success on final-answer mathematical problems, largely due to the ease of applying reinforcement learning with verifiable rewards. However, the reasoning underlying these solutions is often flawed. Advancing to rigorous proof-based mathematics requires reliable proof verification capabilities. We begin by analyzing multiple evaluation setups and show that focusing on a single benchmark can lead to brittle or misleading conclusions. To address this, we evaluate both proof-based and final-answer reasoning to obtain a more reliable measure of model performance. We then scale two major generative verification methods (GenSelect and LLM-as-a-Judge) to millions of tokens and identify their combination as the most effective framework for solution verification and selection. We further show that the choice of prompt for LLM-as-a-Judge significantly affects the model's performance, but reinforcement learning can reduce this sensitivity. However, despite improving proof-level metrics, reinforcement learning does not enhance final-answer precision, indicating that current models often reward stylistic or procedural correctness rather than mathematical validity. Our results establish practical guidelines for designing and evaluating scalable proof-verification and selection systems. 9 authors · Nov 17