new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 11

TeleAntiFraud-28k: A Audio-Text Slow-Thinking Dataset for Telecom Fraud Detection

The detection of telecom fraud faces significant challenges due to the lack of high-quality multimodal training data that integrates audio signals with reasoning-oriented textual analysis. To address this gap, we present TeleAntiFraud-28k, the first open-source audio-text slow-thinking dataset specifically designed for automated telecom fraud analysis. Our dataset is constructed through three strategies: (1) Privacy-preserved text-truth sample generation using automatically speech recognition (ASR)-transcribed call recordings (with anonymized original audio), ensuring real-world consistency through text-to-speech (TTS) model regeneration; (2) Semantic enhancement via large language model (LLM)-based self-instruction sampling on authentic ASR outputs to expand scenario coverage; (3) Multi-agent adversarial synthesis that simulates emerging fraud tactics through predefined communication scenarios and fraud typologies. The generated dataset contains 28,511 rigorously processed speech-text pairs, complete with detailed annotations for fraud reasoning. The dataset is divided into three tasks: scenario classification, fraud detection, fraud type classification. Furthermore, we construct TeleAntiFraud-Bench, a standardized evaluation benchmark comprising proportionally sampled instances from the dataset, to facilitate systematic testing of model performance on telecom fraud detection tasks. We also contribute a production-optimized supervised fine-tuning (SFT) model trained on hybrid real/synthetic data, while open-sourcing the data processing framework to enable community-driven dataset expansion. This work establishes a foundational framework for multimodal anti-fraud research while addressing critical challenges in data privacy and scenario diversity. The project will be released at https://github.com/JimmyMa99/TeleAntiFraud.

  • 10 authors
·
Mar 31 2

Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation

Bug reports contain the information developers need to triage and fix software bugs. However, unclear, incomplete, or ambiguous information may lead to delays and excessive manual effort spent on bug triage and resolution. In this paper, we explore whether Instruction fine-tuned Large Language Models (LLMs) can automatically transform casual, unstructured bug reports into high-quality, structured bug reports adhering to a standard template. We evaluate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral, and Llama 3.2) against ChatGPT-4o, measuring performance on established metrics such as CTQRS, ROUGE, METEOR, and SBERT. Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS score of 77%, outperforming both fine-tuned Mistral (71%), Llama 3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis reveals that Llama 3.2 shows higher accuracy of detecting missing fields particularly Expected Behavior and Actual Behavior, while Qwen 2.5 demonstrates superior performance in capturing Steps-to-Reproduce, with an F1 score of 76%. Additional testing of the models on other popular projects (e.g., Eclipse, GCC) demonstrates that our approach generalizes well, achieving up to 70% CTQRS in unseen projects' bug reports. These findings highlight the potential of instruction fine-tuning in automating structured bug report generation, reducing manual effort for developers and streamlining the software maintenance process.

  • 2 authors
·
Apr 26

WaveCoder: Widespread And Versatile Enhanced Instruction Tuning with Refined Data Generation

Recent work demonstrates that, after being fine-tuned on a high-quality instruction dataset, the resulting model can obtain impressive capabilities to address a wide range of tasks. However, existing methods for instruction data generation often produce duplicate data and are not controllable enough on data quality. In this paper, we extend the generalization of instruction tuning by classifying the instruction data to 4 code-related tasks and propose a LLM-based Generator-Discriminator data process framework to generate diverse, high-quality instruction data from open source code. Hence, we introduce CodeOcean, a dataset comprising 20,000 instruction instances across 4 universal code-related tasks,which is aimed at augmenting the effectiveness of instruction tuning and improving the generalization ability of fine-tuned model. Subsequently, we present WaveCoder, a fine-tuned Code LLM with Widespread And Versatile Enhanced instruction tuning. This model is specifically designed for enhancing instruction tuning of Code Language Models (LLMs). Our experiments demonstrate that Wavecoder models outperform other open-source models in terms of generalization ability across different code-related tasks at the same level of fine-tuning scale. Moreover, Wavecoder exhibits high efficiency in previous code generation tasks. This paper thus offers a significant contribution to the field of instruction data generation and fine-tuning models, providing new insights and tools for enhancing performance in code-related tasks.

  • 8 authors
·
Dec 20, 2023 5

Smaller But Better: Unifying Layout Generation with Smaller Large Language Models

We propose LGGPT, an LLM-based model tailored for unified layout generation. First, we propose Arbitrary Layout Instruction (ALI) and Universal Layout Response (ULR) as the uniform I/O template. ALI accommodates arbitrary layout generation task inputs across multiple layout domains, enabling LGGPT to unify both task-generic and domain-generic layout generation hitherto unexplored. Collectively, ALI and ULR boast a succinct structure that forgoes superfluous tokens typically found in existing HTML-based formats, facilitating efficient instruction tuning and boosting unified generation performance. In addition, we propose an Interval Quantization Encoding (IQE) strategy that compresses ALI into a more condensed structure. IQE precisely preserves valid layout clues while eliminating the less informative placeholders, facilitating LGGPT to capture complex and variable layout generation conditions during the unified training process. Experimental results demonstrate that LGGPT achieves superior or on par performance compared to existing methods. Notably, LGGPT strikes a prominent balance between proficiency and efficiency with a compact 1.5B parameter LLM, which beats prior 7B or 175B models even in the most extensive and challenging unified scenario. Furthermore, we underscore the necessity of employing LLMs for unified layout generation and suggest that 1.5B could be an optimal parameter size by comparing LLMs of varying scales. Code is available at https://github.com/NiceRingNode/LGGPT.

  • 5 authors
·
Feb 19

Ming-UniAudio: Speech LLM for Joint Understanding, Generation and Editing with Unified Representation

Existing speech models suffer from competing requirements on token representations by understanding and generation tasks. This discrepancy in representation prevents speech language models from performing instruction-based free-form editing. To solve this challenge, we introduce a novel framework that unifies speech understanding, generation, and editing. The core of our unified model is a unified continuous speech tokenizer MingTok-Audio, the first continuous tokenizer to effectively integrate semantic and acoustic features, which makes it suitable for both understanding and generation tasks. Based on this unified continuous audio tokenizer, we developed the speech language model Ming-UniAudio, which achieved a balance between generation and understanding capabilities. Ming-UniAudio sets new state-of-the-art (SOTA) records on 8 out of 12 metrics on the ContextASR benchmark. Notably, for Chinese voice cloning, it achieves a highly competitive Seed-TTS-WER of 0.95. Leveraging this foundational model, we further trained a dedicated speech editing model Ming-UniAudio-Edit, the first speech language model that enables universal, free-form speech editing guided solely by natural language instructions, handling both semantic and acoustic modifications without timestamp condition. To rigorously assess the editing capability and establish a foundation for future research, we introduce Ming-Freeform-Audio-Edit, the first comprehensive benchmark tailored for instruction-based free-form speech editing, featuring diverse scenarios and evaluation dimensions spanning semantic correctness, acoustic quality, and instruction alignment. We open-sourced the continuous audio tokenizer, the unified foundational model, and the free-form instruction-based editing model to facilitate the development of unified audio understanding, generation, and manipulation.

inclusionAI inclusionAI
·
Oct 26

SAGE-HLS: Syntax-Aware AST-Guided LLM for High-Level Synthesis Code Generation

In today's rapidly evolving field of electronic design automation (EDA), the complexity of hardware designs is increasing, necessitating more sophisticated automation solutions. High-level synthesis (HLS), as a pivotal solution, automates hardware designs from high-level abstractions (e.g., C/C++). However, it faces significant challenges, particularly in design space exploration and optimization. While large language models (LLMs) have shown notable capabilities in code generation, their application to HLS has been limited due to the scarcity of (publicly) available HLS code datasets. Hence, research in this domain has primarily focused on techniques such as prompt engineering and retrieval-augmented generation (RAG). To overcome this limitation, this paper introduces SAGE-HLS, the first-of-its-kind fine-tuned LLM specifically for HLS code generation. Our method includes three key advancements: (i) We implement Verilog-to-C/C++ porting, converting verified and synthesizable Verilog codes into corresponding C, creating a dataset of 16.7K HLS codes; (ii) We implement a fine-tuning strategy, which is based on instruction prompting to code generation guided by abstract syntax tree (AST); (iii) We develop a semi-automated evaluation framework using VerilogEval to assess the functionality of the generated HLS code. Our experiments show that SAGE-HLS, fined-tuned on the QwenCoder (2.5) 7B model, achieves a near 100% success rate in code synthesizability and a 75% success rate in functional correctness.

  • 5 authors
·
Aug 5

LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation

Following the impressive development of LLMs, vision-language alignment in LLMs is actively being researched to enable multimodal reasoning and visual IO. This direction of research is particularly relevant to medical imaging because medical image analysis and generation consist of reasoning based on a combination of visual features and prior knowledge. Many recent works have focused on training adapter networks that serve as an information bridge between image processing networks and LLMs; but presumably, in order to achieve maximum reasoning potential of LLMs on visual information as well, visual and language features should be allowed to interact more freely. This is especially important in the medical domain because understanding and generating medical images such as chest X-rays (CXR) require not only accurate visual and language-based reasoning but also a more intimate mapping between the two modalities. Thus, taking inspiration from previous work on the transformer and VQ-GAN combination for bidirectional image and text generation, we build upon this approach and develop a method for instruction-tuning an LLM pre-trained only on text to gain vision-language capabilities for medical images. Specifically, we leverage a pretrained LLM's existing question-answering and instruction-following abilities to teach it to understand visual inputs by instructing it to answer questions about image inputs and, symmetrically, output both text and image responses appropriate to a given query by tuning the LLM with diverse tasks that encompass image-based text-generation and text-based image-generation. We show that our model, LLM-CXR, trained in this approach shows better image-text alignment in both CXR understanding and generation tasks while being smaller in size compared to previously developed models that perform a narrower range of tasks. The code is at https://github.com/hyn2028/llm-cxr.

  • 4 authors
·
May 19, 2023

D3: Diversity, Difficulty, and Dependability-Aware Data Selection for Sample-Efficient LLM Instruction Tuning

Recent advancements in instruction tuning for large language models (LLMs) suggest that a small, high-quality dataset can significantly equip LLMs with instruction-following capabilities, outperforming large datasets often burdened by quality and redundancy issues. However, the challenge lies in automatically identifying valuable subsets from large datasets to boost both the effectiveness and efficiency of instruction tuning. In this paper, we first establish data selection criteria based on three distinct aspects of data value: diversity, difficulty, and dependability, and then propose the D3 method comprising two key steps of scoring and selection. Specifically, in the scoring step, we define the diversity function to measure sample distinctiveness and introduce the uncertainty-based prediction difficulty to evaluate sample difficulty by mitigating the interference of context-oriented generation diversity. Additionally, we integrate an external LLM for dependability assessment. In the selection step, we formulate the D3 weighted coreset objective, which jointly optimizes three aspects of data value to solve for the most valuable subset. The two steps of D3 can iterate multiple rounds, incorporating feedback to refine the selection focus adaptively. Experiments on both public datasets and the real-world Taobao Live application demonstrate the effectiveness of D3 in endowing LLMs with competitive or even superior instruction-following capabilities using less than 10\% of the entire dataset.

  • 8 authors
·
Mar 14

PathGen-1.6M: 1.6 Million Pathology Image-text Pairs Generation through Multi-agent Collaboration

Vision Language Models (VLMs) like CLIP have attracted substantial attention in pathology, serving as backbones for applications such as zero-shot image classification and Whole Slide Image (WSI) analysis. Additionally, they can function as vision encoders when combined with large language models (LLMs) to support broader capabilities. Current efforts to train pathology VLMs rely on pathology image-text pairs from platforms like PubMed, YouTube, and Twitter, which provide limited, unscalable data with generally suboptimal image quality. In this work, we leverage large-scale WSI datasets like TCGA to extract numerous high-quality image patches. We then train a large multimodal model to generate captions for these images, creating PathGen-1.6M, a dataset containing 1.6 million high-quality image-caption pairs. Our approach involves multiple agent models collaborating to extract representative WSI patches, generating and refining captions to obtain high-quality image-text pairs. Extensive experiments show that integrating these generated pairs with existing datasets to train a pathology-specific CLIP model, PathGen-CLIP, significantly enhances its ability to analyze pathological images, with substantial improvements across nine pathology-related zero-shot image classification tasks and three whole-slide image tasks. Furthermore, we construct 200K instruction-tuning data based on PathGen-1.6M and integrate PathGen-CLIP with the Vicuna LLM to create more powerful multimodal models through instruction tuning. Overall, we provide a scalable pathway for high-quality data generation in pathology, paving the way for next-generation general pathology models.

  • 10 authors
·
Jun 28, 2024

NExT-GPT: Any-to-Any Multimodal LLM

While recently Multimodal Large Language Models (MM-LLMs) have made exciting strides, they mostly fall prey to the limitation of only input-side multimodal understanding, without the ability to produce content in multiple modalities. As we humans always perceive the world and communicate with people through various modalities, developing any-to-any MM-LLMs capable of accepting and delivering content in any modality becomes essential to human-level AI. To fill the gap, we present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT. We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio. By leveraging the existing well-trained highly-performing encoders and decoders, NExT-GPT is tuned with only a small amount of parameter (1%) of certain projection layers, which not only benefits low-cost training and also facilitates convenient expansion to more potential modalities. Moreover, we introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation. Overall, our research showcases the promising possibility of building an AI agent capable of modeling universal modalities, paving the way for more human-like AI research in the community.

  • 5 authors
·
Sep 11, 2023 14

OpenLLM-RTL: Open Dataset and Benchmark for LLM-Aided Design RTL Generation

The automated generation of design RTL based on large language model (LLM) and natural language instructions has demonstrated great potential in agile circuit design. However, the lack of datasets and benchmarks in the public domain prevents the development and fair evaluation of LLM solutions. This paper highlights our latest advances in open datasets and benchmarks from three perspectives: (1) RTLLM 2.0, an updated benchmark assessing LLM's capability in design RTL generation. The benchmark is augmented to 50 hand-crafted designs. Each design provides the design description, test cases, and a correct RTL code. (2) AssertEval, an open-source benchmark assessing the LLM's assertion generation capabilities for RTL verification. The benchmark includes 18 designs, each providing specification, signal definition, and correct RTL code. (3) RTLCoder-Data, an extended open-source dataset with 80K instruction-code data samples. Moreover, we propose a new verification-based method to verify the functionality correctness of training data samples. Based on this technique, we further release a dataset with 7K verified high-quality samples. These three studies are integrated into one framework, providing off-the-shelf support for the development and evaluation of LLMs for RTL code generation and verification. Finally, extensive experiments indicate that LLM performance can be boosted by enlarging the training dataset, improving data quality, and improving the training scheme.

  • 5 authors
·
Mar 19

AgentPoison: Red-teaming LLM Agents via Poisoning Memory or Knowledge Bases

LLM agents have demonstrated remarkable performance across various applications, primarily due to their advanced capabilities in reasoning, utilizing external knowledge and tools, calling APIs, and executing actions to interact with environments. Current agents typically utilize a memory module or a retrieval-augmented generation (RAG) mechanism, retrieving past knowledge and instances with similar embeddings from knowledge bases to inform task planning and execution. However, the reliance on unverified knowledge bases raises significant concerns about their safety and trustworthiness. To uncover such vulnerabilities, we propose a novel red teaming approach AgentPoison, the first backdoor attack targeting generic and RAG-based LLM agents by poisoning their long-term memory or RAG knowledge base. In particular, we form the trigger generation process as a constrained optimization to optimize backdoor triggers by mapping the triggered instances to a unique embedding space, so as to ensure that whenever a user instruction contains the optimized backdoor trigger, the malicious demonstrations are retrieved from the poisoned memory or knowledge base with high probability. In the meantime, benign instructions without the trigger will still maintain normal performance. Unlike conventional backdoor attacks, AgentPoison requires no additional model training or fine-tuning, and the optimized backdoor trigger exhibits superior transferability, in-context coherence, and stealthiness. Extensive experiments demonstrate AgentPoison's effectiveness in attacking three types of real-world LLM agents: RAG-based autonomous driving agent, knowledge-intensive QA agent, and healthcare EHRAgent. On each agent, AgentPoison achieves an average attack success rate higher than 80% with minimal impact on benign performance (less than 1%) with a poison rate less than 0.1%.

  • 5 authors
·
Jul 17, 2024 3

AI-University: An LLM-based platform for instructional alignment to scientific classrooms

We introduce AI University (AI-U), a flexible framework for AI-driven course content delivery that adapts to instructors' teaching styles. At its core, AI-U fine-tunes a large language model (LLM) with retrieval-augmented generation (RAG) to generate instructor-aligned responses from lecture videos, notes, and textbooks. Using a graduate-level finite-element-method (FEM) course as a case study, we present a scalable pipeline to systematically construct training data, fine-tune an open-source LLM with Low-Rank Adaptation (LoRA), and optimize its responses through RAG-based synthesis. Our evaluation - combining cosine similarity, LLM-based assessment, and expert review - demonstrates strong alignment with course materials. We also have developed a prototype web application, available at https://my-ai-university.com, that enhances traceability by linking AI-generated responses to specific sections of the relevant course material and time-stamped instances of the open-access video lectures. Our expert model is found to have greater cosine similarity with a reference on 86% of test cases. An LLM judge also found our expert model to outperform the base Llama 3.2 model approximately four times out of five. AI-U offers a scalable approach to AI-assisted education, paving the way for broader adoption in higher education. Here, our framework has been presented in the setting of a class on FEM - a subject that is central to training PhD and Master students in engineering science. However, this setting is a particular instance of a broader context: fine-tuning LLMs to research content in science.

  • 8 authors
·
Apr 10 2

EduPlanner: LLM-Based Multi-Agent Systems for Customized and Intelligent Instructional Design

Large Language Models (LLMs) have significantly advanced smart education in the Artificial General Intelligence (AGI) era. A promising application lies in the automatic generalization of instructional design for curriculum and learning activities, focusing on two key aspects: (1) Customized Generation: generating niche-targeted teaching content based on students' varying learning abilities and states, and (2) Intelligent Optimization: iteratively optimizing content based on feedback from learning effectiveness or test scores. Currently, a single large LLM cannot effectively manage the entire process, posing a challenge for designing intelligent teaching plans. To address these issues, we developed EduPlanner, an LLM-based multi-agent system comprising an evaluator agent, an optimizer agent, and a question analyst, working in adversarial collaboration to generate customized and intelligent instructional design for curriculum and learning activities. Taking mathematics lessons as our example, EduPlanner employs a novel Skill-Tree structure to accurately model the background mathematics knowledge of student groups, personalizing instructional design for curriculum and learning activities according to students' knowledge levels and learning abilities. Additionally, we introduce the CIDDP, an LLM-based five-dimensional evaluation module encompassing clarity, Integrity, Depth, Practicality, and Pertinence, to comprehensively assess mathematics lesson plan quality and bootstrap intelligent optimization. Experiments conducted on the GSM8K and Algebra datasets demonstrate that EduPlanner excels in evaluating and optimizing instructional design for curriculum and learning activities. Ablation studies further validate the significance and effectiveness of each component within the framework. Our code is publicly available at https://github.com/Zc0812/Edu_Planner

  • 6 authors
·
Apr 7

Intelligent Virtual Assistants with LLM-based Process Automation

While intelligent virtual assistants like Siri, Alexa, and Google Assistant have become ubiquitous in modern life, they still face limitations in their ability to follow multi-step instructions and accomplish complex goals articulated in natural language. However, recent breakthroughs in large language models (LLMs) show promise for overcoming existing barriers by enhancing natural language processing and reasoning capabilities. Though promising, applying LLMs to create more advanced virtual assistants still faces challenges like ensuring robust performance and handling variability in real-world user commands. This paper proposes a novel LLM-based virtual assistant that can automatically perform multi-step operations within mobile apps based on high-level user requests. The system represents an advance in assistants by providing an end-to-end solution for parsing instructions, reasoning about goals, and executing actions. LLM-based Process Automation (LLMPA) has modules for decomposing instructions, generating descriptions, detecting interface elements, predicting next actions, and error checking. Experiments demonstrate the system completing complex mobile operation tasks in Alipay based on natural language instructions. This showcases how large language models can enable automated assistants to accomplish real-world tasks. The main contributions are the novel LLMPA architecture optimized for app process automation, the methodology for applying LLMs to mobile apps, and demonstrations of multi-step task completion in a real-world environment. Notably, this work represents the first real-world deployment and extensive evaluation of a large language model-based virtual assistant in a widely used mobile application with an enormous user base numbering in the hundreds of millions.

  • 9 authors
·
Dec 4, 2023

AutoMMLab: Automatically Generating Deployable Models from Language Instructions for Computer Vision Tasks

Automated machine learning (AutoML) is a collection of techniques designed to automate the machine learning development process. While traditional AutoML approaches have been successfully applied in several critical steps of model development (e.g. hyperparameter optimization), there lacks a AutoML system that automates the entire end-to-end model production workflow. To fill this blank, we present AutoMMLab, a general-purpose LLM-empowered AutoML system that follows user's language instructions to automate the whole model production workflow for computer vision tasks. The proposed AutoMMLab system effectively employs LLMs as the bridge to connect AutoML and OpenMMLab community, empowering non-expert individuals to easily build task-specific models via a user-friendly language interface. Specifically, we propose RU-LLaMA to understand users' request and schedule the whole pipeline, and propose a novel LLM-based hyperparameter optimizer called HPO-LLaMA to effectively search for the optimal hyperparameters. Experiments show that our AutoMMLab system is versatile and covers a wide range of mainstream tasks, including classification, detection, segmentation and keypoint estimation. We further develop a new benchmark, called LAMP, for studying key components in the end-to-end prompt-based model training pipeline. Code, model, and data will be released.

  • 6 authors
·
Feb 23, 2024

RTL++: Graph-enhanced LLM for RTL Code Generation

As hardware design complexity escalates, there is an urgent need for advanced automation in electronic design automation (EDA). Traditional register transfer level (RTL) design methods are manual, time-consuming, and prone to errors. While commercial (instruction-tuned) large language models (LLMs) shows promising performance for automation, they pose security and privacy concerns. Open-source models offer alternatives; however, they frequently fall short in quality/correctness, largely due to limited, high-quality RTL code data essential for effective training and generalization. This paper proposes RTL++, a first-of-its-kind LLM-assisted method for RTL code generation that utilizes graph representations of code structures to enhance the quality of generated code. By encoding RTL code into a textualized control flowgraphs (CFG) and data flow graphs (DFG), RTL++ captures the inherent hierarchy, dependencies, and relationships within the code. This structured graph-based approach enhances the context available to LLMs, enabling them to better understand and generate instructions. By focusing on data generation through graph representations, RTL++ addresses the limitations of previous approaches that rely solely on code and suffer from lack of diversity. Experimental results demonstrate that RTL++ outperforms state-of-the-art models fine-tuned for RTL generation, as evaluated using the VerilogEval benchmark's Pass@1/5/10 metric, as well as the RTLLM1.1 model, which highlight the effectiveness of graph-enhanced context in advancing the capabilities of LLM-assisted RTL code generation.

  • 3 authors
·
May 10

An LLM can Fool Itself: A Prompt-Based Adversarial Attack

The wide-ranging applications of large language models (LLMs), especially in safety-critical domains, necessitate the proper evaluation of the LLM's adversarial robustness. This paper proposes an efficient tool to audit the LLM's adversarial robustness via a prompt-based adversarial attack (PromptAttack). PromptAttack converts adversarial textual attacks into an attack prompt that can cause the victim LLM to output the adversarial sample to fool itself. The attack prompt is composed of three important components: (1) original input (OI) including the original sample and its ground-truth label, (2) attack objective (AO) illustrating a task description of generating a new sample that can fool itself without changing the semantic meaning, and (3) attack guidance (AG) containing the perturbation instructions to guide the LLM on how to complete the task by perturbing the original sample at character, word, and sentence levels, respectively. Besides, we use a fidelity filter to ensure that PromptAttack maintains the original semantic meanings of the adversarial examples. Further, we enhance the attack power of PromptAttack by ensembling adversarial examples at different perturbation levels. Comprehensive empirical results using Llama2 and GPT-3.5 validate that PromptAttack consistently yields a much higher attack success rate compared to AdvGLUE and AdvGLUE++. Interesting findings include that a simple emoji can easily mislead GPT-3.5 to make wrong predictions.

  • 7 authors
·
Oct 20, 2023

Vi(E)va LLM! A Conceptual Stack for Evaluating and Interpreting Generative AI-based Visualizations

The automatic generation of visualizations is an old task that, through the years, has shown more and more interest from the research and practitioner communities. Recently, large language models (LLM) have become an interesting option for supporting generative tasks related to visualization, demonstrating initial promising results. At the same time, several pitfalls, like the multiple ways of instructing an LLM to generate the desired result, the different perspectives leading the generation (code-based, image-based, grammar-based), and the presence of hallucinations even for the visualization generation task, make their usage less affordable than expected. Following similar initiatives for benchmarking LLMs, this paper copes with the problem of modeling the evaluation of a generated visualization through an LLM. We propose a theoretical evaluation stack, EvaLLM, that decomposes the evaluation effort in its atomic components, characterizes their nature, and provides an overview of how to implement and interpret them. We also designed and implemented an evaluation platform that provides a benchmarking resource for the visualization generation task. The platform supports automatic and manual scoring conducted by multiple assessors to support a fine-grained and semantic evaluation based on the EvaLLM stack. Two case studies on GPT3.5-turbo with Code Interpreter and Llama2-70-b models show the benefits of EvaLLM and illustrate interesting results on the current state-of-the-art LLM-generated visualizations.

  • 3 authors
·
Feb 3, 2024

Bag of Tricks for Inference-time Computation of LLM Reasoning

With the advancement of large language models (LLMs), solving complex reasoning tasks has gained increasing attention. Inference-time computation methods (e.g., Best-of-N, beam search, et al.) are particularly valuable as they can enhance reasoning performance without modifying model parameters or requiring additional training. However, these techniques come with implementation challenges, and most existing methods remain at the proof-of-concept stage with limited practical adoption due to their computational complexity and varying effectiveness across different tasks. In this paper, we investigate and benchmark diverse inference-time computation strategies across reasoning tasks of varying complexity. Since most current methods rely on a proposer-verifier pipeline that first generates candidate solutions (e.g., reasoning solutions) and then selects the best one based on reward signals (e.g., RLHF rewards, process rewards), our research focuses on optimizing both candidate solution generation (e.g., instructing prompts, hyperparameters such as temperature and top-p) and reward mechanisms (e.g., self-evaluation, reward types). Through extensive experiments (more than 20,000 A100-80G GPU hours with over 1,000 experiments) across a variety of models (e.g., Llama, Qwen, and Mistral families) of various sizes, our ablation studies reveal that previously overlooked strategies can significantly enhance performance (e.g., tuning temperature can improve reasoning task performance by up to 5%). Furthermore, we establish a standardized benchmark for inference-time computation by systematically evaluating six representative methods across eight reasoning tasks. These findings provide a stronger foundation for future research. The code is available at https://github.com/usail-hkust/benchmark_inference_time_computation_LLM

  • 4 authors
·
Feb 10

Large Language Model-Brained GUI Agents: A Survey

GUIs have long been central to human-computer interaction, providing an intuitive and visually-driven way to access and interact with digital systems. The advent of LLMs, particularly multimodal models, has ushered in a new era of GUI automation. They have demonstrated exceptional capabilities in natural language understanding, code generation, and visual processing. This has paved the way for a new generation of LLM-brained GUI agents capable of interpreting complex GUI elements and autonomously executing actions based on natural language instructions. These agents represent a paradigm shift, enabling users to perform intricate, multi-step tasks through simple conversational commands. Their applications span across web navigation, mobile app interactions, and desktop automation, offering a transformative user experience that revolutionizes how individuals interact with software. This emerging field is rapidly advancing, with significant progress in both research and industry. To provide a structured understanding of this trend, this paper presents a comprehensive survey of LLM-brained GUI agents, exploring their historical evolution, core components, and advanced techniques. We address research questions such as existing GUI agent frameworks, the collection and utilization of data for training specialized GUI agents, the development of large action models tailored for GUI tasks, and the evaluation metrics and benchmarks necessary to assess their effectiveness. Additionally, we examine emerging applications powered by these agents. Through a detailed analysis, this survey identifies key research gaps and outlines a roadmap for future advancements in the field. By consolidating foundational knowledge and state-of-the-art developments, this work aims to guide both researchers and practitioners in overcoming challenges and unlocking the full potential of LLM-brained GUI agents.

  • 12 authors
·
Nov 27, 2024 3