- Neural Operator: Is data all you need to model the world? An insight into the impact of Physics Informed Machine Learning Numerical approximations of partial differential equations (PDEs) are routinely employed to formulate the solution of physics, engineering and mathematical problems involving functions of several variables, such as the propagation of heat or sound, fluid flow, elasticity, electrostatics, electrodynamics, and more. While this has led to solving many complex phenomena, there are some limitations. Conventional approaches such as Finite Element Methods (FEMs) and Finite Differential Methods (FDMs) require considerable time and are computationally expensive. In contrast, data driven machine learning-based methods such as neural networks provide a faster, fairly accurate alternative, and have certain advantages such as discretization invariance and resolution invariance. This article aims to provide a comprehensive insight into how data-driven approaches can complement conventional techniques to solve engineering and physics problems, while also noting some of the major pitfalls of machine learning-based approaches. Furthermore, we highlight, a novel and fast machine learning-based approach (~1000x) to learning the solution operator of a PDE operator learning. We will note how these new computational approaches can bring immense advantages in tackling many problems in fundamental and applied physics. 8 authors · Jan 30, 2023
1 FlashGMM: Fast Gaussian Mixture Entropy Model for Learned Image Compression High-performance learned image compression codecs require flexible probability models to fit latent representations. Gaussian Mixture Models (GMMs) were proposed to satisfy this demand, but suffer from a significant runtime performance bottleneck due to the large Cumulative Distribution Function (CDF) tables that must be built for rANS coding. This paper introduces a fast coding algorithm that entirely eliminates this bottleneck. By leveraging the CDF's monotonic property, our decoder performs a dynamic binary search to find the correct symbol, eliminating the need for costly table construction and lookup. Aided by SIMD optimizations and numerical approximations, our approach accelerates the GMM entropy coding process by up to approximately 90x without compromising rate-distortion performance, significantly improving the practicality of GMM-based codecs. The implementation will be made publicly available at https://github.com/tokkiwa/FlashGMM. 3 authors · Sep 23, 2025
- Approximate Axiomatization for Differentially-Defined Functions This article establishes a complete approximate axiomatization for the real-closed field R expanded with all differentially-defined functions, including special functions such as sin(x), cos(x), e^x, dots. Every true sentence is provable up to some numerical approximation, and the truth of such approximations converge under mild conditions. Such an axiomatization is a fragment of the axiomatization for differential dynamic logic, and is therefore a finite extension of the axiomatization of real-closed fields. Furthermore, the numerical approximations approximate formulas containing special function symbols by FOL_{R} formulas, improving upon earlier decidability results only concerning closed sentences. 2 authors · Jun 9, 2025
1 SuperNormal: Neural Surface Reconstruction via Multi-View Normal Integration We present SuperNormal, a fast, high-fidelity approach to multi-view 3D reconstruction using surface normal maps. With a few minutes, SuperNormal produces detailed surfaces on par with 3D scanners. We harness volume rendering to optimize a neural signed distance function (SDF) powered by multi-resolution hash encoding. To accelerate training, we propose directional finite difference and patch-based ray marching to approximate the SDF gradients numerically. While not compromising reconstruction quality, this strategy is nearly twice as efficient as analytical gradients and about three times faster than axis-aligned finite difference. Experiments on the benchmark dataset demonstrate the superiority of SuperNormal in efficiency and accuracy compared to existing multi-view photometric stereo methods. On our captured objects, SuperNormal produces more fine-grained geometry than recent neural 3D reconstruction methods. 2 authors · Dec 7, 2023
- Learnable Sampler Distillation for Discrete Diffusion Models Discrete diffusion models (DDMs) have shown powerful generation ability for discrete data modalities like text and molecules. However, their practical application is hindered by inefficient sampling, requiring a large number of sampling steps. Accelerating DDMs by using larger step sizes typically introduces significant problems in generation quality, as it amplifies the impact of both the compounding decoding error due to factorized predictions and discretization error from numerical approximations, leading to a significant decrease in sampling quality. To address these challenges, we propose learnable sampler distillation (LSD), a novel approach to train fast and high-fidelity samplers for DDMs. LSD employs a distillation approach where a student sampler with a few steps learns to align its intermediate score trajectory with that of a high-quality teacher sampler with numerous steps. This alignment is achieved by optimizing learnable sampler coefficients that adaptively adjust sampling dynamics. Additionally, we further propose LSD+, which also learns time schedules that allocate steps non-uniformly. Experiments across text generation, image generation, and synthetic tasks demonstrate that our proposed approaches outperform existing samplers for DDMs, achieving substantially higher sampling quality with significantly fewer sampling steps. Our code is available at https://github.com/feiyangfu/LSD{https://github.com/feiyangfu/LSD}. 3 authors · Sep 24, 2025
- Implicit Variational Inference for High-Dimensional Posteriors In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution. We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors in high-dimensional spaces. Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler. This is distinct from existing methods that rely on additional discriminator networks and unstable adversarial objectives. Furthermore, we present a new sampler architecture that, for the first time, enables implicit distributions over tens of millions of latent variables, addressing computational concerns by using differentiable numerical approximations. We empirically show that our method is capable of recovering correlations across layers in large Bayesian neural networks, a property that is crucial for a network's performance but notoriously challenging to achieve. To the best of our knowledge, no other method has been shown to accomplish this task for such large models. Through experiments in downstream tasks, we demonstrate that our expressive posteriors outperform state-of-the-art uncertainty quantification methods, validating the effectiveness of our training algorithm and the quality of the learned implicit approximation. 4 authors · Oct 10, 2023
- Weighting vectors for machine learning: numerical harmonic analysis applied to boundary detection Metric space magnitude, an active field of research in algebraic topology, is a scalar quantity that summarizes the effective number of distinct points that live in a general metric space. The {\em weighting vector} is a closely-related concept that captures, in a nontrivial way, much of the underlying geometry of the original metric space. Recent work has demonstrated that when the metric space is Euclidean, the weighting vector serves as an effective tool for boundary detection. We recast this result and show the weighting vector may be viewed as a solution to a kernelized SVM. As one consequence, we apply this new insight to the task of outlier detection, and we demonstrate performance that is competitive or exceeds performance of state-of-the-art techniques on benchmark data sets. Under mild assumptions, we show the weighting vector, which has computational cost of matrix inversion, can be efficiently approximated in linear time. We show how nearest neighbor methods can approximate solutions to the minimization problems defined by SVMs. 5 authors · Jun 1, 2021
- Evaluating Unsupervised Denoising Requires Unsupervised Metrics Unsupervised denoising is a crucial challenge in real-world imaging applications. Unsupervised deep-learning methods have demonstrated impressive performance on benchmarks based on synthetic noise. However, no metrics are available to evaluate these methods in an unsupervised fashion. This is highly problematic for the many practical applications where ground-truth clean images are not available. In this work, we propose two novel metrics: the unsupervised mean squared error (MSE) and the unsupervised peak signal-to-noise ratio (PSNR), which are computed using only noisy data. We provide a theoretical analysis of these metrics, showing that they are asymptotically consistent estimators of the supervised MSE and PSNR. Controlled numerical experiments with synthetic noise confirm that they provide accurate approximations in practice. We validate our approach on real-world data from two imaging modalities: videos in raw format and transmission electron microscopy. Our results demonstrate that the proposed metrics enable unsupervised evaluation of denoising methods based exclusively on noisy data. 8 authors · Oct 11, 2022
2 Sparse Backpropagation for MoE Training One defining characteristic of Mixture-of-Expert (MoE) models is their capacity for conducting sparse computation via expert routing, leading to remarkable scalability. However, backpropagation, the cornerstone of deep learning, requires dense computation, thereby posting challenges in MoE gradient computations. Here, we introduce SparseMixer, a scalable gradient estimator that bridges the gap between backpropagation and sparse expert routing. Unlike typical MoE training which strategically neglects certain gradient terms for the sake of sparse computation and scalability, SparseMixer provides scalable gradient approximations for these terms, enabling reliable gradient estimation in MoE training. Grounded in a numerical ODE framework, SparseMixer harnesses the mid-point method, a second-order ODE solver, to deliver precise gradient approximations with negligible computational overhead. Applying SparseMixer to Switch Transformer on both pre-training and machine translation tasks, SparseMixer showcases considerable performance gain, accelerating training convergence up to 2 times. 3 authors · Oct 1, 2023
1 Variational sparse inverse Cholesky approximation for latent Gaussian processes via double Kullback-Leibler minimization To achieve scalable and accurate inference for latent Gaussian processes, we propose a variational approximation based on a family of Gaussian distributions whose covariance matrices have sparse inverse Cholesky (SIC) factors. We combine this variational approximation of the posterior with a similar and efficient SIC-restricted Kullback-Leibler-optimal approximation of the prior. We then focus on a particular SIC ordering and nearest-neighbor-based sparsity pattern resulting in highly accurate prior and posterior approximations. For this setting, our variational approximation can be computed via stochastic gradient descent in polylogarithmic time per iteration. We provide numerical comparisons showing that the proposed double-Kullback-Leibler-optimal Gaussian-process approximation (DKLGP) can sometimes be vastly more accurate for stationary kernels than alternative approaches such as inducing-point and mean-field approximations at similar computational complexity. 6 authors · Jan 30, 2023
- Asymptotic Schwarzschild solutions in $f(R)$ gravity and their observable effects on the photon sphere of black holes We investigate asymptotic Schwarzschild exterior solutions in the context of modified gravity theories, specifically within the framework of f(R) gravity, where the asymptotic behavior recovers the standard Schwarzschild solution of General Relativity. Unlike previous studies that rely mainly on analytical approximations, our approach combines asymptotic analysis with numerical integration of the underlying differential equations. Using these solutions, we analyze strong lensing effects to obtain the photon sphere radius and the corresponding capture parameter. Considering rings produced by total reflection, we define the photon sphere width as the difference between the first total reflection and the capture parameter; and study how it is modified in the f(R) scenario. Our results show that the photon sphere width increases in the presence of f(R)-type modifications, indicating deviations from GR that could be observable in the strong-field regime. 1 authors · Oct 1, 2025
- Mesh-robust stability and convergence of variable-step deferred correction methods based on the BDF2 formula We provide a new theoretical framework for the variable-step deferred correction (DC) methods based on the well-known BDF2 formula. By using the discrete orthogonal convolution kernels, some high-order BDF2-DC methods are proven to be stable on arbitrary time grids according to the recent definition of stability (SINUM, 60: 2253-2272). It significantly relaxes the existing step-ratio restrictions for the BDF2-DC methods (BIT, 62: 1789-1822). The associated sharp error estimates are established by taking the numerical effects of the starting approximations into account, and they suggest that the BDF2-DC methods have no aftereffect, that is, the lower-order starting scheme for the BDF2 scheme will not cause a loss in the accuracy of the high-order BDF2-DC methods. Extensive tests on the graded and random time meshes are presented to support the new theory. 3 authors · Feb 8, 2024
- Existence and uniqueness of solutions in the Lipschitz space of a functional equation and its application to the behavior of the paradise fish In this paper, we examine the solvability of a functional equation in a Lipschitz space. As an application, we use our result to determine the existence and uniqueness of solutions to an equation describing a specific type of choice behavior model for the learning process of the paradise fish. Finally, we present some concrete examples where, using numerical techniques, we obtain approximations to the solution of the functional equation. As the straightforward Picard's iteration can be very expensive, we show that an analytical suboptimal least-squares approximation can be chosen in practice, resulting in very good accuracy. 3 authors · May 20, 2024
- Analytical And Numerical Approximation of Effective Diffusivities in The Cytoplasm of Biological Cells The simulation of the metabolism in mammalian cells becomes a severe problem if spatial distributions must be taken into account. Especially the cytoplasm has a very complex geometric structure which cannot be handled by standard discretization techniques. In the present paper we propose a homogenization technique for computing effective diffusion constants. This is accomplished by using a two-step strategy. The first step consists of an analytic homogenization from the smallest to an intermediate scale. The homogenization error is estimated by comparing the analytic diffusion constant with a numerical estimate obtained by using real cell geometries. The second step consists of a random homogenization. Since no analytical solution is known to this homogenization problem, a numerical approximation algorithm is proposed. Although rather expensive this algorithm provides a reasonable estimate of the homogenized diffusion constant. 2 authors · Feb 26, 2010
- Weighted least-squares approximation with determinantal point processes and generalized volume sampling We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies. 2 authors · Dec 21, 2023
1 Analytic Approximation of Free-Space Path Loss for Implanted Antennas Implantable wireless bioelectronic devices enable communication and/or power transfer through RF wireless connections with external nodes. These devices encounter notable design challenges due to the lossy nature of the host body, which significantly diminishes the radiation efficiency of the implanted antenna and tightens the wireless link budget. Prior research has yielded closed-form approximate expressions for estimating losses occurring within the lossy host body, known as the in-body path loss. To assess the total path loss between the implanted transmitter and external receiver, this paper focuses on the free-space path loss of the implanted antenna, from the body-air interface to the external node. This is not trivial, as in addition to the inherent radial spreading of spherical electromagnetic waves common to all antennas, implanted antennas confront additional losses arising from electromagnetic scattering at the interface between the host body and air. Employing analytical modeling, we propose closed-form approximate expressions for estimating this free-space path loss. The approximation is formulated as a function of the free-space distance, the curvature radius of the body-air interface, the depth of the implanted antenna, and the permittivity of the lossy medium. This proposed method undergoes thorough validation through numerical calculations, simulations, and measurements for different implanted antenna scenarios. This study contributes to a comprehensive understanding of the path loss in implanted antennas and provides a reliable analytical framework for their efficient design and performance evaluation. 4 authors · Dec 22, 2023
1 Inverse Approximation Theory for Nonlinear Recurrent Neural Networks We prove an inverse approximation theorem for the approximation of nonlinear sequence-to-sequence relationships using recurrent neural networks (RNNs). This is a so-called Bernstein-type result in approximation theory, which deduces properties of a target function under the assumption that it can be effectively approximated by a hypothesis space. In particular, we show that nonlinear sequence relationships that can be stably approximated by nonlinear RNNs must have an exponential decaying memory structure - a notion that can be made precise. This extends the previously identified curse of memory in linear RNNs into the general nonlinear setting, and quantifies the essential limitations of the RNN architecture for learning sequential relationships with long-term memory. Based on the analysis, we propose a principled reparameterization method to overcome the limitations. Our theoretical results are confirmed by numerical experiments. The code has been released in https://github.com/radarFudan/Curse-of-memory 3 authors · May 30, 2023
- Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0. 4 authors · Oct 2, 2023
- Nonintrusive approximation of parametrized limits of matrix power algorithms -- application to matrix inverses and log-determinants We consider in this work quantities that can be obtained as limits of powers of parametrized matrices, for instance the inverse matrix or the logarithm of the determinant. Under the assumption of affine dependence in the parameters, we use the Empirical Interpolation Method (EIM) to derive an approximation for powers of these matrices, from which we derive a nonintrusive approximation for the aforementioned limits. We derive upper bounds of the error made by the obtained formula. Finally, numerical comparisons with classical intrusive and nonintrusive approximation techniques are provided: in the considered test-cases, our algorithm performs well compared to the nonintrusive ones. 4 authors · Oct 6, 2017
- Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs Solving partial differential equations (PDEs) is a central task in scientific computing. Recently, neural network approximation of PDEs has received increasing attention due to its flexible meshless discretization and its potential for high-dimensional problems. One fundamental numerical difficulty is that random samples in the training set introduce statistical errors into the discretization of loss functional which may become the dominant error in the final approximation, and therefore overshadow the modeling capability of the neural network. In this work, we propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set, provided by a deep generative model. The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile when it is being minimized. Such an idea is achieved by implicitly embedding the Wasserstein distance between the residual-induced distribution and the uniform distribution into the loss, which is then minimized together with the residual. A nearly uniform residual profile means that its variance is small for any normalized weight function such that the Monte Carlo approximation error of the loss functional is reduced significantly for a certain sample size. The adversarial adaptive sampling (AAS) approach proposed in this work is the first attempt to formulate two essential components, minimizing the residual and seeking the optimal training set, into one minmax objective functional for the neural network approximation of PDEs. 4 authors · May 29, 2023
- DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks Computational Fluid Dynamics (CFD) simulation by the numerical solution of the Navier-Stokes equations is an essential tool in a wide range of applications from engineering design to climate modeling. However, the computational cost and memory demand required by CFD codes may become very high for flows of practical interest, such as in aerodynamic shape optimization. This expense is associated with the complexity of the fluid flow governing equations, which include non-linear partial derivative terms that are of difficult solution, leading to long computational times and limiting the number of hypotheses that can be tested during the process of iterative design. Therefore, we propose DeepCFD: a convolutional neural network (CNN) based model that efficiently approximates solutions for the problem of non-uniform steady laminar flows. The proposed model is able to learn complete solutions of the Navier-Stokes equations, for both velocity and pressure fields, directly from ground-truth data generated using a state-of-the-art CFD code. Using DeepCFD, we found a speedup of up to 3 orders of magnitude compared to the standard CFD approach at a cost of low error rates. 4 authors · Apr 19, 2020
- Achieving Hierarchy-Free Approximation for Bilevel Programs With Equilibrium Constraints In this paper, we develop an approximation scheme for solving bilevel programs with equilibrium constraints, which are generally difficult to solve. Among other things, calculating the first-order derivative in such a problem requires differentiation across the hierarchy, which is computationally intensive, if not prohibitive. To bypass the hierarchy, we propose to bound such bilevel programs, equivalent to multiple-followers Stackelberg games, with two new hierarchy-free problems: a T-step Cournot game and a T-step monopoly model. Since they are standard equilibrium or optimization problems, both can be efficiently solved via first-order methods. Importantly, we show that the bounds provided by these problems -- the upper bound by the T-step Cournot game and the lower bound by the T-step monopoly model -- can be made arbitrarily tight by increasing the step parameter T for a wide range of problems. We prove that a small T usually suffices under appropriate conditions to reach an approximation acceptable for most practical purposes. Eventually, the analytical insights are highlighted through numerical examples. 5 authors · Feb 19, 2023
1 Segmentation of 3D pore space from CT images using curvilinear skeleton: application to numerical simulation of microbial decomposition Recent advances in 3D X-ray Computed Tomographic (CT) sensors have stimulated research efforts to unveil the extremely complex micro-scale processes that control the activity of soil microorganisms. Voxel-based description (up to hundreds millions voxels) of the pore space can be extracted, from grey level 3D CT scanner images, by means of simple image processing tools. Classical methods for numerical simulation of biological dynamics using mesh of voxels, such as Lattice Boltzmann Model (LBM), are too much time consuming. Thus, the use of more compact and reliable geometrical representations of pore space can drastically decrease the computational cost of the simulations. Several recent works propose basic analytic volume primitives (e.g. spheres, generalized cylinders, ellipsoids) to define a piece-wise approximation of pore space for numerical simulation of draining, diffusion and microbial decomposition. Such approaches work well but the drawback is that it generates approximation errors. In the present work, we study another alternative where pore space is described by means of geometrically relevant connected subsets of voxels (regions) computed from the curvilinear skeleton. Indeed, many works use the curvilinear skeleton (3D medial axis) for analyzing and partitioning 3D shapes within various domains (medicine, material sciences, petroleum engineering, etc.) but only a few ones in soil sciences. Within the context of soil sciences, most studies dealing with 3D medial axis focus on the determination of pore throats. Here, we segment pore space using curvilinear skeleton in order to achieve numerical simulation of microbial decomposition (including diffusion processes). We validate simulation outputs by comparison with other methods using different pore space geometrical representations (balls, voxels). 6 authors · Sep 4, 2023
- The greedy side of the LASSO: New algorithms for weighted sparse recovery via loss function-based orthogonal matching pursuit We propose a class of greedy algorithms for weighted sparse recovery by considering new loss function-based generalizations of Orthogonal Matching Pursuit (OMP). Given a (regularized) loss function, the proposed algorithms alternate the iterative construction of the signal support via greedy index selection and a signal update based on solving a local data-fitting problem restricted to the current support. We show that greedy selection rules associated with popular weighted sparsity-promoting loss functions admit explicitly computable and simple formulas. Specifically, we consider ell^0 - and ell^1 -based versions of the weighted LASSO (Least Absolute Shrinkage and Selection Operator), the Square-Root LASSO (SR-LASSO) and the Least Absolute Deviations LASSO (LAD-LASSO). Through numerical experiments on Gaussian compressive sensing and high-dimensional function approximation, we demonstrate the effectiveness of the proposed algorithms and empirically show that they inherit desirable characteristics from the corresponding loss functions, such as SR-LASSO's noise-blind optimal parameter tuning and LAD-LASSO's fault tolerance. In doing so, our study sheds new light on the connection between greedy sparse recovery and convex relaxation. 2 authors · Mar 1, 2023
1 Robust low-rank training via approximate orthonormal constraints With the growth of model and data sizes, a broad effort has been made to design pruning techniques that reduce the resource demand of deep learning pipelines, while retaining model performance. In order to reduce both inference and training costs, a prominent line of work uses low-rank matrix factorizations to represent the network weights. Although able to retain accuracy, we observe that low-rank methods tend to compromise model robustness against adversarial perturbations. By modeling robustness in terms of the condition number of the neural network, we argue that this loss of robustness is due to the exploding singular values of the low-rank weight matrices. Thus, we introduce a robust low-rank training algorithm that maintains the network's weights on the low-rank matrix manifold while simultaneously enforcing approximate orthonormal constraints. The resulting model reduces both training and inference costs while ensuring well-conditioning and thus better adversarial robustness, without compromising model accuracy. This is shown by extensive numerical evidence and by our main approximation theorem that shows the computed robust low-rank network well-approximates the ideal full model, provided a highly performing low-rank sub-network exists. 4 authors · Jun 2, 2023
- Reservoir Computing via Quantum Recurrent Neural Networks Recent developments in quantum computing and machine learning have propelled the interdisciplinary study of quantum machine learning. Sequential modeling is an important task with high scientific and commercial value. Existing VQC or QNN-based methods require significant computational resources to perform the gradient-based optimization of a larger number of quantum circuit parameters. The major drawback is that such quantum gradient calculation requires a large amount of circuit evaluation, posing challenges in current near-term quantum hardware and simulation software. In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC) that are based on classical RNN, LSTM and GRU. The main idea to this RC approach is that the QRNN with randomly initialized weights is treated as a dynamical system and only the final classical linear layer is trained. Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series prediction tasks. Since the QRNN training complexity is significantly reduced, the proposed model trains notably faster. In this work we also compare to corresponding classical RNN-based RC implementations and show that the quantum version learns faster by requiring fewer training epochs in most cases. Our results demonstrate a new possibility to utilize quantum neural network for sequential modeling with greater quantum hardware efficiency, an important design consideration for noisy intermediate-scale quantum (NISQ) computers. 5 authors · Nov 4, 2022
- On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p. 4 authors · Jun 28, 2021
1 SADA: Stability-guided Adaptive Diffusion Acceleration Diffusion models have achieved remarkable success in generative tasks but suffer from high computational costs due to their iterative sampling process and quadratic attention costs. Existing training-free acceleration strategies that reduce per-step computation cost, while effectively reducing sampling time, demonstrate low faithfulness compared to the original baseline. We hypothesize that this fidelity gap arises because (a) different prompts correspond to varying denoising trajectory, and (b) such methods do not consider the underlying ODE formulation and its numerical solution. In this paper, we propose Stability-guided Adaptive Diffusion Acceleration (SADA), a novel paradigm that unifies step-wise and token-wise sparsity decisions via a single stability criterion to accelerate sampling of ODE-based generative models (Diffusion and Flow-matching). For (a), SADA adaptively allocates sparsity based on the sampling trajectory. For (b), SADA introduces principled approximation schemes that leverage the precise gradient information from the numerical ODE solver. Comprehensive evaluations on SD-2, SDXL, and Flux using both EDM and DPM++ solvers reveal consistent ge 1.8times speedups with minimal fidelity degradation (LPIPS leq 0.10 and FID leq 4.5) compared to unmodified baselines, significantly outperforming prior methods. Moreover, SADA adapts seamlessly to other pipelines and modalities: It accelerates ControlNet without any modifications and speeds up MusicLDM by 1.8times with sim 0.01 spectrogram LPIPS. 10 authors · Jul 22, 2025
- Solving High-Dimensional PDEs with Latent Spectral Models Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models. 5 authors · Jan 29, 2023
10 CompactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks Large Language Models (LLMs) such as ChatGPT and LlaMA are advancing rapidly in generative Artificial Intelligence (AI), but their immense size poses significant challenges, such as huge training and inference costs, substantial energy demands, and limitations for on-site deployment. Traditional compression methods such as pruning, distillation, and low-rank approximation focus on reducing the effective number of neurons in the network, while quantization focuses on reducing the numerical precision of individual weights to reduce the model size while keeping the number of neurons fixed. While these compression methods have been relatively successful in practice, there is no compelling reason to believe that truncating the number of neurons is an optimal strategy. In this context, this paper introduces CompactifAI, an innovative LLM compression approach using quantum-inspired Tensor Networks that focuses on the model's correlation space instead, allowing for a more controlled, refined and interpretable model compression. Our method is versatile and can be implemented with - or on top of - other compression techniques. As a benchmark, we demonstrate that a combination of CompactifAI with quantization allows to reduce a 93% the memory size of LlaMA 7B, reducing also 70% the number of parameters, accelerating 50% the training and 25% the inference times of the model, and just with a small accuracy drop of 2% - 3%, going much beyond of what is achievable today by other compression techniques. Our methods also allow to perform a refined layer sensitivity profiling, showing that deeper layers tend to be more suitable for tensor network compression, which is compatible with recent observations on the ineffectiveness of those layers for LLM performance. Our results imply that standard LLMs are, in fact, heavily overparametrized, and do not need to be large at all. 18 authors · Jan 25, 2024