new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 10

SPARC: Separating Perception And Reasoning Circuits for Test-time Scaling of VLMs

Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the V^* VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200times lower token budget.

ibm-research IBM Research
·
Feb 6 2

SPARC-RAG: Adaptive Sequential-Parallel Scaling with Context Management for Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) grounds large language model outputs in external evidence, but remains challenged on multi-hop question answering that requires long reasoning. Recent works scale RAG at inference time along two complementary dimensions: sequential depth for iterative refinement and parallel width for coverage expansion. However, naive scaling causes context contamination and scaling inefficiency, leading to diminishing or negative returns despite increased computation. To address these limitations, we propose SPARC-RAG, a multi-agent framework that coordinates sequential and parallel inference-time scaling under a unified context management mechanism. SPARC-RAG employs specialized agents that maintain a shared global context and provide explicit control over the scaling process. It generates targeted, complementary sub-queries for each branch to enable diverse parallel exploration, and explicitly regulates exiting decisions based on answer correctness and evidence grounding. To optimize scaling behavior, we further introduce a lightweight fine-tuning method with process-level verifiable preferences, which improves the efficiency of sequential scaling and effectiveness of parallel scaling. Across single- and multi-hop QA benchmarks, SPARC-RAG consistently outperforms previous RAG baselines, yielding an average +6.2 F1 improvement under lower inference cost.

  • 9 authors
·
Jan 22

SparCL: Sparse Continual Learning on the Edge

Existing work in continual learning (CL) focuses on mitigating catastrophic forgetting, i.e., model performance deterioration on past tasks when learning a new task. However, the training efficiency of a CL system is under-investigated, which limits the real-world application of CL systems under resource-limited scenarios. In this work, we propose a novel framework called Sparse Continual Learning(SparCL), which is the first study that leverages sparsity to enable cost-effective continual learning on edge devices. SparCL achieves both training acceleration and accuracy preservation through the synergy of three aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic masking (TDM) to learn a sparse network throughout the entire CL process, dynamic data removal (DDR) to remove less informative training data, and dynamic gradient masking (DGM) to sparsify the gradient updates. Each of them not only improves efficiency, but also further mitigates catastrophic forgetting. SparCL consistently improves the training efficiency of existing state-of-the-art (SOTA) CL methods by at most 23X less training FLOPs, and, surprisingly, further improves the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive baselines obtained from adapting SOTA sparse training methods to the CL setting in both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a real mobile phone, further indicating the practical potential of our method.

  • 10 authors
·
Sep 20, 2022