Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeQUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction
We study the problem of query attribute value extraction, which aims to identify named entities from user queries as diverse surface form attribute values and afterward transform them into formally canonical forms. Such a problem consists of two phases: {named entity recognition (NER)} and {attribute value normalization (AVN)}. However, existing works only focus on the NER phase but neglect equally important AVN. To bridge this gap, this paper proposes a unified query attribute value extraction system in e-commerce search named QUEACO, which involves both two phases. Moreover, by leveraging large-scale weakly-labeled behavior data, we further improve the extraction performance with less supervision cost. Specifically, for the NER phase, QUEACO adopts a novel teacher-student network, where a teacher network that is trained on the strongly-labeled data generates pseudo-labels to refine the weakly-labeled data for training a student network. Meanwhile, the teacher network can be dynamically adapted by the feedback of the student's performance on strongly-labeled data to maximally denoise the noisy supervisions from the weak labels. For the AVN phase, we also leverage the weakly-labeled query-to-attribute behavior data to normalize surface form attribute values from queries into canonical forms from products. Extensive experiments on a real-world large-scale E-commerce dataset demonstrate the effectiveness of QUEACO.
DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
We present an open-source and extensible knowledge extraction toolkit DeepKE, supporting complicated low-resource, document-level and multimodal scenarios in the knowledge base population. DeepKE implements various information extraction tasks, including named entity recognition, relation extraction and attribute extraction. With a unified framework, DeepKE allows developers and researchers to customize datasets and models to extract information from unstructured data according to their requirements. Specifically, DeepKE not only provides various functional modules and model implementation for different tasks and scenarios but also organizes all components by consistent frameworks to maintain sufficient modularity and extensibility. We release the source code at GitHub in https://github.com/zjunlp/DeepKE with Google Colab tutorials and comprehensive documents for beginners. Besides, we present an online system in http://deepke.openkg.cn/EN/re_doc_show.html for real-time extraction of various tasks, and a demo video.
Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning
Graph retrieval-augmented generation (GraphRAG) has effectively enhanced large language models in complex reasoning by organizing fragmented knowledge into explicitly structured graphs. Prior efforts have been made to improve either graph construction or graph retrieval in isolation, yielding suboptimal performance, especially when domain shifts occur. In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire framework as an intricate integration. Specifically, (i) a seed graph schema is introduced to bound the automatic extraction agent with targeted entity types, relations and attribute types, also continuously expanded for scalability over unseen domains; (ii) To obtain higher-level knowledge upon the schema, we develop novel dually-perceived community detection, fusing structural topology with subgraph semantics for comprehensive knowledge organization. This naturally yields a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with community summaries; (iii) An agentic retriever is designed to interpret the same graph schema to transform complex queries into tractable and parallel sub-queries. It iteratively performs reflection for more advanced reasoning; (iv) To alleviate the knowledge leaking problem in pre-trained LLM, we propose a tailored anonymous dataset and a novel 'Anonymity Reversion' task that deeply measures the real performance of the GraphRAG frameworks. Extensive experiments across six challenging benchmarks demonstrate the robustness of Youtu-GraphRAG, remarkably moving the Pareto frontier with up to 90.71% saving of token costs and 16.62% higher accuracy over state-of-the-art baselines. The results indicate our adaptability, allowing seamless domain transfer with minimal intervention on schema.
A Frustratingly Easy Approach for Entity and Relation Extraction
End-to-end relation extraction aims to identify named entities and extract relations between them. Most recent work models these two subtasks jointly, either by casting them in one structured prediction framework, or performing multi-task learning through shared representations. In this work, we present a simple pipelined approach for entity and relation extraction, and establish the new state-of-the-art on standard benchmarks (ACE04, ACE05 and SciERC), obtaining a 1.7%-2.8% absolute improvement in relation F1 over previous joint models with the same pre-trained encoders. Our approach essentially builds on two independent encoders and merely uses the entity model to construct the input for the relation model. Through a series of careful examinations, we validate the importance of learning distinct contextual representations for entities and relations, fusing entity information early in the relation model, and incorporating global context. Finally, we also present an efficient approximation to our approach which requires only one pass of both entity and relation encoders at inference time, achieving an 8-16times speedup with a slight reduction in accuracy.
EnriCo: Enriched Representation and Globally Constrained Inference for Entity and Relation Extraction
Joint entity and relation extraction plays a pivotal role in various applications, notably in the construction of knowledge graphs. Despite recent progress, existing approaches often fall short in two key aspects: richness of representation and coherence in output structure. These models often rely on handcrafted heuristics for computing entity and relation representations, potentially leading to loss of crucial information. Furthermore, they disregard task and/or dataset-specific constraints, resulting in output structures that lack coherence. In our work, we introduce EnriCo, which mitigates these shortcomings. Firstly, to foster rich and expressive representation, our model leverage attention mechanisms that allow both entities and relations to dynamically determine the pertinent information required for accurate extraction. Secondly, we introduce a series of decoding algorithms designed to infer the highest scoring solutions while adhering to task and dataset-specific constraints, thus promoting structured and coherent outputs. Our model demonstrates competitive performance compared to baselines when evaluated on Joint IE datasets.
INSIGHTBUDDY-AI: Medication Extraction and Entity Linking using Large Language Models and Ensemble Learning
Medication Extraction and Mining play an important role in healthcare NLP research due to its practical applications in hospital settings, such as their mapping into standard clinical knowledge bases (SNOMED-CT, BNF, etc.). In this work, we investigate state-of-the-art LLMs in text mining tasks on medications and their related attributes such as dosage, route, strength, and adverse effects. In addition, we explore different ensemble learning methods (Stack-Ensemble and Voting-Ensemble) to augment the model performances from individual LLMs. Our ensemble learning result demonstrated better performances than individually fine-tuned base models BERT, RoBERTa, RoBERTa-L, BioBERT, BioClinicalBERT, BioMedRoBERTa, ClinicalBERT, and PubMedBERT across general and specific domains. Finally, we build up an entity linking function to map extracted medical terminologies into the SNOMED-CT codes and the British National Formulary (BNF) codes, which are further mapped to the Dictionary of Medicines and Devices (dm+d), and ICD. Our model's toolkit and desktop applications are publicly available at https://github.com/HECTA-UoM/ensemble-NER.
A Two Dimensional Feature Engineering Method for Relation Extraction
Transforming a sentence into a two-dimensional (2D) representation (e.g., the table filling) has the ability to unfold a semantic plane, where an element of the plane is a word-pair representation of a sentence which may denote a possible relation representation composed of two named entities. The 2D representation is effective in resolving overlapped relation instances. However, in related works, the representation is directly transformed from a raw input. It is weak to utilize prior knowledge, which is important to support the relation extraction task. In this paper, we propose a two-dimensional feature engineering method in the 2D sentence representation for relation extraction. Our proposed method is evaluated on three public datasets (ACE05 Chinese, ACE05 English, and SanWen) and achieves the state-of-the-art performance. The results indicate that two-dimensional feature engineering can take advantage of a two-dimensional sentence representation and make full use of prior knowledge in traditional feature engineering. Our code is publicly available at https://github.com/Wang-ck123/A-Two-Dimensional-Feature-Engineering-Method-for-Entity-Relation-Extraction
LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention
Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.
PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction
Document pair extraction aims to identify key and value entities as well as their relationships from visually-rich documents. Most existing methods divide it into two separate tasks: semantic entity recognition (SER) and relation extraction (RE). However, simply concatenating SER and RE serially can lead to severe error propagation, and it fails to handle cases like multi-line entities in real scenarios. To address these issues, this paper introduces a novel framework, PEneo (Pair Extraction new decoder option), which performs document pair extraction in a unified pipeline, incorporating three concurrent sub-tasks: line extraction, line grouping, and entity linking. This approach alleviates the error accumulation problem and can handle the case of multi-line entities. Furthermore, to better evaluate the model's performance and to facilitate future research on pair extraction, we introduce RFUND, a re-annotated version of the commonly used FUNSD and XFUND datasets, to make them more accurate and cover realistic situations. Experiments on various benchmarks demonstrate PEneo's superiority over previous pipelines, boosting the performance by a large margin (e.g., 19.89%-22.91% F1 score on RFUND-EN) when combined with various backbones like LiLT and LayoutLMv3, showing its effectiveness and generality. Codes and the new annotations will be open to the public.
Retrieval-Augmented Generation-based Relation Extraction
Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.
NERetrieve: Dataset for Next Generation Named Entity Recognition and Retrieval
Recognizing entities in texts is a central need in many information-seeking scenarios, and indeed, Named Entity Recognition (NER) is arguably one of the most successful examples of a widely adopted NLP task and corresponding NLP technology. Recent advances in large language models (LLMs) appear to provide effective solutions (also) for NER tasks that were traditionally handled with dedicated models, often matching or surpassing the abilities of the dedicated models. Should NER be considered a solved problem? We argue to the contrary: the capabilities provided by LLMs are not the end of NER research, but rather an exciting beginning. They allow taking NER to the next level, tackling increasingly more useful, and increasingly more challenging, variants. We present three variants of the NER task, together with a dataset to support them. The first is a move towards more fine-grained -- and intersectional -- entity types. The second is a move towards zero-shot recognition and extraction of these fine-grained types based on entity-type labels. The third, and most challenging, is the move from the recognition setup to a novel retrieval setup, where the query is a zero-shot entity type, and the expected result is all the sentences from a large, pre-indexed corpus that contain entities of these types, and their corresponding spans. We show that all of these are far from being solved. We provide a large, silver-annotated corpus of 4 million paragraphs covering 500 entity types, to facilitate research towards all of these three goals.
DocTr: Document Transformer for Structured Information Extraction in Documents
We present a new formulation for structured information extraction (SIE) from visually rich documents. It aims to address the limitations of existing IOB tagging or graph-based formulations, which are either overly reliant on the correct ordering of input text or struggle with decoding a complex graph. Instead, motivated by anchor-based object detectors in vision, we represent an entity as an anchor word and a bounding box, and represent entity linking as the association between anchor words. This is more robust to text ordering, and maintains a compact graph for entity linking. The formulation motivates us to introduce 1) a DOCument TRansformer (DocTr) that aims at detecting and associating entity bounding boxes in visually rich documents, and 2) a simple pre-training strategy that helps learn entity detection in the context of language. Evaluations on three SIE benchmarks show the effectiveness of the proposed formulation, and the overall approach outperforms existing solutions.
Entity Disambiguation with Entity Definitions
Local models have recently attained astounding performances in Entity Disambiguation (ED), with generative and extractive formulations being the most promising research directions. However, previous works limited their studies to using, as the textual representation of each candidate, only its Wikipedia title. Although certainly effective, this strategy presents a few critical issues, especially when titles are not sufficiently informative or distinguishable from one another. In this paper, we address this limitation and investigate to what extent more expressive textual representations can mitigate it. We thoroughly evaluate our approach against standard benchmarks in ED and find extractive formulations to be particularly well-suited to these representations: we report a new state of the art on 2 out of 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns. We release our code, data and model checkpoints at https://github.com/SapienzaNLP/extend.
DistALANER: Distantly Supervised Active Learning Augmented Named Entity Recognition in the Open Source Software Ecosystem
This paper proposes a novel named entity recognition (NER) technique specifically tailored for the open-source software systems. Our approach aims to address the scarcity of annotated software data by employing a comprehensive two-step distantly supervised annotation process. This process strategically leverages language heuristics, unique lookup tables, external knowledge sources, and an active learning approach. By harnessing these powerful techniques, we not only enhance model performance but also effectively mitigate the limitations associated with cost and the scarcity of expert annotators. It is noteworthy that our framework significantly outperforms the state-of-the-art LLMs by a substantial margin. We also show the effectiveness of NER in the downstream task of relation extraction.
Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy
Joint extraction of entities and relations aims to detect entity pairs along with their relations using a single model. Prior work typically solves this task in the extract-then-classify or unified labeling manner. However, these methods either suffer from the redundant entity pairs, or ignore the important inner structure in the process of extracting entities and relations. To address these limitations, in this paper, we first decompose the joint extraction task into two interrelated subtasks, namely HE extraction and TER extraction. The former subtask is to distinguish all head-entities that may be involved with target relations, and the latter is to identify corresponding tail-entities and relations for each extracted head-entity. Next, these two subtasks are further deconstructed into several sequence labeling problems based on our proposed span-based tagging scheme, which are conveniently solved by a hierarchical boundary tagger and a multi-span decoding algorithm. Owing to the reasonable decomposition strategy, our model can fully capture the semantic interdependency between different steps, as well as reduce noise from irrelevant entity pairs. Experimental results show that our method outperforms previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new state-of-the-art on three public datasets
Product Attribute Value Extraction using Large Language Models
E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient.
E-NER -- An Annotated Named Entity Recognition Corpus of Legal Text
Identifying named entities such as a person, location or organization, in documents can highlight key information to readers. Training Named Entity Recognition (NER) models requires an annotated data set, which can be a time-consuming labour-intensive task. Nevertheless, there are publicly available NER data sets for general English. Recently there has been interest in developing NER for legal text. However, prior work and experimental results reported here indicate that there is a significant degradation in performance when NER methods trained on a general English data set are applied to legal text. We describe a publicly available legal NER data set, called E-NER, based on legal company filings available from the US Securities and Exchange Commission's EDGAR data set. Training a number of different NER algorithms on the general English CoNLL-2003 corpus but testing on our test collection confirmed significant degradations in accuracy, as measured by the F1-score, of between 29.4\% and 60.4\%, compared to training and testing on the E-NER collection.
Efficient Dependency-Guided Named Entity Recognition
Named entity recognition (NER), which focuses on the extraction of semantically meaningful named entities and their semantic classes from text, serves as an indispensable component for several down-stream natural language processing (NLP) tasks such as relation extraction and event extraction. Dependency trees, on the other hand, also convey crucial semantic-level information. It has been shown previously that such information can be used to improve the performance of NER (Sasano and Kurohashi 2008, Ling and Weld 2012). In this work, we investigate on how to better utilize the structured information conveyed by dependency trees to improve the performance of NER. Specifically, unlike existing approaches which only exploit dependency information for designing local features, we show that certain global structured information of the dependency trees can be exploited when building NER models where such information can provide guided learning and inference. Through extensive experiments, we show that our proposed novel dependency-guided NER model performs competitively with models based on conventional semi-Markov conditional random fields, while requiring significantly less running time.
ReLiK: Retrieve and LinK, Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget
Entity Linking (EL) and Relation Extraction (RE) are fundamental tasks in Natural Language Processing, serving as critical components in a wide range of applications. In this paper, we propose ReLiK, a Retriever-Reader architecture for both EL and RE, where, given an input text, the Retriever module undertakes the identification of candidate entities or relations that could potentially appear within the text. Subsequently, the Reader module is tasked to discern the pertinent retrieved entities or relations and establish their alignment with the corresponding textual spans. Notably, we put forward an innovative input representation that incorporates the candidate entities or relations alongside the text, making it possible to link entities or extract relations in a single forward pass and to fully leverage pre-trained language models contextualization capabilities, in contrast with previous Retriever-Reader-based methods, which require a forward pass for each candidate. Our formulation of EL and RE achieves state-of-the-art performance in both in-domain and out-of-domain benchmarks while using academic budget training and with up to 40x inference speed compared to competitors. Finally, we show how our architecture can be used seamlessly for Information Extraction (cIE), i.e. EL + RE, and setting a new state of the art by employing a shared Reader that simultaneously extracts entities and relations.
Autoregressive Entity Retrieval
Entities are at the center of how we represent and aggregate knowledge. For instance, Encyclopedias such as Wikipedia are structured by entities (e.g., one per Wikipedia article). The ability to retrieve such entities given a query is fundamental for knowledge-intensive tasks such as entity linking and open-domain question answering. Current approaches can be understood as classifiers among atomic labels, one for each entity. Their weight vectors are dense entity representations produced by encoding entity meta information such as their descriptions. This approach has several shortcomings: (i) context and entity affinity is mainly captured through a vector dot product, potentially missing fine-grained interactions; (ii) a large memory footprint is needed to store dense representations when considering large entity sets; (iii) an appropriately hard set of negative data has to be subsampled at training time. In this work, we propose GENRE, the first system that retrieves entities by generating their unique names, left to right, token-by-token in an autoregressive fashion. This mitigates the aforementioned technical issues since: (i) the autoregressive formulation directly captures relations between context and entity name, effectively cross encoding both; (ii) the memory footprint is greatly reduced because the parameters of our encoder-decoder architecture scale with vocabulary size, not entity count; (iii) the softmax loss is computed without subsampling negative data. We experiment with more than 20 datasets on entity disambiguation, end-to-end entity linking and document retrieval tasks, achieving new state-of-the-art or very competitive results while using a tiny fraction of the memory footprint of competing systems. Finally, we demonstrate that new entities can be added by simply specifying their names. Code and pre-trained models at https://github.com/facebookresearch/GENRE.
DocRED: A Large-Scale Document-Level Relation Extraction Dataset
Multiple entities in a document generally exhibit complex inter-sentence relations, and cannot be well handled by existing relation extraction (RE) methods that typically focus on extracting intra-sentence relations for single entity pairs. In order to accelerate the research on document-level RE, we introduce DocRED, a new dataset constructed from Wikipedia and Wikidata with three features: (1) DocRED annotates both named entities and relations, and is the largest human-annotated dataset for document-level RE from plain text; (2) DocRED requires reading multiple sentences in a document to extract entities and infer their relations by synthesizing all information of the document; (3) along with the human-annotated data, we also offer large-scale distantly supervised data, which enables DocRED to be adopted for both supervised and weakly supervised scenarios. In order to verify the challenges of document-level RE, we implement recent state-of-the-art methods for RE and conduct a thorough evaluation of these methods on DocRED. Empirical results show that DocRED is challenging for existing RE methods, which indicates that document-level RE remains an open problem and requires further efforts. Based on the detailed analysis on the experiments, we discuss multiple promising directions for future research.
SciER: An Entity and Relation Extraction Dataset for Datasets, Methods, and Tasks in Scientific Documents
Scientific information extraction (SciIE) is critical for converting unstructured knowledge from scholarly articles into structured data (entities and relations). Several datasets have been proposed for training and validating SciIE models. However, due to the high complexity and cost of annotating scientific texts, those datasets restrict their annotations to specific parts of paper, such as abstracts, resulting in the loss of diverse entity mentions and relations in context. In this paper, we release a new entity and relation extraction dataset for entities related to datasets, methods, and tasks in scientific articles. Our dataset contains 106 manually annotated full-text scientific publications with over 24k entities and 12k relations. To capture the intricate use and interactions among entities in full texts, our dataset contains a fine-grained tag set for relations. Additionally, we provide an out-of-distribution test set to offer a more realistic evaluation. We conduct comprehensive experiments, including state-of-the-art supervised models and our proposed LLM-based baselines, and highlight the challenges presented by our dataset, encouraging the development of innovative models to further the field of SciIE.
Slot Filling for Biomedical Information Extraction
Information Extraction (IE) from text refers to the task of extracting structured knowledge from unstructured text. The task typically consists of a series of sub-tasks such as Named Entity Recognition and Relation Extraction. Sourcing entity and relation type specific training data is a major bottleneck in domains with limited resources such as biomedicine. In this work we present a slot filling approach to the task of biomedical IE, effectively replacing the need for entity and relation-specific training data, allowing us to deal with zero-shot settings. We follow the recently proposed paradigm of coupling a Tranformer-based bi-encoder, Dense Passage Retrieval, with a Transformer-based reading comprehension model to extract relations from biomedical text. We assemble a biomedical slot filling dataset for both retrieval and reading comprehension and conduct a series of experiments demonstrating that our approach outperforms a number of simpler baselines. We also evaluate our approach end-to-end for standard as well as zero-shot settings. Our work provides a fresh perspective on how to solve biomedical IE tasks, in the absence of relevant training data. Our code, models and datasets are available at https://github.com/ypapanik/biomedical-slot-filling.
RexUIE: A Recursive Method with Explicit Schema Instructor for Universal Information Extraction
Universal Information Extraction (UIE) is an area of interest due to the challenges posed by varying targets, heterogeneous structures, and demand-specific schemas. However, previous works have only achieved limited success by unifying a few tasks, such as Named Entity Recognition (NER) and Relation Extraction (RE), which fall short of being authentic UIE models particularly when extracting other general schemas such as quadruples and quintuples. Additionally, these models used an implicit structural schema instructor, which could lead to incorrect links between types, hindering the model's generalization and performance in low-resource scenarios. In this paper, we redefine the authentic UIE with a formal formulation that encompasses almost all extraction schemas. To the best of our knowledge, we are the first to introduce UIE for any kind of schemas. In addition, we propose RexUIE, which is a Recursive Method with Explicit Schema Instructor for UIE. To avoid interference between different types, we reset the position ids and attention mask matrices. RexUIE shows strong performance under both full-shot and few-shot settings and achieves State-of-the-Art results on the tasks of extracting complex schemas.
Chem-FINESE: Validating Fine-Grained Few-shot Entity Extraction through Text Reconstruction
Fine-grained few-shot entity extraction in the chemical domain faces two unique challenges. First, compared with entity extraction tasks in the general domain, sentences from chemical papers usually contain more entities. Moreover, entity extraction models usually have difficulty extracting entities of long-tailed types. In this paper, we propose Chem-FINESE, a novel sequence-to-sequence (seq2seq) based few-shot entity extraction approach, to address these two challenges. Our Chem-FINESE has two components: a seq2seq entity extractor to extract named entities from the input sentence and a seq2seq self-validation module to reconstruct the original input sentence from extracted entities. Inspired by the fact that a good entity extraction system needs to extract entities faithfully, our new self-validation module leverages entity extraction results to reconstruct the original input sentence. Besides, we design a new contrastive loss to reduce excessive copying during the extraction process. Finally, we release ChemNER+, a new fine-grained chemical entity extraction dataset that is annotated by domain experts with the ChemNER schema. Experiments in few-shot settings with both ChemNER+ and CHEMET datasets show that our newly proposed framework has contributed up to 8.26% and 6.84% absolute F1-score gains respectively.
LLM-Align: Utilizing Large Language Models for Entity Alignment in Knowledge Graphs
Entity Alignment (EA) seeks to identify and match corresponding entities across different Knowledge Graphs (KGs), playing a crucial role in knowledge fusion and integration. Embedding-based entity alignment (EA) has recently gained considerable attention, resulting in the emergence of many innovative approaches. Initially, these approaches concentrated on learning entity embeddings based on the structural features of knowledge graphs (KGs) as defined by relation triples. Subsequent methods have integrated entities' names and attributes as supplementary information to improve the embeddings used for EA. However, existing methods lack a deep semantic understanding of entity attributes and relations. In this paper, we propose a Large Language Model (LLM) based Entity Alignment method, LLM-Align, which explores the instruction-following and zero-shot capabilities of Large Language Models to infer alignments of entities. LLM-Align uses heuristic methods to select important attributes and relations of entities, and then feeds the selected triples of entities to an LLM to infer the alignment results. To guarantee the quality of alignment results, we design a multi-round voting mechanism to mitigate the hallucination and positional bias issues that occur with LLMs. Experiments on three EA datasets, demonstrating that our approach achieves state-of-the-art performance compared to existing EA methods.
Efficient and Interpretable Neural Models for Entity Tracking
What would it take for a natural language model to understand a novel, such as The Lord of the Rings? Among other things, such a model must be able to: (a) identify and record new characters (entities) and their attributes as they are introduced in the text, and (b) identify subsequent references to the characters previously introduced and update their attributes. This problem of entity tracking is essential for language understanding, and thus, useful for a wide array of downstream applications in NLP such as question-answering, summarization. In this thesis, we focus on two key problems in relation to facilitating the use of entity tracking models: (i) scaling entity tracking models to long documents, such as a novel, and (ii) integrating entity tracking into language models. Applying language technologies to long documents has garnered interest recently, but computational constraints are a significant bottleneck in scaling up current methods. In this thesis, we argue that computationally efficient entity tracking models can be developed by representing entities with rich, fixed-dimensional vector representations derived from pretrained language models, and by exploiting the ephemeral nature of entities. We also argue for the integration of entity tracking into language models as it will allow for: (i) wider application given the current ubiquitous use of pretrained language models in NLP applications, and (ii) easier adoption since it is much easier to swap in a new pretrained language model than to integrate a separate standalone entity tracking model.
DocIE@XLLM25: In-Context Learning for Information Extraction using Fully Synthetic Demonstrations
Large, high-quality annotated corpora remain scarce in document-level entity and relation extraction in zero-shot or few-shot settings. In this paper, we present a fully automatic, LLM-based pipeline for synthetic data generation and in-context learning for document-level entity and relation extraction. In contrast to existing approaches that rely on manually annotated demonstrations or direct zero-shot inference, our method combines synthetic data generation with retrieval-based in-context learning, using a reasoning-optimized language model. This allows us to build a high-quality demonstration database without manual annotation and to dynamically retrieve relevant examples at inference time. Based on our approach we produce a synthetic dataset of over 5k Wikipedia abstracts with approximately 59k entities and 30k relation triples. Finally, we evaluate in-context learning performance on the DocIE shared task, extracting entities and relations from long documents in a zero-shot setting. We find that in-context joint entity and relation extraction at document-level remains a challenging task, even for state-of-the-art large language models.
GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer
Named Entity Recognition (NER) is essential in various Natural Language Processing (NLP) applications. Traditional NER models are effective but limited to a set of predefined entity types. In contrast, Large Language Models (LLMs) can extract arbitrary entities through natural language instructions, offering greater flexibility. However, their size and cost, particularly for those accessed via APIs like ChatGPT, make them impractical in resource-limited scenarios. In this paper, we introduce a compact NER model trained to identify any type of entity. Leveraging a bidirectional transformer encoder, our model, GLiNER, facilitates parallel entity extraction, an advantage over the slow sequential token generation of LLMs. Through comprehensive testing, GLiNER demonstrate strong performance, outperforming both ChatGPT and fine-tuned LLMs in zero-shot evaluations on various NER benchmarks.
Neural Entity Linking: A Survey of Models Based on Deep Learning
This survey presents a comprehensive description of recent neural entity linking (EL) systems developed since 2015 as a result of the "deep learning revolution" in natural language processing. Its goal is to systemize design features of neural entity linking systems and compare their performance to the remarkable classic methods on common benchmarks. This work distills a generic architecture of a neural EL system and discusses its components, such as candidate generation, mention-context encoding, and entity ranking, summarizing prominent methods for each of them. The vast variety of modifications of this general architecture are grouped by several common themes: joint entity mention detection and disambiguation, models for global linking, domain-independent techniques including zero-shot and distant supervision methods, and cross-lingual approaches. Since many neural models take advantage of entity and mention/context embeddings to represent their meaning, this work also overviews prominent entity embedding techniques. Finally, the survey touches on applications of entity linking, focusing on the recently emerged use-case of enhancing deep pre-trained masked language models based on the Transformer architecture.
On the Robustness of Document-Level Relation Extraction Models to Entity Name Variations
Driven by the demand for cross-sentence and large-scale relation extraction, document-level relation extraction (DocRE) has attracted increasing research interest. Despite the continuous improvement in performance, we find that existing DocRE models which initially perform well may make more mistakes when merely changing the entity names in the document, hindering the generalization to novel entity names. To this end, we systematically investigate the robustness of DocRE models to entity name variations in this work. We first propose a principled pipeline to generate entity-renamed documents by replacing the original entity names with names from Wikidata. By applying the pipeline to DocRED and Re-DocRED datasets, we construct two novel benchmarks named Env-DocRED and Env-Re-DocRED for robustness evaluation. Experimental results show that both three representative DocRE models and two in-context learned large language models consistently lack sufficient robustness to entity name variations, particularly on cross-sentence relation instances and documents with more entities. Finally, we propose an entity variation robust training method which not only improves the robustness of DocRE models but also enhances their understanding and reasoning capabilities. We further verify that the basic idea of this method can be effectively transferred to in-context learning for DocRE as well.
CO-Fun: A German Dataset on Company Outsourcing in Fund Prospectuses for Named Entity Recognition and Relation Extraction
The process of cyber mapping gives insights in relationships among financial entities and service providers. Centered around the outsourcing practices of companies within fund prospectuses in Germany, we introduce a dataset specifically designed for named entity recognition and relation extraction tasks. The labeling process on 948 sentences was carried out by three experts which yields to 5,969 annotations for four entity types (Outsourcing, Company, Location and Software) and 4,102 relation annotations (Outsourcing-Company, Company-Location). State-of-the-art deep learning models were trained to recognize entities and extract relations showing first promising results. An anonymized version of the dataset, along with guidelines and the code used for model training, are publicly available at https://www.dfki.uni-kl.de/cybermapping/data/CO-Fun-1.0-anonymized.zip.
EventEA: Benchmarking Entity Alignment for Event-centric Knowledge Graphs
Entity alignment is to find identical entities in different knowledge graphs (KGs) that refer to the same real-world object. Embedding-based entity alignment techniques have been drawing a lot of attention recently because they can help solve the issue of symbolic heterogeneity in different KGs. However, in this paper, we show that the progress made in the past was due to biased and unchallenging evaluation. We highlight two major flaws in existing datasets that favor embedding-based entity alignment techniques, i.e., the isomorphic graph structures in relation triples and the weak heterogeneity in attribute triples. Towards a critical evaluation of embedding-based entity alignment methods, we construct a new dataset with heterogeneous relations and attributes based on event-centric KGs. We conduct extensive experiments to evaluate existing popular methods, and find that they fail to achieve promising performance. As a new approach to this difficult problem, we propose a time-aware literal encoder for entity alignment. The dataset and source code are publicly available to foster future research. Our work calls for more effective and practical embedding-based solutions to entity alignment.
Taxonomical hierarchy of canonicalized relations from multiple Knowledge Bases
This work addresses two important questions pertinent to Relation Extraction (RE). First, what are all possible relations that could exist between any two given entity types? Second, how do we define an unambiguous taxonomical (is-a) hierarchy among the identified relations? To address the first question, we use three resources Wikipedia Infobox, Wikidata, and DBpedia. This study focuses on relations between person, organization and location entity types. We exploit Wikidata and DBpedia in a data-driven manner, and Wikipedia Infobox templates manually to generate lists of relations. Further, to address the second question, we canonicalize, filter, and combine the identified relations from the three resources to construct a taxonomical hierarchy. This hierarchy contains 623 canonical relations with highest contribution from Wikipedia Infobox followed by DBpedia and Wikidata. The generated relation list subsumes an average of 85% of relations from RE datasets when entity types are restricted.
IDEL: In-Database Entity Linking with Neural Embeddings
We present a novel architecture, In-Database Entity Linking (IDEL), in which we integrate the analytics-optimized RDBMS MonetDB with neural text mining abilities. Our system design abstracts core tasks of most neural entity linking systems for MonetDB. To the best of our knowledge, this is the first defacto implemented system integrating entity-linking in a database. We leverage the ability of MonetDB to support in-database-analytics with user defined functions (UDFs) implemented in Python. These functions call machine learning libraries for neural text mining, such as TensorFlow. The system achieves zero cost for data shipping and transformation by utilizing MonetDB's ability to embed Python processes in the database kernel and exchange data in NumPy arrays. IDEL represents text and relational data in a joint vector space with neural embeddings and can compensate errors with ambiguous entity representations. For detecting matching entities, we propose a novel similarity function based on joint neural embeddings which are learned via minimizing pairwise contrastive ranking loss. This function utilizes a high dimensional index structures for fast retrieval of matching entities. Our first implementation and experiments using the WebNLG corpus show the effectiveness and the potentials of IDEL.
KVP10k : A Comprehensive Dataset for Key-Value Pair Extraction in Business Documents
In recent years, the challenge of extracting information from business documents has emerged as a critical task, finding applications across numerous domains. This effort has attracted substantial interest from both industry and academy, highlighting its significance in the current technological landscape. Most datasets in this area are primarily focused on Key Information Extraction (KIE), where the extraction process revolves around extracting information using a specific, predefined set of keys. Unlike most existing datasets and benchmarks, our focus is on discovering key-value pairs (KVPs) without relying on predefined keys, navigating through an array of diverse templates and complex layouts. This task presents unique challenges, primarily due to the absence of comprehensive datasets and benchmarks tailored for non-predetermined KVP extraction. To address this gap, we introduce KVP10k , a new dataset and benchmark specifically designed for KVP extraction. The dataset contains 10707 richly annotated images. In our benchmark, we also introduce a new challenging task that combines elements of KIE as well as KVP in a single task. KVP10k sets itself apart with its extensive diversity in data and richly detailed annotations, paving the way for advancements in the field of information extraction from complex business documents.
Named Entity Recognition in Indian court judgments
Identification of named entities from legal texts is an essential building block for developing other legal Artificial Intelligence applications. Named Entities in legal texts are slightly different and more fine-grained than commonly used named entities like Person, Organization, Location etc. In this paper, we introduce a new corpus of 46545 annotated legal named entities mapped to 14 legal entity types. The Baseline model for extracting legal named entities from judgment text is also developed.
Context-NER : Contextual Phrase Generation at Scale
NLP research has been focused on NER extraction and how to efficiently extract them from a sentence. However, generating relevant context of entities from a sentence has remained under-explored. In this work we introduce the task Context-NER in which relevant context of an entity has to be generated. The extracted context may not be found exactly as a substring in the sentence. We also introduce the EDGAR10-Q dataset for the same, which is a corpus of 1,500 publicly traded companies. It is a manually created complex corpus and one of the largest in terms of number of sentences and entities (1 M and 2.8 M). We introduce a baseline approach that leverages phrase generation algorithms and uses the pre-trained BERT model to get 33% ROUGE-L score. We also do a one shot evaluation with GPT-3 and get 39% score, signifying the hardness and future scope of this task. We hope that addition of this dataset and our study will pave the way for further research in this domain.
Calibrated Seq2seq Models for Efficient and Generalizable Ultra-fine Entity Typing
Ultra-fine entity typing plays a crucial role in information extraction by predicting fine-grained semantic types for entity mentions in text. However, this task poses significant challenges due to the massive number of entity types in the output space. The current state-of-the-art approaches, based on standard multi-label classifiers or cross-encoder models, suffer from poor generalization performance or inefficient inference. In this paper, we present CASENT, a seq2seq model designed for ultra-fine entity typing that predicts ultra-fine types with calibrated confidence scores. Our model takes an entity mention as input and employs constrained beam search to generate multiple types autoregressively. The raw sequence probabilities associated with the predicted types are then transformed into confidence scores using a novel calibration method. We conduct extensive experiments on the UFET dataset which contains over 10k types. Our method outperforms the previous state-of-the-art in terms of F1 score and calibration error, while achieving an inference speedup of over 50 times. Additionally, we demonstrate the generalization capabilities of our model by evaluating it in zero-shot and few-shot settings on five specialized domain entity typing datasets that are unseen during training. Remarkably, our model outperforms large language models with 10 times more parameters in the zero-shot setting, and when fine-tuned on 50 examples, it significantly outperforms ChatGPT on all datasets. Our code, models and demo are available at https://github.com/yanlinf/CASENT.
Leveraging Knowledge Graph Embeddings to Enhance Contextual Representations for Relation Extraction
Relation extraction task is a crucial and challenging aspect of Natural Language Processing. Several methods have surfaced as of late, exhibiting notable performance in addressing the task; however, most of these approaches rely on vast amounts of data from large-scale knowledge graphs or language models pretrained on voluminous corpora. In this paper, we hone in on the effective utilization of solely the knowledge supplied by a corpus to create a high-performing model. Our objective is to showcase that by leveraging the hierarchical structure and relational distribution of entities within a corpus without introducing external knowledge, a relation extraction model can achieve significantly enhanced performance. We therefore proposed a relation extraction approach based on the incorporation of pretrained knowledge graph embeddings at the corpus scale into the sentence-level contextual representation. We conducted a series of experiments which revealed promising and very interesting results for our proposed approach.The obtained results demonstrated an outperformance of our method compared to context-based relation extraction models.
Span-based Joint Entity and Relation Extraction with Transformer Pre-training
We introduce SpERT, an attention model for span-based joint entity and relation extraction. Our key contribution is a light-weight reasoning on BERT embeddings, which features entity recognition and filtering, as well as relation classification with a localized, marker-free context representation. The model is trained using strong within-sentence negative samples, which are efficiently extracted in a single BERT pass. These aspects facilitate a search over all spans in the sentence. In ablation studies, we demonstrate the benefits of pre-training, strong negative sampling and localized context. Our model outperforms prior work by up to 2.6% F1 score on several datasets for joint entity and relation extraction.
BUSTER: a "BUSiness Transaction Entity Recognition" dataset
Albeit Natural Language Processing has seen major breakthroughs in the last few years, transferring such advances into real-world business cases can be challenging. One of the reasons resides in the displacement between popular benchmarks and actual data. Lack of supervision, unbalanced classes, noisy data and long documents often affect real problems in vertical domains such as finance, law and health. To support industry-oriented research, we present BUSTER, a BUSiness Transaction Entity Recognition dataset. The dataset consists of 3779 manually annotated documents on financial transactions. We establish several baselines exploiting both general-purpose and domain-specific language models. The best performing model is also used to automatically annotate 6196 documents, which we release as an additional silver corpus to BUSTER.
BuDDIE: A Business Document Dataset for Multi-task Information Extraction
The field of visually rich document understanding (VRDU) aims to solve a multitude of well-researched NLP tasks in a multi-modal domain. Several datasets exist for research on specific tasks of VRDU such as document classification (DC), key entity extraction (KEE), entity linking, visual question answering (VQA), inter alia. These datasets cover documents like invoices and receipts with sparse annotations such that they support one or two co-related tasks (e.g., entity extraction and entity linking). Unfortunately, only focusing on a single specific of documents or task is not representative of how documents often need to be processed in the wild - where variety in style and requirements is expected. In this paper, we introduce BuDDIE (Business Document Dataset for Information Extraction), the first multi-task dataset of 1,665 real-world business documents that contains rich and dense annotations for DC, KEE, and VQA. Our dataset consists of publicly available business entity documents from US state government websites. The documents are structured and vary in their style and layout across states and types (e.g., forms, certificates, reports, etc.). We provide data variety and quality metrics for BuDDIE as well as a series of baselines for each task. Our baselines cover traditional textual, multi-modal, and large language model approaches to VRDU.
Improving Recall of Large Language Models: A Model Collaboration Approach for Relational Triple Extraction
Relation triple extraction, which outputs a set of triples from long sentences, plays a vital role in knowledge acquisition. Large language models can accurately extract triples from simple sentences through few-shot learning or fine-tuning when given appropriate instructions. However, they often miss out when extracting from complex sentences. In this paper, we design an evaluation-filtering framework that integrates large language models with small models for relational triple extraction tasks. The framework includes an evaluation model that can extract related entity pairs with high precision. We propose a simple labeling principle and a deep neural network to build the model, embedding the outputs as prompts into the extraction process of the large model. We conduct extensive experiments to demonstrate that the proposed method can assist large language models in obtaining more accurate extraction results, especially from complex sentences containing multiple relational triples. Our evaluation model can also be embedded into traditional extraction models to enhance their extraction precision from complex sentences.
Leveraging Contextual Information for Effective Entity Salience Detection
In text documents such as news articles, the content and key events usually revolve around a subset of all the entities mentioned in a document. These entities, often deemed as salient entities, provide useful cues of the aboutness of a document to a reader. Identifying the salience of entities was found helpful in several downstream applications such as search, ranking, and entity-centric summarization, among others. Prior work on salient entity detection mainly focused on machine learning models that require heavy feature engineering. We show that fine-tuning medium-sized language models with a cross-encoder style architecture yields substantial performance gains over feature engineering approaches. To this end, we conduct a comprehensive benchmarking of four publicly available datasets using models representative of the medium-sized pre-trained language model family. Additionally, we show that zero-shot prompting of instruction-tuned language models yields inferior results, indicating the task's uniqueness and complexity.
TASTEset -- Recipe Dataset and Food Entities Recognition Benchmark
Food Computing is currently a fast-growing field of research. Natural language processing (NLP) is also increasingly essential in this field, especially for recognising food entities. However, there are still only a few well-defined tasks that serve as benchmarks for solutions in this area. We introduce a new dataset -- called TASTEset -- to bridge this gap. In this dataset, Named Entity Recognition (NER) models are expected to find or infer various types of entities helpful in processing recipes, e.g.~food products, quantities and their units, names of cooking processes, physical quality of ingredients, their purpose, taste. The dataset consists of 700 recipes with more than 13,000 entities to extract. We provide a few state-of-the-art baselines of named entity recognition models, which show that our dataset poses a solid challenge to existing models. The best model achieved, on average, 0.95 F_1 score, depending on the entity type -- from 0.781 to 0.982. We share the dataset and the task to encourage progress on more in-depth and complex information extraction from recipes.
RED^{rm FM}: a Filtered and Multilingual Relation Extraction Dataset
Relation Extraction (RE) is a task that identifies relationships between entities in a text, enabling the acquisition of relational facts and bridging the gap between natural language and structured knowledge. However, current RE models often rely on small datasets with low coverage of relation types, particularly when working with languages other than English. In this paper, we address the above issue and provide two new resources that enable the training and evaluation of multilingual RE systems. First, we present SRED^{rm FM}, an automatically annotated dataset covering 18 languages, 400 relation types, 13 entity types, totaling more than 40 million triplet instances. Second, we propose RED^{rm FM}, a smaller, human-revised dataset for seven languages that allows for the evaluation of multilingual RE systems. To demonstrate the utility of these novel datasets, we experiment with the first end-to-end multilingual RE model, mREBEL, that extracts triplets, including entity types, in multiple languages. We release our resources and model checkpoints at https://www.github.com/babelscape/rebel
Large-Scale Label Interpretation Learning for Few-Shot Named Entity Recognition
Few-shot named entity recognition (NER) detects named entities within text using only a few annotated examples. One promising line of research is to leverage natural language descriptions of each entity type: the common label PER might, for example, be verbalized as ''person entity.'' In an initial label interpretation learning phase, the model learns to interpret such verbalized descriptions of entity types. In a subsequent few-shot tagset extension phase, this model is then given a description of a previously unseen entity type (such as ''music album'') and optionally a few training examples to perform few-shot NER for this type. In this paper, we systematically explore the impact of a strong semantic prior to interpret verbalizations of new entity types by massively scaling up the number and granularity of entity types used for label interpretation learning. To this end, we leverage an entity linking benchmark to create a dataset with orders of magnitude of more distinct entity types and descriptions as currently used datasets. We find that this increased signal yields strong results in zero- and few-shot NER in in-domain, cross-domain, and even cross-lingual settings. Our findings indicate significant potential for improving few-shot NER through heuristical data-based optimization.
NER Retriever: Zero-Shot Named Entity Retrieval with Type-Aware Embeddings
We present NER Retriever, a zero-shot retrieval framework for ad-hoc Named Entity Retrieval, a variant of Named Entity Recognition (NER), where the types of interest are not provided in advance, and a user-defined type description is used to retrieve documents mentioning entities of that type. Instead of relying on fixed schemas or fine-tuned models, our method builds on internal representations of large language models (LLMs) to embed both entity mentions and user-provided open-ended type descriptions into a shared semantic space. We show that internal representations, specifically the value vectors from mid-layer transformer blocks, encode fine-grained type information more effectively than commonly used top-layer embeddings. To refine these representations, we train a lightweight contrastive projection network that aligns type-compatible entities while separating unrelated types. The resulting entity embeddings are compact, type-aware, and well-suited for nearest-neighbor search. Evaluated on three benchmarks, NER Retriever significantly outperforms both lexical and dense sentence-level retrieval baselines. Our findings provide empirical support for representation selection within LLMs and demonstrate a practical solution for scalable, schema-free entity retrieval. The NER Retriever Codebase is publicly available at https://github.com/ShacharOr100/ner_retriever
Nearest Neighbor Search over Vectorized Lexico-Syntactic Patterns for Relation Extraction from Financial Documents
Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation classes, caused by language complexity and data sparsity. Further, these approaches and models are largely inaccessible to users who don't have direct access to large language models (LLMs) and/or infrastructure for supervised training or fine-tuning. Rule-based systems also struggle with implicit expressions. Apart from this, Real world financial documents such as various 10-X reports (including 10-K, 10-Q, etc.) of publicly traded companies pose another challenge to rule-based systems in terms of longer and complex sentences. In this paper, we introduce a simple approach that consults training relations at test time through a nearest-neighbor search over dense vectors of lexico-syntactic patterns and provides a simple yet effective means to tackle the above issues. We evaluate our approach on REFinD and show that our method achieves state-of-the-art performance. We further show that it can provide a good start for human in the loop setup when a small number of annotations are available and it is also beneficial when domain experts can provide high quality patterns.
MOFI: Learning Image Representations from Noisy Entity Annotated Images
We present MOFI, Manifold OF Images, a new vision foundation model designed to learn image representations from noisy entity annotated images. MOFI differs from previous work in two key aspects: (i) pre-training data, and (ii) training recipe. Regarding data, we introduce a new approach to automatically assign entity labels to images from noisy image-text pairs. Our approach involves employing a named entity recognition model to extract entities from the alt-text, and then using a CLIP model to select the correct entities as labels of the paired image. It's a simple, cost-effective method that can scale to handle billions of web-mined image-text pairs. Through this method, we have created Image-to-Entities (I2E), a new dataset with 1 billion images and 2 million distinct entities, covering rich visual concepts in the wild. Building upon the I2E dataset, we study different training recipes like supervised pre-training, contrastive pre-training, and multi-task learning. For contrastive pre-training, we treat entity names as free-form text, and further enrich them with entity descriptions. Experiments show that supervised pre-training with large-scale fine-grained entity labels is highly effective for image retrieval tasks, and multi-task training further improves the performance. The final MOFI model achieves 86.66% mAP on the challenging GPR1200 dataset, surpassing the previous state-of-the-art performance of 72.19% from OpenAI's CLIP model. Further experiments on zero-shot and linear probe image classification also show that MOFI outperforms a CLIP model trained on the original image-text data, demonstrating the effectiveness of the I2E dataset in learning strong image representations. We release our code and model weights at https://github.com/apple/ml-mofi.
IXA/Cogcomp at SemEval-2023 Task 2: Context-enriched Multilingual Named Entity Recognition using Knowledge Bases
Named Entity Recognition (NER) is a core natural language processing task in which pre-trained language models have shown remarkable performance. However, standard benchmarks like CoNLL 2003 do not address many of the challenges that deployed NER systems face, such as having to classify emerging or complex entities in a fine-grained way. In this paper we present a novel NER cascade approach comprising three steps: first, identifying candidate entities in the input sentence; second, linking the each candidate to an existing knowledge base; third, predicting the fine-grained category for each entity candidate. We empirically demonstrate the significance of external knowledge bases in accurately classifying fine-grained and emerging entities. Our system exhibits robust performance in the MultiCoNER2 shared task, even in the low-resource language setting where we leverage knowledge bases of high-resource languages.
MAVE: A Product Dataset for Multi-source Attribute Value Extraction
Attribute value extraction refers to the task of identifying values of an attribute of interest from product information. Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product ranking, retrieval and recommendations. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we introduce MAVE, a new dataset to better facilitate research on product attribute value extraction. MAVE is composed of a curated set of 2.2 million products from Amazon pages, with 3 million attribute-value annotations across 1257 unique categories. MAVE has four main and unique advantages: First, MAVE is the largest product attribute value extraction dataset by the number of attribute-value examples. Second, MAVE includes multi-source representations from the product, which captures the full product information with high attribute coverage. Third, MAVE represents a more diverse set of attributes and values relative to what previous datasets cover. Lastly, MAVE provides a very challenging zero-shot test set, as we empirically illustrate in the experiments. We further propose a novel approach that effectively extracts the attribute value from the multi-source product information. We conduct extensive experiments with several baselines and show that MAVE is an effective dataset for attribute value extraction task. It is also a very challenging task on zero-shot attribute extraction. Data is available at {\it https://github.com/google-research-datasets/MAVE}.
Informed Named Entity Recognition Decoding for Generative Language Models
Ever-larger language models with ever-increasing capabilities are by now well-established text processing tools. Alas, information extraction tasks such as named entity recognition are still largely unaffected by this progress as they are primarily based on the previous generation of encoder-only transformer models. Here, we propose a simple yet effective approach, Informed Named Entity Recognition Decoding (iNERD), which treats named entity recognition as a generative process. It leverages the language understanding capabilities of recent generative models in a future-proof manner and employs an informed decoding scheme incorporating the restricted nature of information extraction into open-ended text generation, improving performance and eliminating any risk of hallucinations. We coarse-tune our model on a merged named entity corpus to strengthen its performance, evaluate five generative language models on eight named entity recognition datasets, and achieve remarkable results, especially in an environment with an unknown entity class set, demonstrating the adaptability of the approach.
Cross-Domain Web Information Extraction at Pinterest
The internet offers a massive repository of unstructured information, but it's a significant challenge to convert this into a structured format. At Pinterest, the ability to accurately extract structured product data from e-commerce websites is essential to enhance user experiences and improve content distribution. In this paper, we present Pinterest's system for attribute extraction, which achieves remarkable accuracy and scalability at a manageable cost. Our approach leverages a novel webpage representation that combines structural, visual, and text modalities into a compact form, optimizing it for small model learning. This representation captures each visible HTML node with its text, style and layout information. We show how this allows simple models such as eXtreme Gradient Boosting (XGBoost) to extract attributes more accurately than much more complex Large Language Models (LLMs) such as Generative Pre-trained Transformer (GPT). Our results demonstrate a system that is highly scalable, processing over 1,000 URLs per second, while being 1000 times more cost-effective than the cheapest GPT alternatives.
Rethinking Negative Instances for Generative Named Entity Recognition
Large Language Models (LLMs) have demonstrated impressive capabilities for generalizing in unseen tasks. In the Named Entity Recognition (NER) task, recent advancements have seen the remarkable improvement of LLMs in a broad range of entity domains via instruction tuning, by adopting entity-centric schema. In this work, we explore the potential enhancement of the existing methods by incorporating negative instances into training. Our experiments reveal that negative instances contribute to remarkable improvements by (1) introducing contextual information, and (2) clearly delineating label boundaries. Furthermore, we introduce a novel and efficient algorithm named Hierarchical Matching, which is tailored to transform unstructured predictions into structured entities. By integrating these components, we present GNER, a Generative NER system that shows improved zero-shot performance across unseen entity domains. Our comprehensive evaluation illustrates our system's superiority, surpassing state-of-the-art (SoTA) methods by 11 F_1 score in zero-shot evaluation.
mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models
Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations. Our source code and pretrained models are available at https://github.com/studio-ousia/luke.
ToNER: Type-oriented Named Entity Recognition with Generative Language Model
In recent years, the fine-tuned generative models have been proven more powerful than the previous tagging-based or span-based models on named entity recognition (NER) task. It has also been found that the information related to entities, such as entity types, can prompt a model to achieve NER better. However, it is not easy to determine the entity types indeed existing in the given sentence in advance, and inputting too many potential entity types would distract the model inevitably. To exploit entity types' merit on promoting NER task, in this paper we propose a novel NER framework, namely ToNER based on a generative model. In ToNER, a type matching model is proposed at first to identify the entity types most likely to appear in the sentence. Then, we append a multiple binary classification task to fine-tune the generative model's encoder, so as to generate the refined representation of the input sentence. Moreover, we add an auxiliary task for the model to discover the entity types which further fine-tunes the model to output more accurate results. Our extensive experiments on some NER benchmarks verify the effectiveness of our proposed strategies in ToNER that are oriented towards entity types' exploitation.
SpEL: Structured Prediction for Entity Linking
Entity linking is a prominent thread of research focused on structured data creation by linking spans of text to an ontology or knowledge source. We revisit the use of structured prediction for entity linking which classifies each individual input token as an entity, and aggregates the token predictions. Our system, called SpEL (Structured prediction for Entity Linking) is a state-of-the-art entity linking system that uses some new ideas to apply structured prediction to the task of entity linking including: two refined fine-tuning steps; a context sensitive prediction aggregation strategy; reduction of the size of the model's output vocabulary, and; we address a common problem in entity-linking systems where there is a training vs. inference tokenization mismatch. Our experiments show that we can outperform the state-of-the-art on the commonly used AIDA benchmark dataset for entity linking to Wikipedia. Our method is also very compute efficient in terms of number of parameters and speed of inference.
Knowledge Graph Enhanced Event Extraction in Financial Documents
Event extraction is a classic task in natural language processing with wide use in handling large amount of yet rapidly growing financial, legal, medical, and government documents which often contain multiple events with their elements scattered and mixed across the documents, making the problem much more difficult. Though the underlying relations between event elements to be extracted provide helpful contextual information, they are somehow overlooked in prior studies. We showcase the enhancement to this task brought by utilizing the knowledge graph that captures entity relations and their attributes. We propose a first event extraction framework that embeds a knowledge graph through a Graph Neural Network and integrates the embedding with regular features, all at document-level. Specifically, for extracting events from Chinese financial announcements, our method outperforms the state-of-the-art method by 5.3% in F1-score.
Key-value information extraction from full handwritten pages
We propose a Transformer-based approach for information extraction from digitized handwritten documents. Our approach combines, in a single model, the different steps that were so far performed by separate models: feature extraction, handwriting recognition and named entity recognition. We compare this integrated approach with traditional two-stage methods that perform handwriting recognition before named entity recognition, and present results at different levels: line, paragraph, and page. Our experiments show that attention-based models are especially interesting when applied on full pages, as they do not require any prior segmentation step. Finally, we show that they are able to learn from key-value annotations: a list of important words with their corresponding named entities. We compare our models to state-of-the-art methods on three public databases (IAM, ESPOSALLES, and POPP) and outperform previous performances on all three datasets.
ZS4IE: A toolkit for Zero-Shot Information Extraction with simple Verbalizations
The current workflow for Information Extraction (IE) analysts involves the definition of the entities/relations of interest and a training corpus with annotated examples. In this demonstration we introduce a new workflow where the analyst directly verbalizes the entities/relations, which are then used by a Textual Entailment model to perform zero-shot IE. We present the design and implementation of a toolkit with a user interface, as well as experiments on four IE tasks that show that the system achieves very good performance at zero-shot learning using only 5--15 minutes per type of a user's effort. Our demonstration system is open-sourced at https://github.com/BBN-E/ZS4IE . A demonstration video is available at https://vimeo.com/676138340 .
GSAP-NER: A Novel Task, Corpus, and Baseline for Scholarly Entity Extraction Focused on Machine Learning Models and Datasets
Named Entity Recognition (NER) models play a crucial role in various NLP tasks, including information extraction (IE) and text understanding. In academic writing, references to machine learning models and datasets are fundamental components of various computer science publications and necessitate accurate models for identification. Despite the advancements in NER, existing ground truth datasets do not treat fine-grained types like ML model and model architecture as separate entity types, and consequently, baseline models cannot recognize them as such. In this paper, we release a corpus of 100 manually annotated full-text scientific publications and a first baseline model for 10 entity types centered around ML models and datasets. In order to provide a nuanced understanding of how ML models and datasets are mentioned and utilized, our dataset also contains annotations for informal mentions like "our BERT-based model" or "an image CNN". You can find the ground truth dataset and code to replicate model training at https://data.gesis.org/gsap/gsap-ner.
A Dataset of German Legal Documents for Named Entity Recognition
We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx.
Revisiting Sparse Retrieval for Few-shot Entity Linking
Entity linking aims to link ambiguous mentions to their corresponding entities in a knowledge base. One of the key challenges comes from insufficient labeled data for specific domains. Although dense retrievers have achieved excellent performance on several benchmarks, their performance decreases significantly when only a limited amount of in-domain labeled data is available. In such few-shot setting, we revisit the sparse retrieval method, and propose an ELECTRA-based keyword extractor to denoise the mention context and construct a better query expression. For training the extractor, we propose a distant supervision method to automatically generate training data based on overlapping tokens between mention contexts and entity descriptions. Experimental results on the ZESHEL dataset demonstrate that the proposed method outperforms state-of-the-art models by a significant margin across all test domains, showing the effectiveness of keyword-enhanced sparse retrieval.
Structured information extraction from complex scientific text with fine-tuned large language models
Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction.
HiNER: A Large Hindi Named Entity Recognition Dataset
Named Entity Recognition (NER) is a foundational NLP task that aims to provide class labels like Person, Location, Organisation, Time, and Number to words in free text. Named Entities can also be multi-word expressions where the additional I-O-B annotation information helps label them during the NER annotation process. While English and European languages have considerable annotated data for the NER task, Indian languages lack on that front -- both in terms of quantity and following annotation standards. This paper releases a significantly sized standard-abiding Hindi NER dataset containing 109,146 sentences and 2,220,856 tokens, annotated with 11 tags. We discuss the dataset statistics in all their essential detail and provide an in-depth analysis of the NER tag-set used with our data. The statistics of tag-set in our dataset show a healthy per-tag distribution, especially for prominent classes like Person, Location and Organisation. Since the proof of resource-effectiveness is in building models with the resource and testing the model on benchmark data and against the leader-board entries in shared tasks, we do the same with the aforesaid data. We use different language models to perform the sequence labelling task for NER and show the efficacy of our data by performing a comparative evaluation with models trained on another dataset available for the Hindi NER task. Our dataset helps achieve a weighted F1 score of 88.78 with all the tags and 92.22 when we collapse the tag-set, as discussed in the paper. To the best of our knowledge, no available dataset meets the standards of volume (amount) and variability (diversity), as far as Hindi NER is concerned. We fill this gap through this work, which we hope will significantly help NLP for Hindi. We release this dataset with our code and models at https://github.com/cfiltnlp/HiNER
DWIE: an entity-centric dataset for multi-task document-level information extraction
This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.
Zero-Shot Document-Level Biomedical Relation Extraction via Scenario-based Prompt Design in Two-Stage with LLM
With the advent of artificial intelligence (AI), many researchers are attempting to extract structured information from document-level biomedical literature by fine-tuning large language models (LLMs). However, they face significant challenges such as the need for expensive hardware, like high-performance GPUs and the high labor costs associated with annotating training datasets, especially in biomedical realm. Recent research on LLMs, such as GPT-4 and Llama3, has shown promising performance in zero-shot settings, inspiring us to explore a novel approach to achieve the same results from unannotated full documents using general LLMs with lower hardware and labor costs. Our approach combines two major stages: named entity recognition (NER) and relation extraction (RE). NER identifies chemical, disease and gene entities from the document with synonym and hypernym extraction using an LLM with a crafted prompt. RE extracts relations between entities based on predefined relation schemas and prompts. To enhance the effectiveness of prompt, we propose a five-part template structure and a scenario-based prompt design principles, along with evaluation method to systematically assess the prompts. Finally, we evaluated our approach against fine-tuning and pre-trained models on two biomedical datasets: ChemDisGene and CDR. The experimental results indicate that our proposed method can achieve comparable accuracy levels to fine-tuning and pre-trained models but with reduced human and hardware expenses.
ChatEL: Entity Linking with Chatbots
Entity Linking (EL) is an essential and challenging task in natural language processing that seeks to link some text representing an entity within a document or sentence with its corresponding entry in a dictionary or knowledge base. Most existing approaches focus on creating elaborate contextual models that look for clues the words surrounding the entity-text to help solve the linking problem. Although these fine-tuned language models tend to work, they can be unwieldy, difficult to train, and do not transfer well to other domains. Fortunately, Large Language Models (LLMs) like GPT provide a highly-advanced solution to the problems inherent in EL models, but simply naive prompts to LLMs do not work well. In the present work, we define ChatEL, which is a three-step framework to prompt LLMs to return accurate results. Overall the ChatEL framework improves the average F1 performance across 10 datasets by more than 2%. Finally, a thorough error analysis shows many instances with the ground truth labels were actually incorrect, and the labels predicted by ChatEL were actually correct. This indicates that the quantitative results presented in this paper may be a conservative estimate of the actual performance. All data and code are available as an open-source package on GitHub at https://github.com/yifding/In_Context_EL.
HunFlair: An Easy-to-Use Tool for State-of-the-Art Biomedical Named Entity Recognition
Summary: Named Entity Recognition (NER) is an important step in biomedical information extraction pipelines. Tools for NER should be easy to use, cover multiple entity types, highly accurate, and robust towards variations in text genre and style. To this end, we propose HunFlair, an NER tagger covering multiple entity types integrated into the widely used NLP framework Flair. HunFlair outperforms other state-of-the-art standalone NER tools with an average gain of 7.26 pp over the next best tool, can be installed with a single command and is applied with only four lines of code. Availability: HunFlair is freely available through the Flair framework under an MIT license: https://github.com/flairNLP/flair and is compatible with all major operating systems. Contact:{weberple,saengema,alan.akbik}@informatik.hu-berlin.de
Unified Structure Generation for Universal Information Extraction
Information extraction suffers from its varying targets, heterogeneous structures, and demand-specific schemas. In this paper, we propose a unified text-to-structure generation framework, namely UIE, which can universally model different IE tasks, adaptively generate targeted structures, and collaboratively learn general IE abilities from different knowledge sources. Specifically, UIE uniformly encodes different extraction structures via a structured extraction language, adaptively generates target extractions via a schema-based prompt mechanism - structural schema instructor, and captures the common IE abilities via a large-scale pre-trained text-to-structure model. Experiments show that UIE achieved the state-of-the-art performance on 4 IE tasks, 13 datasets, and on all supervised, low-resource, and few-shot settings for a wide range of entity, relation, event and sentiment extraction tasks and their unification. These results verified the effectiveness, universality, and transferability of UIE.
Image Anything: Towards Reasoning-coherent and Training-free Multi-modal Image Generation
The multifaceted nature of human perception and comprehension indicates that, when we think, our body can naturally take any combination of senses, a.k.a., modalities and form a beautiful picture in our brain. For example, when we see a cattery and simultaneously perceive the cat's purring sound, our brain can construct a picture of a cat in the cattery. Intuitively, generative AI models should hold the versatility of humans and be capable of generating images from any combination of modalities efficiently and collaboratively. This paper presents ImgAny, a novel end-to-end multi-modal generative model that can mimic human reasoning and generate high-quality images. Our method serves as the first attempt in its capacity of efficiently and flexibly taking any combination of seven modalities, ranging from language, audio to vision modalities, including image, point cloud, thermal, depth, and event data. Our key idea is inspired by human-level cognitive processes and involves the integration and harmonization of multiple input modalities at both the entity and attribute levels without specific tuning across modalities. Accordingly, our method brings two novel training-free technical branches: 1) Entity Fusion Branch ensures the coherence between inputs and outputs. It extracts entity features from the multi-modal representations powered by our specially constructed entity knowledge graph; 2) Attribute Fusion Branch adeptly preserves and processes the attributes. It efficiently amalgamates distinct attributes from diverse input modalities via our proposed attribute knowledge graph. Lastly, the entity and attribute features are adaptively fused as the conditional inputs to the pre-trained Stable Diffusion model for image generation. Extensive experiments under diverse modality combinations demonstrate its exceptional capability for visual content creation.
BioMNER: A Dataset for Biomedical Method Entity Recognition
Named entity recognition (NER) stands as a fundamental and pivotal task within the realm of Natural Language Processing. Particularly within the domain of Biomedical Method NER, this task presents notable challenges, stemming from the continual influx of domain-specific terminologies in scholarly literature. Current research in Biomedical Method (BioMethod) NER suffers from a scarcity of resources, primarily attributed to the intricate nature of methodological concepts, which necessitate a profound understanding for precise delineation. In this study, we propose a novel dataset for biomedical method entity recognition, employing an automated BioMethod entity recognition and information retrieval system to assist human annotation. Furthermore, we comprehensively explore a range of conventional and contemporary open-domain NER methodologies, including the utilization of cutting-edge large-scale language models (LLMs) customised to our dataset. Our empirical findings reveal that the large parameter counts of language models surprisingly inhibit the effective assimilation of entity extraction patterns pertaining to biomedical methods. Remarkably, the approach, leveraging the modestly sized ALBERT model (only 11MB), in conjunction with conditional random fields (CRF), achieves state-of-the-art (SOTA) performance.
The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models
Introduction: The scientific publishing landscape is expanding rapidly, creating challenges for researchers to stay up-to-date with the evolution of the literature. Natural Language Processing (NLP) has emerged as a potent approach to automating knowledge extraction from this vast amount of publications and preprints. Tasks such as Named-Entity Recognition (NER) and Named-Entity Linking (NEL), in conjunction with context-dependent semantic interpretation, offer promising and complementary approaches to extracting structured information and revealing key concepts. Results: We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process. A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends. We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components, cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design, and the nature of the experimental method as an additional class. SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in 3,223 papers in molecular and cell biology. We illustrate the dataset's usefulness by assessing BioLinkBERT and PubmedBERT, two transformers-based models, fine-tuned on the SourceData-NLP dataset for NER. We also introduce a novel context-dependent semantic task that infers whether an entity is the target of a controlled intervention or the object of measurement. Conclusions: SourceData-NLP's scale highlights the value of integrating curation into publishing. Models trained with SourceData-NLP will furthermore enable the development of tools able to extract causal hypotheses from the literature and assemble them into knowledge graphs.
KnowledgeHub: An end-to-end Tool for Assisted Scientific Discovery
This paper describes the KnowledgeHub tool, a scientific literature Information Extraction (IE) and Question Answering (QA) pipeline. This is achieved by supporting the ingestion of PDF documents that are converted to text and structured representations. An ontology can then be constructed where a user defines the types of entities and relationships they want to capture. A browser-based annotation tool enables annotating the contents of the PDF documents according to the ontology. Named Entity Recognition (NER) and Relation Classification (RC) models can be trained on the resulting annotations and can be used to annotate the unannotated portion of the documents. A knowledge graph is constructed from these entity and relation triples which can be queried to obtain insights from the data. Furthermore, we integrate a suite of Large Language Models (LLMs) that can be used for QA and summarisation that is grounded in the included documents via a retrieval component. KnowledgeHub is a unique tool that supports annotation, IE and QA, which gives the user full insight into the knowledge discovery pipeline.
Easy-to-Hard Learning for Information Extraction
Information extraction (IE) systems aim to automatically extract structured information, such as named entities, relations between entities, and events, from unstructured texts. While most existing work addresses a particular IE task, universally modeling various IE tasks with one model has achieved great success recently. Despite their success, they employ a one-stage learning strategy, i.e., directly learning to extract the target structure given the input text, which contradicts the human learning process. In this paper, we propose a unified easy-to-hard learning framework consisting of three stages, i.e., the easy stage, the hard stage, and the main stage, for IE by mimicking the human learning process. By breaking down the learning process into multiple stages, our framework facilitates the model to acquire general IE task knowledge and improve its generalization ability. Extensive experiments across four IE tasks demonstrate the effectiveness of our framework. We achieve new state-of-the-art results on 13 out of 17 datasets. Our code is available at https://github.com/DAMO-NLP-SG/IE-E2H.
Comparative Analysis of AI Agent Architectures for Entity Relationship Classification
Entity relationship classification remains a challenging task in information extraction, especially in scenarios with limited labeled data and complex relational structures. In this study, we conduct a comparative analysis of three distinct AI agent architectures designed to perform relation classification using large language models (LLMs). The agentic architectures explored include (1) reflective self-evaluation, (2) hierarchical task decomposition, and (3) a novel multi-agent dynamic example generation mechanism, each leveraging different modes of reasoning and prompt adaptation. In particular, our dynamic example generation approach introduces real-time cooperative and adversarial prompting. We systematically compare their performance across multiple domains and model backends. Our experiments demonstrate that multi-agent coordination consistently outperforms standard few-shot prompting and approaches the performance of fine-tuned models. These findings offer practical guidance for the design of modular, generalizable LLM-based systems for structured relation extraction. The source codes and dataset are available at https://github.com/maryambrj/ALIEN.git.
German BERT Model for Legal Named Entity Recognition
The use of BERT, one of the most popular language models, has led to improvements in many Natural Language Processing (NLP) tasks. One such task is Named Entity Recognition (NER) i.e. automatic identification of named entities such as location, person, organization, etc. from a given text. It is also an important base step for many NLP tasks such as information extraction and argumentation mining. Even though there is much research done on NER using BERT and other popular language models, the same is not explored in detail when it comes to Legal NLP or Legal Tech. Legal NLP applies various NLP techniques such as sentence similarity or NER specifically on legal data. There are only a handful of models for NER tasks using BERT language models, however, none of these are aimed at legal documents in German. In this paper, we fine-tune a popular BERT language model trained on German data (German BERT) on a Legal Entity Recognition (LER) dataset. To make sure our model is not overfitting, we performed a stratified 10-fold cross-validation. The results we achieve by fine-tuning German BERT on the LER dataset outperform the BiLSTM-CRF+ model used by the authors of the same LER dataset. Finally, we make the model openly available via HuggingFace.
SEntFiN 1.0: Entity-Aware Sentiment Analysis for Financial News
Fine-grained financial sentiment analysis on news headlines is a challenging task requiring human-annotated datasets to achieve high performance. Limited studies have tried to address the sentiment extraction task in a setting where multiple entities are present in a news headline. In an effort to further research in this area, we make publicly available SEntFiN 1.0, a human-annotated dataset of 10,753 news headlines with entity-sentiment annotations, of which 2,847 headlines contain multiple entities, often with conflicting sentiments. We augment our dataset with a database of over 1,000 financial entities and their various representations in news media amounting to over 5,000 phrases. We propose a framework that enables the extraction of entity-relevant sentiments using a feature-based approach rather than an expression-based approach. For sentiment extraction, we utilize 12 different learning schemes utilizing lexicon-based and pre-trained sentence representations and five classification approaches. Our experiments indicate that lexicon-based n-gram ensembles are above par with pre-trained word embedding schemes such as GloVe. Overall, RoBERTa and finBERT (domain-specific BERT) achieve the highest average accuracy of 94.29% and F1-score of 93.27%. Further, using over 210,000 entity-sentiment predictions, we validate the economic effect of sentiments on aggregate market movements over a long duration.
Computer Science Named Entity Recognition in the Open Research Knowledge Graph
Domain-specific named entity recognition (NER) on Computer Science (CS) scholarly articles is an information extraction task that is arguably more challenging for the various annotation aims that can beset the task and has been less studied than NER in the general domain. Given that significant progress has been made on NER, we believe that scholarly domain-specific NER will receive increasing attention in the years to come. Currently, progress on CS NER -- the focus of this work -- is hampered in part by its recency and the lack of a standardized annotation aim for scientific entities/terms. This work proposes a standardized task by defining a set of seven contribution-centric scholarly entities for CS NER viz., research problem, solution, resource, language, tool, method, and dataset. Following which, its main contributions are: combines existing CS NER resources that maintain their annotation focus on the set or subset of contribution-centric scholarly entities we consider; further, noting the need for big data to train neural NER models, this work additionally supplies thousands of contribution-centric entity annotations from article titles and abstracts, thus releasing a cumulative large novel resource for CS NER; and, finally, trains a sequence labeling CS NER model inspired after state-of-the-art neural architectures from the general domain NER task. Throughout the work, several practical considerations are made which can be useful to information technology designers of the digital libraries.
Three Sentences Are All You Need: Local Path Enhanced Document Relation Extraction
Document-level Relation Extraction (RE) is a more challenging task than sentence RE as it often requires reasoning over multiple sentences. Yet, human annotators usually use a small number of sentences to identify the relationship between a given entity pair. In this paper, we present an embarrassingly simple but effective method to heuristically select evidence sentences for document-level RE, which can be easily combined with BiLSTM to achieve good performance on benchmark datasets, even better than fancy graph neural network based methods. We have released our code at https://github.com/AndrewZhe/Three-Sentences-Are-All-You-Need.
OPIEC: An Open Information Extraction Corpus
Open information extraction (OIE) systems extract relations and their arguments from natural language text in an unsupervised manner. The resulting extractions are a valuable resource for downstream tasks such as knowledge base construction, open question answering, or event schema induction. In this paper, we release, describe, and analyze an OIE corpus called OPIEC, which was extracted from the text of English Wikipedia. OPIEC complements the available OIE resources: It is the largest OIE corpus publicly available to date (over 340M triples) and contains valuable metadata such as provenance information, confidence scores, linguistic annotations, and semantic annotations including spatial and temporal information. We analyze the OPIEC corpus by comparing its content with knowledge bases such as DBpedia or YAGO, which are also based on Wikipedia. We found that most of the facts between entities present in OPIEC cannot be found in DBpedia and/or YAGO, that OIE facts often differ in the level of specificity compared to knowledge base facts, and that OIE open relations are generally highly polysemous. We believe that the OPIEC corpus is a valuable resource for future research on automated knowledge base construction.
PromptRE: Weakly-Supervised Document-Level Relation Extraction via Prompting-Based Data Programming
Relation extraction aims to classify the relationships between two entities into pre-defined categories. While previous research has mainly focused on sentence-level relation extraction, recent studies have expanded the scope to document-level relation extraction. Traditional relation extraction methods heavily rely on human-annotated training data, which is time-consuming and labor-intensive. To mitigate the need for manual annotation, recent weakly-supervised approaches have been developed for sentence-level relation extraction while limited work has been done on document-level relation extraction. Weakly-supervised document-level relation extraction faces significant challenges due to an imbalanced number "no relation" instances and the failure of directly probing pretrained large language models for document relation extraction. To address these challenges, we propose PromptRE, a novel weakly-supervised document-level relation extraction method that combines prompting-based techniques with data programming. Furthermore, PromptRE incorporates the label distribution and entity types as prior knowledge to improve the performance. By leveraging the strengths of both prompting and data programming, PromptRE achieves improved performance in relation classification and effectively handles the "no relation" problem. Experimental results on ReDocRED, a benchmark dataset for document-level relation extraction, demonstrate the superiority of PromptRE over baseline approaches.
Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks
Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.
Improving Information Extraction on Business Documents with Specific Pre-Training Tasks
Transformer-based Language Models are widely used in Natural Language Processing related tasks. Thanks to their pre-training, they have been successfully adapted to Information Extraction in business documents. However, most pre-training tasks proposed in the literature for business documents are too generic and not sufficient to learn more complex structures. In this paper, we use LayoutLM, a language model pre-trained on a collection of business documents, and introduce two new pre-training tasks that further improve its capacity to extract relevant information. The first is aimed at better understanding the complex layout of documents, and the second focuses on numeric values and their order of magnitude. These tasks force the model to learn better-contextualized representations of the scanned documents. We further introduce a new post-processing algorithm to decode BIESO tags in Information Extraction that performs better with complex entities. Our method significantly improves extraction performance on both public (from 93.88 to 95.50 F1 score) and private (from 84.35 to 84.84 F1 score) datasets composed of expense receipts, invoices, and purchase orders.
A Unified Encoder-Decoder Framework with Entity Memory
Entities, as important carriers of real-world knowledge, play a key role in many NLP tasks. We focus on incorporating entity knowledge into an encoder-decoder framework for informative text generation. Existing approaches tried to index, retrieve, and read external documents as evidence, but they suffered from a large computational overhead. In this work, we propose an encoder-decoder framework with an entity memory, namely EDMem. The entity knowledge is stored in the memory as latent representations, and the memory is pre-trained on Wikipedia along with encoder-decoder parameters. To precisely generate entity names, we design three decoding methods to constrain entity generation by linking entities in the memory. EDMem is a unified framework that can be used on various entity-intensive question answering and generation tasks. Extensive experimental results show that EDMem outperforms both memory-based auto-encoder models and non-memory encoder-decoder models.
OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets
Named-entity recognition (NER) is fundamental to extracting structured information from the >80% of healthcare data that resides in unstructured clinical notes and biomedical literature. Despite recent advances with large language models, achieving state-of-the-art performance across diverse entity types while maintaining computational efficiency remains a significant challenge. We introduce OpenMed NER, a suite of open-source, domain-adapted transformer models that combine lightweight domain-adaptive pre-training (DAPT) with parameter-efficient Low-Rank Adaptation (LoRA). Our approach performs cost-effective DAPT on a 350k-passage corpus compiled from ethically sourced, publicly available research repositories and de-identified clinical notes (PubMed, arXiv, and MIMIC-III) using DeBERTa-v3, PubMedBERT, and BioELECTRA backbones. This is followed by task-specific fine-tuning with LoRA, which updates less than 1.5% of model parameters. We evaluate our models on 12 established biomedical NER benchmarks spanning chemicals, diseases, genes, and species. OpenMed NER achieves new state-of-the-art micro-F1 scores on 10 of these 12 datasets, with substantial gains across diverse entity types. Our models advance the state-of-the-art on foundational disease and chemical benchmarks (e.g., BC5CDR-Disease, +2.70 pp), while delivering even larger improvements of over 5.3 and 9.7 percentage points on more specialized gene and clinical cell line corpora. This work demonstrates that strategically adapted open-source models can surpass closed-source solutions. This performance is achieved with remarkable efficiency: training completes in under 12 hours on a single GPU with a low carbon footprint (< 1.2 kg CO2e), producing permissively licensed, open-source checkpoints designed to help practitioners facilitate compliance with emerging data protection and AI regulations, such as the EU AI Act.
A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese
Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 10 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F_1 scores of 88.6, 95.0, and 55.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively.
GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction
Information extraction (IE) is an important task in Natural Language Processing (NLP), involving the extraction of named entities and their relationships from unstructured text. In this paper, we propose a novel approach to this task by formulating it as graph structure learning (GSL). By formulating IE as GSL, we enhance the model's ability to dynamically refine and optimize the graph structure during the extraction process. This formulation allows for better interaction and structure-informed decisions for entity and relation prediction, in contrast to previous models that have separate or untied predictions for these tasks. When compared against state-of-the-art baselines on joint entity and relation extraction benchmarks, our model, GraphER, achieves competitive results.
Mitigating Out-of-Entity Errors in Named Entity Recognition: A Sentence-Level Strategy
Many previous models of named entity recognition (NER) suffer from the problem of Out-of-Entity (OOE), i.e., the tokens in the entity mentions of the test samples have not appeared in the training samples, which hinders the achievement of satisfactory performance. To improve OOE-NER performance, in this paper, we propose a new framework, namely S+NER, which fully leverages sentence-level information. Our S+NER achieves better OOE-NER performance mainly due to the following two particular designs. 1) It first exploits the pre-trained language model's capability of understanding the target entity's sentence-level context with a template set. 2) Then, it refines the sentence-level representation based on the positive and negative templates, through a contrastive learning strategy and template pooling method, to obtain better NER results. Our extensive experiments on five benchmark datasets have demonstrated that, our S+NER outperforms some state-of-the-art OOE-NER models.
Noise-Aware Training of Layout-Aware Language Models
A visually rich document (VRD) utilizes visual features along with linguistic cues to disseminate information. Training a custom extractor that identifies named entities from a document requires a large number of instances of the target document type annotated at textual and visual modalities. This is an expensive bottleneck in enterprise scenarios, where we want to train custom extractors for thousands of different document types in a scalable way. Pre-training an extractor model on unlabeled instances of the target document type, followed by a fine-tuning step on human-labeled instances does not work in these scenarios, as it surpasses the maximum allowable training time allocated for the extractor. We address this scenario by proposing a Noise-Aware Training method or NAT in this paper. Instead of acquiring expensive human-labeled documents, NAT utilizes weakly labeled documents to train an extractor in a scalable way. To avoid degradation in the model's quality due to noisy, weakly labeled samples, NAT estimates the confidence of each training sample and incorporates it as uncertainty measure during training. We train multiple state-of-the-art extractor models using NAT. Experiments on a number of publicly available and in-house datasets show that NAT-trained models are not only robust in performance -- it outperforms a transfer-learning baseline by up to 6% in terms of macro-F1 score, but it is also more label-efficient -- it reduces the amount of human-effort required to obtain comparable performance by up to 73%.
CRENER: A Character Relation Enhanced Chinese NER Model
Chinese Named Entity Recognition (NER) is an important task in information extraction, which has a significant impact on downstream applications. Due to the lack of natural separators in Chinese, previous NER methods mostly relied on external dictionaries to enrich the semantic and boundary information of Chinese words. However, such methods may introduce noise that affects the accuracy of named entity recognition. To this end, we propose a character relation enhanced Chinese NER model (CRENER). This model defines four types of tags that reflect the relationships between characters, and proposes a fine-grained modeling of the relationships between characters based on three types of relationships: adjacency relations between characters, relations between characters and tags, and relations between tags, to more accurately identify entity boundaries and improve Chinese NER accuracy. Specifically, we transform the Chinese NER task into a character-character relationship classification task, ensuring the accuracy of entity boundary recognition through joint modeling of relation tags. To enhance the model's ability to understand contextual information, WRENER further constructed an adapted transformer encoder that combines unscaled direction-aware and distance-aware masked self-attention mechanisms. Moreover, a relationship representation enhancement module was constructed to model predefined relationship tags, effectively mining the relationship representations between characters and tags. Experiments conducted on four well-known Chinese NER benchmark datasets have shown that the proposed model outperforms state-of-the-art baselines. The ablation experiment also demonstrated the effectiveness of the proposed model.
Developing a Named Entity Recognition Dataset for Tagalog
We present the development of a Named Entity Recognition (NER) dataset for Tagalog. This corpus helps fill the resource gap present in Philippine languages today, where NER resources are scarce. The texts were obtained from a pretraining corpora containing news reports, and were labeled by native speakers in an iterative fashion. The resulting dataset contains ~7.8k documents across three entity types: Person, Organization, and Location. The inter-annotator agreement, as measured by Cohen's kappa, is 0.81. We also conducted extensive empirical evaluation of state-of-the-art methods across supervised and transfer learning settings. Finally, we released the data and processing code publicly to inspire future work on Tagalog NLP.
Zero-shot information extraction from radiological reports using ChatGPT
Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.
Entity6K: A Large Open-Domain Evaluation Dataset for Real-World Entity Recognition
Open-domain real-world entity recognition is essential yet challenging, involving identifying various entities in diverse environments. The lack of a suitable evaluation dataset has been a major obstacle in this field due to the vast number of entities and the extensive human effort required for data curation. We introduce Entity6K, a comprehensive dataset for real-world entity recognition, featuring 5,700 entities across 26 categories, each supported by 5 human-verified images with annotations. Entity6K offers a diverse range of entity names and categorizations, addressing a gap in existing datasets. We conducted benchmarks with existing models on tasks like image captioning, object detection, zero-shot classification, and dense captioning to demonstrate Entity6K's effectiveness in evaluating models' entity recognition capabilities. We believe Entity6K will be a valuable resource for advancing accurate entity recognition in open-domain settings.
NER-BERT: A Pre-trained Model for Low-Resource Entity Tagging
Named entity recognition (NER) models generally perform poorly when large training datasets are unavailable for low-resource domains. Recently, pre-training a large-scale language model has become a promising direction for coping with the data scarcity issue. However, the underlying discrepancies between the language modeling and NER task could limit the models' performance, and pre-training for the NER task has rarely been studied since the collected NER datasets are generally small or large but with low quality. In this paper, we construct a massive NER corpus with a relatively high quality, and we pre-train a NER-BERT model based on the created dataset. Experimental results show that our pre-trained model can significantly outperform BERT as well as other strong baselines in low-resource scenarios across nine diverse domains. Moreover, a visualization of entity representations further indicates the effectiveness of NER-BERT for categorizing a variety of entities.
A Survey on Deep Learning for Named Entity Recognition
Named entity recognition (NER) is the task to identify mentions of rigid designators from text belonging to predefined semantic types such as person, location, organization etc. NER always serves as the foundation for many natural language applications such as question answering, text summarization, and machine translation. Early NER systems got a huge success in achieving good performance with the cost of human engineering in designing domain-specific features and rules. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Fine-grained Contract NER using instruction based model
Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * .
Packed Levitated Marker for Entity and Relation Extraction
Recent entity and relation extraction works focus on investigating how to obtain a better span representation from the pre-trained encoder. However, a major limitation of existing works is that they ignore the interrelation between spans (pairs). In this work, we propose a novel span representation approach, named Packed Levitated Markers (PL-Marker), to consider the interrelation between the spans (pairs) by strategically packing the markers in the encoder. In particular, we propose a neighborhood-oriented packing strategy, which considers the neighbor spans integrally to better model the entity boundary information. Furthermore, for those more complicated span pair classification tasks, we design a subject-oriented packing strategy, which packs each subject and all its objects to model the interrelation between the same-subject span pairs. The experimental results show that, with the enhanced marker feature, our model advances baselines on six NER benchmarks, and obtains a 4.1%-4.3% strict relation F1 improvement with higher speed over previous state-of-the-art models on ACE04 and ACE05.
Dynamic Entity Representations in Neural Language Models
Understanding a long document requires tracking how entities are introduced and evolve over time. We present a new type of language model, EntityNLM, that can explicitly model entities, dynamically update their representations, and contextually generate their mentions. Our model is generative and flexible; it can model an arbitrary number of entities in context while generating each entity mention at an arbitrary length. In addition, it can be used for several different tasks such as language modeling, coreference resolution, and entity prediction. Experimental results with all these tasks demonstrate that our model consistently outperforms strong baselines and prior work.
Novel Benchmark for NER in the Wastewater and Stormwater Domain
Effective wastewater and stormwater management is essential for urban sustainability and environmental protection. Extracting structured knowledge from reports and regulations is challenging due to domainspecific terminology and multilingual contexts. This work focuses on domain-specific Named Entity Recognition (NER) as a first step towards effective relation and information extraction to support decision making. A multilingual benchmark is crucial for evaluating these methods. This study develops a French-Italian domain-specific text corpus for wastewater management. It evaluates state-of-the-art NER methods, including LLM-based approaches, to provide a reliable baseline for future strategies and explores automated annotation projection in view of an extension of the corpus to new languages.
Fine-Grained Entity Typing for Domain Independent Entity Linking
Neural entity linking models are very powerful, but run the risk of overfitting to the domain they are trained in. For this problem, a domain is characterized not just by genre of text but even by factors as specific as the particular distribution of entities, as neural models tend to overfit by memorizing properties of frequent entities in a dataset. We tackle the problem of building robust entity linking models that generalize effectively and do not rely on labeled entity linking data with a specific entity distribution. Rather than predicting entities directly, our approach models fine-grained entity properties, which can help disambiguate between even closely related entities. We derive a large inventory of types (tens of thousands) from Wikipedia categories, and use hyperlinked mentions in Wikipedia to distantly label data and train an entity typing model. At test time, we classify a mention with this typing model and use soft type predictions to link the mention to the most similar candidate entity. We evaluate our entity linking system on the CoNLL-YAGO dataset (Hoffart et al., 2011) and show that our approach outperforms prior domain-independent entity linking systems. We also test our approach in a harder setting derived from the WikilinksNED dataset (Eshel et al., 2017) where all the mention-entity pairs are unseen during test time. Results indicate that our approach generalizes better than a state-of-the-art neural model on the dataset.
Beyond Boundaries: Learning a Universal Entity Taxonomy across Datasets and Languages for Open Named Entity Recognition
Open Named Entity Recognition (NER), which involves identifying arbitrary types of entities from arbitrary domains, remains challenging for Large Language Models (LLMs). Recent studies suggest that fine-tuning LLMs on extensive NER data can boost their performance. However, training directly on existing datasets faces issues due to inconsistent entity definitions and redundant data, limiting LLMs to dataset-specific learning and hindering out-of-domain generalization. To address this, we present B2NERD, a cohesive and efficient dataset for Open NER, normalized from 54 existing English or Chinese datasets using a two-step approach. First, we detect inconsistent entity definitions across datasets and clarify them by distinguishable label names to construct a universal taxonomy of 400+ entity types. Second, we address redundancy using a data pruning strategy that selects fewer samples with greater category and semantic diversity. Comprehensive evaluation shows that B2NERD significantly improves LLMs' generalization on Open NER. Our B2NER models, trained on B2NERD, outperform GPT-4 by 6.8-12.0 F1 points and surpass previous methods in 3 out-of-domain benchmarks across 15 datasets and 6 languages.
OpenNER 1.0: Standardized Open-Access Named Entity Recognition Datasets in 50+ Languages
We present OpenNER 1.0, a standardized collection of openly-available named entity recognition (NER) datasets. OpenNER contains 36 NER corpora that span 52 languages, human-annotated in varying named entity ontologies. We correct annotation format issues, standardize the original datasets into a uniform representation with consistent entity type names across corpora, and provide the collection in a structure that enables research in multilingual and multi-ontology NER. We provide baseline results using three pretrained multilingual language models and two large language models to compare the performance of recent models and facilitate future research in NER. We find that no single model is best in all languages and that significant work remains to obtain high performance from LLMs on the NER task. OpenNER is released at https://github.com/bltlab/open-ner.
Has Your Pretrained Model Improved? A Multi-head Posterior Based Approach
The emergence of pretrained models has significantly impacted from Natural Language Processing (NLP) and Computer Vision to relational datasets. Traditionally, these models are assessed through fine-tuned downstream tasks. However, this raises the question of how to evaluate these models more efficiently and more effectively. In this study, we explore a novel approach where we leverage the meta features associated with each entity as a source of worldly knowledge and employ entity representations from the models. We propose using the consistency between these representations and the meta features as a metric for evaluating pretrained models. Our method's effectiveness is demonstrated across various domains, including models with relational datasets, large language models and images models.
Retrieval-Augmented Code Generation for Universal Information Extraction
Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.
A Dataset for Hyper-Relational Extraction and a Cube-Filling Approach
Relation extraction has the potential for large-scale knowledge graph construction, but current methods do not consider the qualifier attributes for each relation triplet, such as time, quantity or location. The qualifiers form hyper-relational facts which better capture the rich and complex knowledge graph structure. For example, the relation triplet (Leonard Parker, Educated At, Harvard University) can be factually enriched by including the qualifier (End Time, 1967). Hence, we propose the task of hyper-relational extraction to extract more specific and complete facts from text. To support the task, we construct HyperRED, a large-scale and general-purpose dataset. Existing models cannot perform hyper-relational extraction as it requires a model to consider the interaction between three entities. Hence, we propose CubeRE, a cube-filling model inspired by table-filling approaches and explicitly considers the interaction between relation triplets and qualifiers. To improve model scalability and reduce negative class imbalance, we further propose a cube-pruning method. Our experiments show that CubeRE outperforms strong baselines and reveal possible directions for future research. Our code and data are available at github.com/declare-lab/HyperRED.
Large Language Models for Generative Information Extraction: A Survey
Information extraction (IE) aims to extract structural knowledge (such as entities, relations, and events) from plain natural language texts. Recently, generative Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation, allowing for generalization across various domains and tasks. As a result, numerous works have been proposed to harness abilities of LLMs and offer viable solutions for IE tasks based on a generative paradigm. To conduct a comprehensive systematic review and exploration of LLM efforts for IE tasks, in this study, we survey the most recent advancements in this field. We first present an extensive overview by categorizing these works in terms of various IE subtasks and learning paradigms, then we empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs. Based on thorough review conducted, we identify several insights in technique and promising research directions that deserve further exploration in future studies. We maintain a public repository and consistently update related resources at: https://github.com/quqxui/Awesome-LLM4IE-Papers.
EntQA: Entity Linking as Question Answering
A conventional approach to entity linking is to first find mentions in a given document and then infer their underlying entities in the knowledge base. A well-known limitation of this approach is that it requires finding mentions without knowing their entities, which is unnatural and difficult. We present a new model that does not suffer from this limitation called EntQA, which stands for Entity linking as Question Answering. EntQA first proposes candidate entities with a fast retrieval module, and then scrutinizes the document to find mentions of each candidate with a powerful reader module. Our approach combines progress in entity linking with that in open-domain question answering and capitalizes on pretrained models for dense entity retrieval and reading comprehension. Unlike in previous works, we do not rely on a mention-candidates dictionary or large-scale weak supervision. EntQA achieves strong results on the GERBIL benchmarking platform.
Schema as Parameterized Tools for Universal Information Extraction
Universal information extraction (UIE) primarily employs an extractive generation approach with large language models (LLMs), typically outputting structured information based on predefined schemas such as JSON or tables. UIE suffers from a lack of adaptability when selecting between predefined schemas and on-the-fly schema generation within the in-context learning paradigm, especially when there are numerous schemas to choose from. In this paper, we propose a unified adaptive text-to-structure generation framework, called Schema as Parameterized Tools (SPT), which reimagines the tool-calling capability of LLMs by treating predefined schemas as parameterized tools for tool selection and parameter filling. Specifically, our SPT method can be applied to unify closed, open, and on-demand IE tasks by adopting Schema Retrieval by fetching the relevant schemas from a predefined pool, Schema Filling by extracting information and filling slots as with tool parameters, or Schema Generation by synthesizing new schemas with uncovered cases. Experiments show that the SPT method can handle four distinct IE tasks adaptively, delivering robust schema retrieval and selection performance. SPT also achieves comparable extraction performance to LoRA baselines and current leading UIE systems with significantly fewer trainable parameters.
LLMs as Data Annotators: How Close Are We to Human Performance
In NLP, fine-tuning LLMs is effective for various applications but requires high-quality annotated data. However, manual annotation of data is labor-intensive, time-consuming, and costly. Therefore, LLMs are increasingly used to automate the process, often employing in-context learning (ICL) in which some examples related to the task are given in the prompt for better performance. However, manually selecting context examples can lead to inefficiencies and suboptimal model performance. This paper presents comprehensive experiments comparing several LLMs, considering different embedding models, across various datasets for the Named Entity Recognition (NER) task. The evaluation encompasses models with approximately 7B and 70B parameters, including both proprietary and non-proprietary models. Furthermore, leveraging the success of Retrieval-Augmented Generation (RAG), it also considers a method that addresses the limitations of ICL by automatically retrieving contextual examples, thereby enhancing performance. The results highlight the importance of selecting the appropriate LLM and embedding model, understanding the trade-offs between LLM sizes and desired performance, and the necessity to direct research efforts towards more challenging datasets.
Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions
Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at https://aka.ms/NTX.
Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding
Most recent research on Text-to-SQL semantic parsing relies on either parser itself or simple heuristic based approach to understand natural language query (NLQ). When synthesizing a SQL query, there is no explicit semantic information of NLQ available to the parser which leads to undesirable generalization performance. In addition, without lexical-level fine-grained query understanding, linking between query and database can only rely on fuzzy string match which leads to suboptimal performance in real applications. In view of this, in this paper we present a general-purpose, modular neural semantic parsing framework that is based on token-level fine-grained query understanding. Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural semantic parser (NSP). By jointly modeling query and database, NER model analyzes user intents and identifies entities in the query. NEL model links typed entities to schema and cell values in database. Parser model leverages available semantic information and linking results and synthesizes tree-structured SQL queries based on dynamically generated grammar. Experiments on SQUALL, a newly released semantic parsing dataset, show that we can achieve 56.8% execution accuracy on WikiTableQuestions (WTQ) test set, which outperforms the state-of-the-art model by 2.7%.
Bridging the Gap between Reality and Ideality of Entity Matching: A Revisiting and Benchmark Re-Construction
Entity matching (EM) is the most critical step for entity resolution (ER). While current deep learningbased methods achieve very impressive performance on standard EM benchmarks, their realworld application performance is much frustrating. In this paper, we highlight that such the gap between reality and ideality stems from the unreasonable benchmark construction process, which is inconsistent with the nature of entity matching and therefore leads to biased evaluations of current EM approaches. To this end, we build a new EM corpus and re-construct EM benchmarks to challenge critical assumptions implicit in the previous benchmark construction process by step-wisely changing the restricted entities, balanced labels, and single-modal records in previous benchmarks into open entities, imbalanced labels, and multimodal records in an open environment. Experimental results demonstrate that the assumptions made in the previous benchmark construction process are not coincidental with the open environment, which conceal the main challenges of the task and therefore significantly overestimate the current progress of entity matching. The constructed benchmarks and code are publicly released
Leveraging large language models for efficient representation learning for entity resolution
In this paper, the authors propose TriBERTa, a supervised entity resolution system that utilizes a pre-trained large language model and a triplet loss function to learn representations for entity matching. The system consists of two steps: first, name entity records are fed into a Sentence Bidirectional Encoder Representations from Transformers (SBERT) model to generate vector representations, which are then fine-tuned using contrastive learning based on a triplet loss function. Fine-tuned representations are used as input for entity matching tasks, and the results show that the proposed approach outperforms state-of-the-art representations, including SBERT without fine-tuning and conventional Term Frequency-Inverse Document Frequency (TF-IDF), by a margin of 3 - 19%. Additionally, the representations generated by TriBERTa demonstrated increased robustness, maintaining consistently higher performance across a range of datasets. The authors also discussed the importance of entity resolution in today's data-driven landscape and the challenges that arise when identifying and reconciling duplicate data across different sources. They also described the ER process, which involves several crucial steps, including blocking, entity matching, and clustering.
Summarization as Indirect Supervision for Relation Extraction
Relation extraction (RE) models have been challenged by their reliance on training data with expensive annotations. Considering that summarization tasks aim at acquiring concise expressions of synoptical information from the longer context, these tasks naturally align with the objective of RE, i.e., extracting a kind of synoptical information that describes the relation of entity mentions. We present SuRE, which converts RE into a summarization formulation. SuRE leads to more precise and resource-efficient RE based on indirect supervision from summarization tasks. To achieve this goal, we develop sentence and relation conversion techniques that essentially bridge the formulation of summarization and RE tasks. We also incorporate constraint decoding techniques with Trie scoring to further enhance summarization-based RE with robust inference. Experiments on three RE datasets demonstrate the effectiveness of SuRE in both full-dataset and low-resource settings, showing that summarization is a promising source of indirect supervision to improve RE models.
NEREL: A Russian Dataset with Nested Named Entities, Relations and Events
In this paper, we present NEREL, a Russian dataset for named entity recognition and relation extraction. NEREL is significantly larger than existing Russian datasets: to date it contains 56K annotated named entities and 39K annotated relations. Its important difference from previous datasets is annotation of nested named entities, as well as relations within nested entities and at the discourse level. NEREL can facilitate development of novel models that can extract relations between nested named entities, as well as relations on both sentence and document levels. NEREL also contains the annotation of events involving named entities and their roles in the events. The NEREL collection is available via https://github.com/nerel-ds/NEREL.
What Makes Entities Similar? A Similarity Flooding Perspective for Multi-sourced Knowledge Graph Embeddings
Joint representation learning over multi-sourced knowledge graphs (KGs) yields transferable and expressive embeddings that improve downstream tasks. Entity alignment (EA) is a critical step in this process. Despite recent considerable research progress in embedding-based EA, how it works remains to be explored. In this paper, we provide a similarity flooding perspective to explain existing translation-based and aggregation-based EA models. We prove that the embedding learning process of these models actually seeks a fixpoint of pairwise similarities between entities. We also provide experimental evidence to support our theoretical analysis. We propose two simple but effective methods inspired by the fixpoint computation in similarity flooding, and demonstrate their effectiveness on benchmark datasets. Our work bridges the gap between recent embedding-based models and the conventional similarity flooding algorithm. It would improve our understanding of and increase our faith in embedding-based EA.
