new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

The Good, the Bad, and the Missing: Neural Code Generation for Machine Learning Tasks

Machine learning (ML) has been increasingly used in a variety of domains, while solving ML programming tasks poses unique challenges because of the fundamentally different nature and construction from general programming tasks, especially for developers who do not have ML backgrounds. Automatic code generation that produces a code snippet from a natural language description can be a promising technique to accelerate ML programming tasks. In recent years, although many deep learning-based neural code generation models have been proposed with high accuracy, the fact that most of them are mainly evaluated on general programming tasks calls into question their effectiveness and usefulness in ML programming tasks. In this paper, we set out to investigate the effectiveness of existing neural code generation models on ML programming tasks. For our analysis, we select six state-of-the-art neural code generation models, and evaluate their performance on four widely used ML libraries, with newly-created 83K pairs of natural-language described ML programming tasks. Our empirical study reveals some good, bad, and missing aspects of neural code generation models on ML tasks, with a few major ones listed below. (Good) Neural code generation models perform significantly better on ML tasks than on non-ML tasks. (Bad) Most of the generated code is semantically incorrect. (Bad) Code generation models cannot significantly improve developers' completion time. (Good) The generated code can help developers write more correct code by providing developers with clues for using correct APIs. (Missing) The observation from our user study reveals the missing aspects of code generation for ML tasks, e.g., decomposing code generation for divide-and-conquer into two tasks: API sequence identification and API usage generation.

  • 5 authors
·
May 15, 2023

ML-Bench: Large Language Models Leverage Open-source Libraries for Machine Learning Tasks

Large language models have shown promising performance in code generation benchmarks. However, a considerable divide exists between these benchmark achievements and their practical applicability, primarily attributed to real-world programming's reliance on pre-existing libraries. Instead of evaluating LLMs to code from scratch, this work aims to propose a new evaluation setup where LLMs use open-source libraries to finish machine learning tasks. Therefore, we propose ML-Bench, an expansive benchmark developed to assess the effectiveness of LLMs in leveraging existing functions in open-source libraries. Consisting of 10044 samples spanning 130 tasks over 14 notable machine learning GitHub repositories. In this setting, given a specific machine learning task instruction and the accompanying README in a codebase, an LLM is tasked to generate code to accomplish the task. This necessitates the comprehension of long and language-code interleaved documents, as well as the understanding of complex cross-file code structures, introducing new challenges. Notably, while GPT-4 exhibits remarkable improvement over other LLMs, it manages to accomplish only 39.73\% of the tasks, leaving a huge space for improvement. We address these challenges by proposing ML-Agent, designed to effectively navigate the codebase, locate documentation, retrieve code, and generate executable code. Empirical results demonstrate that ML-Agent, built upon GPT-4, results in further improvements. Code, data, and models are available at https://ml-bench.github.io/.

  • 26 authors
·
Nov 16, 2023

Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits

Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.

  • 5 authors
·
May 31, 2023

Interpreting Black-box Machine Learning Models for High Dimensional Datasets

Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.

  • 7 authors
·
Aug 29, 2022

OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs

Enabling effective and efficient machine learning (ML) over large-scale graph data (e.g., graphs with billions of edges) can have a great impact on both industrial and scientific applications. However, existing efforts to advance large-scale graph ML have been largely limited by the lack of a suitable public benchmark. Here we present OGB Large-Scale Challenge (OGB-LSC), a collection of three real-world datasets for facilitating the advancements in large-scale graph ML. The OGB-LSC datasets are orders of magnitude larger than existing ones, covering three core graph learning tasks -- link prediction, graph regression, and node classification. Furthermore, we provide dedicated baseline experiments, scaling up expressive graph ML models to the massive datasets. We show that expressive models significantly outperform simple scalable baselines, indicating an opportunity for dedicated efforts to further improve graph ML at scale. Moreover, OGB-LSC datasets were deployed at ACM KDD Cup 2021 and attracted more than 500 team registrations globally, during which significant performance improvements were made by a variety of innovative techniques. We summarize the common techniques used by the winning solutions and highlight the current best practices in large-scale graph ML. Finally, we describe how we have updated the datasets after the KDD Cup to further facilitate research advances. The OGB-LSC datasets, baseline code, and all the information about the KDD Cup are available at https://ogb.stanford.edu/docs/lsc/ .

  • 6 authors
·
Mar 17, 2021

Aligning Machine and Human Visual Representations across Abstraction Levels

Deep neural networks have achieved success across a wide range of applications, including as models of human behavior in vision tasks. However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do, raising questions regarding the similarity of their underlying representations. What is missing for modern learning systems to exhibit more human-like behavior? We highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions, model representations do not accurately capture all these levels of abstraction. To address this misalignment, we first train a teacher model to imitate human judgments, then transfer human-like structure from its representations into pretrained state-of-the-art vision foundation models. These human-aligned models more accurately approximate human behavior and uncertainty across a wide range of similarity tasks, including a new dataset of human judgments spanning multiple levels of semantic abstractions. They also perform better on a diverse set of machine learning tasks, increasing generalization and out-of-distribution robustness. Thus, infusing neural networks with additional human knowledge yields a best-of-both-worlds representation that is both more consistent with human cognition and more practically useful, thus paving the way toward more robust, interpretable, and human-like artificial intelligence systems.

  • 9 authors
·
Sep 10, 2024

Kencorpus: A Kenyan Language Corpus of Swahili, Dholuo and Luhya for Natural Language Processing Tasks

Indigenous African languages are categorized as under-served in Natural Language Processing. They therefore experience poor digital inclusivity and information access. The processing challenge with such languages has been how to use machine learning and deep learning models without the requisite data. The Kencorpus project intends to bridge this gap by collecting and storing text and speech data that is good enough for data-driven solutions in applications such as machine translation, question answering and transcription in multilingual communities. The Kencorpus dataset is a text and speech corpus for three languages predominantly spoken in Kenya: Swahili, Dholuo and Luhya. Data collection was done by researchers from communities, schools, media, and publishers. The Kencorpus' dataset has a collection of 5,594 items - 4,442 texts (5.6M words) and 1,152 speech files (177hrs). Based on this data, Part of Speech tagging sets for Dholuo and Luhya (50,000 and 93,000 words respectively) were developed. We developed 7,537 Question-Answer pairs for Swahili and created a text translation set of 13,400 sentences from Dholuo and Luhya into Swahili. The datasets are useful for downstream machine learning tasks such as model training and translation. We also developed two proof of concept systems: for Kiswahili speech-to-text and machine learning system for Question Answering task, with results of 18.87% word error rate and 80% Exact Match (EM) respectively. These initial results give great promise to the usability of Kencorpus to the machine learning community. Kencorpus is one of few public domain corpora for these three low resource languages and forms a basis of learning and sharing experiences for similar works especially for low resource languages.

  • 6 authors
·
Aug 25, 2022

MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows

Scientific innovation relies on detailed workflows, which include critical steps such as analyzing literature, generating ideas, validating these ideas, interpreting results, and inspiring follow-up research. However, scientific publications that document these workflows are extensive and unstructured. This makes it difficult for both human researchers and AI systems to effectively navigate and explore the space of scientific innovation. To address this issue, we introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of Scientific Workflows. MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years. Using Large Language Models (LLMs), we automatically extract five core aspects from these publications -- context, key idea, method, outcome, and projected impact -- which correspond to five key steps in the research workflow. These structured summaries facilitate a variety of downstream tasks and analyses. The quality of the LLM-extracted summaries is validated by comparing them with human annotations. We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset, which make various types of predictions and recommendations along the scientific workflow. MASSW holds significant potential for researchers to create and benchmark new AI methods for optimizing scientific workflows and fostering scientific innovation in the field. Our dataset is openly available at https://github.com/xingjian-zhang/massw.

  • 11 authors
·
Jun 10, 2024

Experimental quantum adversarial learning with programmable superconducting qubits

Quantum computing promises to enhance machine learning and artificial intelligence. Different quantum algorithms have been proposed to improve a wide spectrum of machine learning tasks. Yet, recent theoretical works show that, similar to traditional classifiers based on deep classical neural networks, quantum classifiers would suffer from the vulnerability problem: adding tiny carefully-crafted perturbations to the legitimate original data samples would facilitate incorrect predictions at a notably high confidence level. This will pose serious problems for future quantum machine learning applications in safety and security-critical scenarios. Here, we report the first experimental demonstration of quantum adversarial learning with programmable superconducting qubits. We train quantum classifiers, which are built upon variational quantum circuits consisting of ten transmon qubits featuring average lifetimes of 150 mus, and average fidelities of simultaneous single- and two-qubit gates above 99.94% and 99.4% respectively, with both real-life images (e.g., medical magnetic resonance imaging scans) and quantum data. We demonstrate that these well-trained classifiers (with testing accuracy up to 99%) can be practically deceived by small adversarial perturbations, whereas an adversarial training process would significantly enhance their robustness to such perturbations. Our results reveal experimentally a crucial vulnerability aspect of quantum learning systems under adversarial scenarios and demonstrate an effective defense strategy against adversarial attacks, which provide a valuable guide for quantum artificial intelligence applications with both near-term and future quantum devices.

  • 24 authors
·
Apr 4, 2022

A Neural Network Architecture Combining Gated Recurrent Unit (GRU) and Support Vector Machine (SVM) for Intrusion Detection in Network Traffic Data

Gated Recurrent Unit (GRU) is a recently-developed variation of the long short-term memory (LSTM) unit, both of which are types of recurrent neural network (RNN). Through empirical evidence, both models have been proven to be effective in a wide variety of machine learning tasks such as natural language processing (Wen et al., 2015), speech recognition (Chorowski et al., 2015), and text classification (Yang et al., 2016). Conventionally, like most neural networks, both of the aforementioned RNN variants employ the Softmax function as its final output layer for its prediction, and the cross-entropy function for computing its loss. In this paper, we present an amendment to this norm by introducing linear support vector machine (SVM) as the replacement for Softmax in the final output layer of a GRU model. Furthermore, the cross-entropy function shall be replaced with a margin-based function. While there have been similar studies (Alalshekmubarak & Smith, 2013; Tang, 2013), this proposal is primarily intended for binary classification on intrusion detection using the 2013 network traffic data from the honeypot systems of Kyoto University. Results show that the GRU-SVM model performs relatively higher than the conventional GRU-Softmax model. The proposed model reached a training accuracy of ~81.54% and a testing accuracy of ~84.15%, while the latter was able to reach a training accuracy of ~63.07% and a testing accuracy of ~70.75%. In addition, the juxtaposition of these two final output layers indicate that the SVM would outperform Softmax in prediction time - a theoretical implication which was supported by the actual training and testing time in the study.

  • 1 authors
·
Sep 10, 2017

Frame Averaging for Invariant and Equivariant Network Design

Many machine learning tasks involve learning functions that are known to be invariant or equivariant to certain symmetries of the input data. However, it is often challenging to design neural network architectures that respect these symmetries while being expressive and computationally efficient. For example, Euclidean motion invariant/equivariant graph or point cloud neural networks. We introduce Frame Averaging (FA), a general purpose and systematic framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types. Our framework builds on the well known group averaging operator that guarantees invariance or equivariance but is intractable. In contrast, we observe that for many important classes of symmetries, this operator can be replaced with an averaging operator over a small subset of the group elements, called a frame. We show that averaging over a frame guarantees exact invariance or equivariance while often being much simpler to compute than averaging over the entire group. Furthermore, we prove that FA-based models have maximal expressive power in a broad setting and in general preserve the expressive power of their backbone architectures. Using frame averaging, we propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs. We demonstrate the practical effectiveness of FA on several applications including point cloud normal estimation, beyond 2-WL graph separation, and n-body dynamics prediction, achieving state-of-the-art results in all of these benchmarks.

  • 7 authors
·
Oct 7, 2021

AdaNPC: Exploring Non-Parametric Classifier for Test-Time Adaptation

Many recent machine learning tasks focus to develop models that can generalize to unseen distributions. Domain generalization (DG) has become one of the key topics in various fields. Several literatures show that DG can be arbitrarily hard without exploiting target domain information. To address this issue, test-time adaptive (TTA) methods are proposed. Existing TTA methods require offline target data or extra sophisticated optimization procedures during the inference stage. In this work, we adopt Non-Parametric Classifier to perform the test-time Adaptation (AdaNPC). In particular, we construct a memory that contains the feature and label pairs from training domains. During inference, given a test instance, AdaNPC first recalls K closed samples from the memory to vote for the prediction, and then the test feature and predicted label are added to the memory. In this way, the sample distribution in the memory can be gradually changed from the training distribution towards the test distribution with very little extra computation cost. We theoretically justify the rationality behind the proposed method. Besides, we test our model on extensive numerical experiments. AdaNPC significantly outperforms competitive baselines on various DG benchmarks. In particular, when the adaptation target is a series of domains, the adaptation accuracy of AdaNPC is 50% higher than advanced TTA methods. The code is available at https://github.com/yfzhang114/AdaNPC.

  • 8 authors
·
Apr 25, 2023

ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies

In this paper we introduce ResearchCodeAgent, a novel multi-agent system leveraging large language models (LLMs) agents to automate the codification of research methodologies described in machine learning literature. The system bridges the gap between high-level research concepts and their practical implementation, allowing researchers auto-generating code of existing research papers for benchmarking or building on top-of existing methods specified in the literature with availability of partial or complete starter code. ResearchCodeAgent employs a flexible agent architecture with a comprehensive action suite, enabling context-aware interactions with the research environment. The system incorporates a dynamic planning mechanism, utilizing both short and long-term memory to adapt its approach iteratively. We evaluate ResearchCodeAgent on three distinct machine learning tasks with distinct task complexity and representing different parts of the ML pipeline: data augmentation, optimization, and data batching. Our results demonstrate the system's effectiveness and generalizability, with 46.9% of generated code being high-quality and error-free, and 25% showing performance improvements over baseline implementations. Empirical analysis shows an average reduction of 57.9% in coding time compared to manual implementation. We observe higher gains for more complex tasks. ResearchCodeAgent represents a significant step towards automating the research implementation process, potentially accelerating the pace of machine learning research.

  • 5 authors
·
Apr 28

Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers

When applying quantum computing to machine learning tasks, one of the first considerations is the design of the quantum machine learning model itself. Conventionally, the design of quantum machine learning algorithms relies on the ``quantisation" of classical learning algorithms, such as using quantum linear algebra to implement important subroutines of classical algorithms, if not the entire algorithm, seeking to achieve quantum advantage through possible run-time accelerations brought by quantum computing. However, recent research has started questioning whether quantum advantage via speedup is the right goal for quantum machine learning [1]. Research also has been undertaken to exploit properties that are unique to quantum systems, such as quantum contextuality, to better design quantum machine learning models [2]. In this paper, we take an alternative approach by incorporating the heuristics and empirical evidences from the design of classical deep learning algorithms to the design of quantum neural networks. We first construct a model based on the data reuploading circuit [3] with the quantum Hamiltonian data embedding unitary [4]. Through numerical experiments on images datasets, including the famous MNIST and FashionMNIST datasets, we demonstrate that our model outperforms the quantum convolutional neural network (QCNN)[5] by a large margin (up to over 40% on MNIST test set). Based on the model design process and numerical results, we then laid out six principles for designing quantum machine learning models, especially quantum neural networks.

  • 4 authors
·
Jul 19, 2024

Improving Autoencoder-based Outlier Detection with Adjustable Probabilistic Reconstruction Error and Mean-shift Outlier Scoring

Autoencoders were widely used in many machine learning tasks thanks to their strong learning ability which has drawn great interest among researchers in the field of outlier detection. However, conventional autoencoder-based methods lacked considerations in two aspects. This limited their performance in outlier detection. First, the mean squared error used in conventional autoencoders ignored the judgment uncertainty of the autoencoder, which limited their representation ability. Second, autoencoders suffered from the abnormal reconstruction problem: some outliers can be unexpectedly reconstructed well, making them difficult to identify from the inliers. To mitigate the aforementioned issues, two novel methods were proposed in this paper. First, a novel loss function named Probabilistic Reconstruction Error (PRE) was constructed to factor in both reconstruction bias and judgment uncertainty. To further control the trade-off of these two factors, two weights were introduced in PRE producing Adjustable Probabilistic Reconstruction Error (APRE), which benefited the outlier detection in different applications. Second, a conceptually new outlier scoring method based on mean-shift (MSS) was proposed to reduce the false inliers caused by the autoencoder. Experiments on 32 real-world outlier detection datasets proved the effectiveness of the proposed methods. The combination of the proposed methods achieved 41% of the relative performance improvement compared to the best baseline. The MSS improved the performance of multiple autoencoder-based outlier detectors by an average of 20%. The proposed two methods have the potential to advance autoencoder's development in outlier detection. The code is available on www.OutlierNet.com for reproducibility.

  • 5 authors
·
Apr 3, 2023

Aggregating Soft Labels from Crowd Annotations Improves Uncertainty Estimation Under Distribution Shift

Selecting an effective training signal for machine learning tasks is difficult: expert annotations are expensive, and crowd-sourced annotations may not be reliable. Recent work has demonstrated that learning from a distribution over labels acquired from crowd annotations can be effective both for performance and uncertainty estimation. However, this has mainly been studied using a limited set of soft-labeling methods in an in-domain setting. Additionally, no one method has been shown to consistently perform well across tasks, making it difficult to know a priori which to choose. To fill these gaps, this paper provides the first large-scale empirical study on learning from crowd labels in the out-of-domain setting, systematically analyzing 8 soft-labeling methods on 4 language and vision tasks. Additionally, we propose to aggregate soft-labels via a simple average in order to achieve consistent performance across tasks. We demonstrate that this yields classifiers with improved predictive uncertainty estimation in most settings while maintaining consistent raw performance compared to learning from individual soft-labeling methods or taking a majority vote of the annotations. We additionally highlight that in regimes with abundant or minimal training data, the selection of soft labeling method is less important, while for highly subjective labels and moderate amounts of training data, aggregation yields significant improvements in uncertainty estimation over individual methods. Code can be found at https://github.com/copenlu/aggregating-crowd-annotations-ood.

  • 2 authors
·
Dec 19, 2022

PAC Generalization via Invariant Representations

One method for obtaining generalizable solutions to machine learning tasks when presented with diverse training environments is to find invariant representations of the data. These are representations of the covariates such that the best model on top of the representation is invariant across training environments. In the context of linear Structural Equation Models (SEMs), invariant representations might allow us to learn models with out-of-distribution guarantees, i.e., models that are robust to interventions in the SEM. To address the invariant representation problem in a {\em finite sample} setting, we consider the notion of epsilon-approximate invariance. We study the following question: If a representation is approximately invariant with respect to a given number of training interventions, will it continue to be approximately invariant on a larger collection of unseen SEMs? This larger collection of SEMs is generated through a parameterized family of interventions. Inspired by PAC learning, we obtain finite-sample out-of-distribution generalization guarantees for approximate invariance that holds probabilistically over a family of linear SEMs without faithfulness assumptions. Our results show bounds that do not scale in ambient dimension when intervention sites are restricted to lie in a constant size subset of in-degree bounded nodes. We also show how to extend our results to a linear indirect observation model that incorporates latent variables.

  • 3 authors
·
May 30, 2022

ChatGPT as your Personal Data Scientist

The rise of big data has amplified the need for efficient, user-friendly automated machine learning (AutoML) tools. However, the intricacy of understanding domain-specific data and defining prediction tasks necessitates human intervention making the process time-consuming while preventing full automation. Instead, envision an intelligent agent capable of assisting users in conducting AutoML tasks through intuitive, natural conversations without requiring in-depth knowledge of the underlying machine learning (ML) processes. This agent's key challenge is to accurately comprehend the user's prediction goals and, consequently, formulate precise ML tasks, adjust data sets and model parameters accordingly, and articulate results effectively. In this paper, we take a pioneering step towards this ambitious goal by introducing a ChatGPT-based conversational data-science framework to act as a "personal data scientist". Precisely, we utilize Large Language Models (ChatGPT) to build a natural interface between the users and the ML models (Scikit-Learn), which in turn, allows us to approach this ambitious problem with a realistic solution. Our model pivots around four dialogue states: Data Visualization, Task Formulation, Prediction Engineering, and Result Summary and Recommendation. Each state marks a unique conversation phase, impacting the overall user-system interaction. Multiple LLM instances, serving as "micro-agents", ensure a cohesive conversation flow, granting us granular control over the conversation's progression. In summary, we developed an end-to-end system that not only proves the viability of the novel concept of conversational data science but also underscores the potency of LLMs in solving complex tasks. Interestingly, its development spotlighted several critical weaknesses in the current LLMs (ChatGPT) and highlighted substantial opportunities for improvement.

  • 3 authors
·
May 23, 2023

BitMoD: Bit-serial Mixture-of-Datatype LLM Acceleration

Large language models (LLMs) have demonstrated remarkable performance across various machine learning tasks. Yet the substantial memory footprint of LLMs significantly hinders their deployment. In this paper, we improve the accessibility of LLMs through BitMoD, an algorithm-hardware co-design solution that enables efficient LLM acceleration at low weight precision. On the algorithm side, BitMoD introduces fine-grained data type adaptation that uses a different numerical data type to quantize a group of (e.g., 128) weights. Through the careful design of these new data types, BitMoD is able to quantize LLM weights to very low precision (e.g., 4 bits and 3 bits) while maintaining high accuracy. On the hardware side, BitMoD employs a bit-serial processing element to easily support multiple numerical precisions and data types; our hardware design includes two key innovations: First, it employs a unified representation to process different weight data types, thus reducing the hardware cost. Second, it adopts a bit-serial dequantization unit to rescale the per-group partial sum with minimal hardware overhead. Our evaluation on six representative LLMs demonstrates that BitMoD significantly outperforms state-of-the-art LLM quantization and acceleration methods. For discriminative tasks, BitMoD can quantize LLM weights to 4-bit with <!0.5% accuracy loss on average. For generative tasks, BitMoD is able to quantize LLM weights to 3-bit while achieving better perplexity than prior LLM quantization scheme. Combining the superior model performance with an efficient accelerator design, BitMoD achieves an average of 1.69times and 1.48times speedups compared to prior LLM accelerators ANT and OliVe, respectively.

  • 7 authors
·
Nov 18, 2024

A Benchmark Study on Calibration

Deep neural networks are increasingly utilized in various machine learning tasks. However, as these models grow in complexity, they often face calibration issues, despite enhanced prediction accuracy. Many studies have endeavored to improve calibration performance through the use of specific loss functions, data preprocessing and training frameworks. Yet, investigations into calibration properties have been somewhat overlooked. Our study leverages the Neural Architecture Search (NAS) search space, offering an exhaustive model architecture space for thorough calibration properties exploration. We specifically create a model calibration dataset. This dataset evaluates 90 bin-based and 12 additional calibration measurements across 117,702 unique neural networks within the widely employed NATS-Bench search space. Our analysis aims to answer several longstanding questions in the field, using our proposed dataset: (i) Can model calibration be generalized across different datasets? (ii) Can robustness be used as a calibration measurement? (iii) How reliable are calibration metrics? (iv) Does a post-hoc calibration method affect all models uniformly? (v) How does calibration interact with accuracy? (vi) What is the impact of bin size on calibration measurement? (vii) Which architectural designs are beneficial for calibration? Additionally, our study bridges an existing gap by exploring calibration within NAS. By providing this dataset, we enable further research into NAS calibration. As far as we are aware, our research represents the first large-scale investigation into calibration properties and the premier study of calibration issues within NAS. The project page can be found at https://www.taolinwei.com/calibration-study

  • 5 authors
·
Aug 22, 2023

A Mathematical Theory of Deep Convolutional Neural Networks for Feature Extraction

Deep convolutional neural networks have led to breakthrough results in numerous practical machine learning tasks such as classification of images in the ImageNet data set, control-policy-learning to play Atari games or the board game Go, and image captioning. Many of these applications first perform feature extraction and then feed the results thereof into a trainable classifier. The mathematical analysis of deep convolutional neural networks for feature extraction was initiated by Mallat, 2012. Specifically, Mallat considered so-called scattering networks based on a wavelet transform followed by the modulus non-linearity in each network layer, and proved translation invariance (asymptotically in the wavelet scale parameter) and deformation stability of the corresponding feature extractor. This paper complements Mallat's results by developing a theory that encompasses general convolutional transforms, or in more technical parlance, general semi-discrete frames (including Weyl-Heisenberg filters, curvelets, shearlets, ridgelets, wavelets, and learned filters), general Lipschitz-continuous non-linearities (e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tangents, and modulus functions), and general Lipschitz-continuous pooling operators emulating, e.g., sub-sampling and averaging. In addition, all of these elements can be different in different network layers. For the resulting feature extractor we prove a translation invariance result of vertical nature in the sense of the features becoming progressively more translation-invariant with increasing network depth, and we establish deformation sensitivity bounds that apply to signal classes such as, e.g., band-limited functions, cartoon functions, and Lipschitz functions.

  • 2 authors
·
Dec 19, 2015

Applications of Large Language Model Reasoning in Feature Generation

Large Language Models (LLMs) have revolutionized natural language processing through their state of art reasoning capabilities. This paper explores the convergence of LLM reasoning techniques and feature generation for machine learning tasks. We examine four key reasoning approaches: Chain of Thought, Tree of Thoughts, Retrieval-Augmented Generation, and Thought Space Exploration. Our analysis reveals how these approaches can be used to identify effective feature generation rules without having to manually specify search spaces. The paper categorizes LLM-based feature generation methods across various domains including finance, healthcare, and text analytics. LLMs can extract key information from clinical notes and radiology reports in healthcare, by enabling more efficient data utilization. In finance, LLMs facilitate text generation, summarization, and entity extraction from complex documents. We analyze evaluation methodologies for assessing feature quality and downstream performance, with particular attention to OCTree's decision tree reasoning approach that provides language-based feedback for iterative improvements. Current challenges include hallucination, computational efficiency, and domain adaptation. As of March 2025, emerging approaches include inference-time compute scaling, reinforcement learning, and supervised fine-tuning with model distillation. Future directions point toward multimodal feature generation, self-improving systems, and neuro-symbolic approaches. This paper provides a detailed overview of an emerging field that promises to automate and enhance feature engineering through language model reasoning.

  • 1 authors
·
Mar 15

I-MCTS: Enhancing Agentic AutoML via Introspective Monte Carlo Tree Search

Recent advancements in large language models (LLMs) have shown remarkable potential in automating machine learning tasks. However, existing LLM-based agents often struggle with low-diversity and suboptimal code generation. While recent work has introduced Monte Carlo Tree Search (MCTS) to address these issues, limitations persist in the quality and diversity of thoughts generated, as well as in the scalar value feedback mechanisms used for node selection. In this study, we introduce Introspective Monte Carlo Tree Search (I-MCTS), a novel approach that iteratively expands tree nodes through an introspective process that meticulously analyzes solutions and results from parent and sibling nodes. This facilitates a continuous refinement of the node in the search tree, thereby enhancing the overall decision-making process. Furthermore, we integrate a Large Language Model (LLM)-based value model to facilitate direct evaluation of each node's solution prior to conducting comprehensive computational rollouts. A hybrid rewarding mechanism is implemented to seamlessly transition the Q-value from LLM-estimated scores to actual performance scores. This allows higher-quality nodes to be traversed earlier. Applied to the various ML tasks, our approach demonstrates a 6% absolute improvement in performance compared to the strong open-source AutoML agents, showcasing its effectiveness in enhancing agentic AutoML systems. Resource available at https://github.com/jokieleung/I-MCTS

  • 6 authors
·
Feb 20

Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry

Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.

  • 141 authors
·
Nov 20, 2024 2

GraphTeam: Facilitating Large Language Model-based Graph Analysis via Multi-Agent Collaboration

Graphs are widely used for modeling relational data in real-world scenarios, such as social networks and urban computing. Existing LLM-based graph analysis approaches either integrate graph neural networks (GNNs) for specific machine learning tasks, limiting their transferability, or rely solely on LLMs' internal reasoning ability, resulting in suboptimal performance. To address these limitations, we take advantage of recent advances in LLM-based agents, which have shown capabilities of utilizing external knowledge or tools for problem solving. By simulating human problem-solving strategies such as analogy and collaboration, we propose a multi-agent system based on LLMs named GraphTeam, for graph analysis. GraphTeam consists of five LLM-based agents from three modules, and the agents with different specialities can collaborate with each other to address complex problems. Specifically, (1) input-output normalization module: the question agent extracts and refines four key arguments from the original question, facilitating the problem understanding, and the answer agent organizes the results to meet the output requirement; (2) external knowledge retrieval module: we first build a knowledge base consisting of relevant documentation and experience information, and then the search agent retrieves the most relevant entries for each question. (3) problem-solving module: given the retrieved information from search agent, the coding agent uses established algorithms via programming to generate solutions, and in case the coding agent does not work, the reasoning agent will directly compute the results without programming. Extensive experiments on six graph analysis benchmarks demonstrate that GraphTeam achieves state-of-the-art performance with an average 25.85% improvement over the best baseline in terms of accuracy. The code and data are available at https://github.com/BUPT-GAMMA/GraphTeam.

  • 10 authors
·
Oct 23, 2024

Elucidating the Design Space of FP4 training

The increasing computational demands of foundation models have spurred research into low-precision training, with 4-bit floating-point (FP4) formats emerging as a frontier for maximizing hardware throughput. While numerous techniques have been proposed to stabilize FP4 training, they often present isolated solutions with varying, and not always clear, computational overheads. This paper aims to provide a unified view of the design space of FP4 training. We introduce a comprehensive, quantisation gradient-based framework for microscaling quantization that allows for a theoretical analysis of the computational costs associated with different stabilization methods on both the forward and backward passes. Using a simulator built on this framework, we conduct an extensive empirical study across a wide range of machine learning tasks, including regression, image classification, diffusion models, and language models. By systematically evaluating thousands of combinations of techniques, such as novel gradient approximations, rounding strategies, and scaling methods, we identify which configurations offer the most favourable performance-to-overhead trade-off. We find that the techniques enabling the best trade-off involve carefully combining Hadamard transformations, tensor scaling and stochastic rounding. We further find that using UE5M3 as a scaling factor potentially offers a good compromise between range and precision with manageable computational overhead.

  • 3 authors
·
Sep 22

LEMON: LanguagE ModeL for Negative Sampling of Knowledge Graph Embeddings

Knowledge Graph Embedding models have become an important area of machine learning.Those models provide a latent representation of entities and relations in a knowledge graph which can then be used in downstream machine learning tasks such as link prediction. The learning process of such models can be performed by contrasting positive and negative triples. While all triples of a KG are considered positive, negative triples are usually not readily available. Therefore, the choice of the sampling method to obtain the negative triples play a crucial role in the performance and effectiveness of Knowledge Graph Embedding models. Most of the current methods fetch negative samples from a random distribution of entities in the underlying Knowledge Graph which also often includes meaningless triples. Other known methods use adversarial techniques or generative neural networks which consequently reduce the efficiency of the process. In this paper, we propose an approach for generating informative negative samples considering available complementary knowledge about entities. Particularly, Pre-trained Language Models are used to form neighborhood clusters by utilizing the distances between entities to obtain representations of symbolic entities via their textual information. Our comprehensive evaluations demonstrate the effectiveness of the proposed approach on benchmark Knowledge Graphs with textual information for the link prediction task.

  • 5 authors
·
Mar 9, 2022

Dawn of the transformer era in speech emotion recognition: closing the valence gap

Recent advances in transformer-based architectures which are pre-trained in self-supervised manner have shown great promise in several machine learning tasks. In the audio domain, such architectures have also been successfully utilised in the field of speech emotion recognition (SER). However, existing works have not evaluated the influence of model size and pre-training data on downstream performance, and have shown limited attention to generalisation, robustness, fairness, and efficiency. The present contribution conducts a thorough analysis of these aspects on several pre-trained variants of wav2vec 2.0 and HuBERT that we fine-tuned on the dimensions arousal, dominance, and valence of MSP-Podcast, while additionally using IEMOCAP and MOSI to test cross-corpus generalisation. To the best of our knowledge, we obtain the top performance for valence prediction without use of explicit linguistic information, with a concordance correlation coefficient (CCC) of .638 on MSP-Podcast. Furthermore, our investigations reveal that transformer-based architectures are more robust to small perturbations compared to a CNN-based baseline and fair with respect to biological sex groups, but not towards individual speakers. Finally, we are the first to show that their extraordinary success on valence is based on implicit linguistic information learnt during fine-tuning of the transformer layers, which explains why they perform on-par with recent multimodal approaches that explicitly utilise textual information. Our findings collectively paint the following picture: transformer-based architectures constitute the new state-of-the-art in SER, but further advances are needed to mitigate remaining robustness and individual speaker issues. To make our findings reproducible, we release the best performing model to the community.

  • 7 authors
·
Mar 14, 2022

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Scaling up deep neural network capacity has been known as an effective approach to improving model quality for several different machine learning tasks. In many cases, increasing model capacity beyond the memory limit of a single accelerator has required developing special algorithms or infrastructure. These solutions are often architecture-specific and do not transfer to other tasks. To address the need for efficient and task-independent model parallelism, we introduce GPipe, a pipeline parallelism library that allows scaling any network that can be expressed as a sequence of layers. By pipelining different sub-sequences of layers on separate accelerators, GPipe provides the flexibility of scaling a variety of different networks to gigantic sizes efficiently. Moreover, GPipe utilizes a novel batch-splitting pipelining algorithm, resulting in almost linear speedup when a model is partitioned across multiple accelerators. We demonstrate the advantages of GPipe by training large-scale neural networks on two different tasks with distinct network architectures: (i) Image Classification: We train a 557-million-parameter AmoebaNet model and attain a top-1 accuracy of 84.4% on ImageNet-2012, (ii) Multilingual Neural Machine Translation: We train a single 6-billion-parameter, 128-layer Transformer model on a corpus spanning over 100 languages and achieve better quality than all bilingual models.

  • 11 authors
·
Nov 16, 2018

ChildDiffusion: Unlocking the Potential of Generative AI and Controllable Augmentations for Child Facial Data using Stable Diffusion and Large Language Models

In this research work we have proposed high-level ChildDiffusion framework capable of generating photorealistic child facial samples and further embedding several intelligent augmentations on child facial data using short text prompts, detailed textual guidance from LLMs, and further image to image transformation using text guidance control conditioning thus providing an opportunity to curate fully synthetic large scale child datasets. The framework is validated by rendering high-quality child faces representing ethnicity data, micro expressions, face pose variations, eye blinking effects, facial accessories, different hair colours and styles, aging, multiple and different child gender subjects in a single frame. Addressing privacy concerns regarding child data acquisition requires a comprehensive approach that involves legal, ethical, and technological considerations. Keeping this in view this framework can be adapted to synthesise child facial data which can be effectively used for numerous downstream machine learning tasks. The proposed method circumvents common issues encountered in generative AI tools, such as temporal inconsistency and limited control over the rendered outputs. As an exemplary use case we have open-sourced child ethnicity data consisting of 2.5k child facial samples of five different classes which includes African, Asian, White, South Asian/ Indian, and Hispanic races by deploying the model in production inference phase. The rendered data undergoes rigorous qualitative as well as quantitative tests to cross validate its efficacy and further fine-tuning Yolo architecture for detecting and classifying child ethnicity as an exemplary downstream machine learning task.

  • 3 authors
·
Jun 17, 2024

EdgeMoE: Fast On-Device Inference of MoE-based Large Language Models

Large Language Models (LLMs) such as GPTs and LLaMa have ushered in a revolution in machine intelligence, owing to their exceptional capabilities in a wide range of machine learning tasks. However, the transition of LLMs from data centers to edge devices presents a set of challenges and opportunities. While this shift can enhance privacy and availability, it is hampered by the enormous parameter sizes of these models, leading to impractical runtime costs. In light of these considerations, we introduce EdgeMoE, the first on-device inference engine tailored for mixture-of-expert (MoE) LLMs, a popular variant of sparse LLMs that exhibit nearly constant computational complexity as their parameter size scales. EdgeMoE achieves both memory and computational efficiency by strategically partitioning the model across the storage hierarchy. Specifically, non-expert weights are stored in the device's memory, while expert weights are kept in external storage and are fetched into memory only when they are activated. This design is underpinned by a crucial insight that expert weights, though voluminous, are infrequently accessed due to sparse activation patterns. To further mitigate the overhead associated with expert I/O swapping, EdgeMoE incorporates two innovative techniques: (1) Expert-wise bitwidth adaptation: This method reduces the size of expert weights with an acceptable level of accuracy loss. (2) Expert management: It predicts the experts that will be activated in advance and preloads them into the compute-I/O pipeline, thus further optimizing the process. In empirical evaluations conducted on well-established MoE LLMs and various edge devices, EdgeMoE demonstrates substantial memory savings and performance improvements when compared to competitive baseline solutions.

  • 6 authors
·
Aug 28, 2023

CURA: Size Isnt All You Need -- A Compact Universal Architecture for On-Device Intelligence

Existing on-device AI architectures for resource-constrained environments face two critical limitations: they lack compactness, with parameter requirements scaling proportionally to task complexity, and they exhibit poor generalizability, performing effectively only on specific application domains (e.g., models designed for regression tasks cannot adapt to natural language processing (NLP) applications). In this paper, we propose CURA, an architecture inspired by analog audio signal processing circuits that provides a compact and lightweight solution for diverse machine learning tasks across multiple domains. Our architecture offers three key advantages over existing approaches: (1) Compactness: it requires significantly fewer parameters regardless of task complexity; (2) Generalizability: it adapts seamlessly across regression, classification, complex NLP, and computer vision tasks; and (3) Complex pattern recognition: it can capture intricate data patterns while maintaining extremely low model complexity. We evaluated CURA across diverse datasets and domains. For compactness, it achieved equivalent accuracy using up to 2,500 times fewer parameters compared to baseline models. For generalizability, it demonstrated consistent performance across four NLP benchmarks and one computer vision dataset, nearly matching specialized existing models (achieving F1-scores up to 90%). Lastly, it delivers superior forecasting accuracy for complex patterns, achieving 1.6 times lower mean absolute error and 2.1 times lower mean squared error than competing models.

  • 3 authors
·
Sep 29

CheXpert Plus: Augmenting a Large Chest X-ray Dataset with Text Radiology Reports, Patient Demographics and Additional Image Formats

Since the release of the original CheXpert paper five years ago, CheXpert has become one of the most widely used and cited clinical AI datasets. The emergence of vision language models has sparked an increase in demands for sharing reports linked to CheXpert images, along with a growing interest among AI fairness researchers in obtaining demographic data. To address this, CheXpert Plus serves as a new collection of radiology data sources, made publicly available to enhance the scaling, performance, robustness, and fairness of models for all subsequent machine learning tasks in the field of radiology. CheXpert Plus is the largest text dataset publicly released in radiology, with a total of 36 million text tokens, including 13 million impression tokens. To the best of our knowledge, it represents the largest text de-identification effort in radiology, with almost 1 million PHI spans anonymized. It is only the second time that a large-scale English paired dataset has been released in radiology, thereby enabling, for the first time, cross-institution training at scale. All reports are paired with high-quality images in DICOM format, along with numerous image and patient metadata covering various clinical and socio-economic groups, as well as many pathology labels and RadGraph annotations. We hope this dataset will boost research for AI models that can further assist radiologists and help improve medical care. Data is available at the following URL: https://stanfordaimi.azurewebsites.net/datasets/5158c524-d3ab-4e02-96e9-6ee9efc110a1 Models are available at the following URL: https://github.com/Stanford-AIMI/chexpert-plus

  • 9 authors
·
May 29, 2024

8-bit Optimizers via Block-wise Quantization

Stateful optimizers maintain gradient statistics over time, e.g., the exponentially smoothed sum (SGD with momentum) or squared sum (Adam) of past gradient values. This state can be used to accelerate optimization compared to plain stochastic gradient descent but uses memory that might otherwise be allocated to model parameters, thereby limiting the maximum size of models trained in practice. In this paper, we develop the first optimizers that use 8-bit statistics while maintaining the performance levels of using 32-bit optimizer states. To overcome the resulting computational, quantization, and stability challenges, we develop block-wise dynamic quantization. Block-wise quantization divides input tensors into smaller blocks that are independently quantized. Each block is processed in parallel across cores, yielding faster optimization and high precision quantization. To maintain stability and performance, we combine block-wise quantization with two additional changes: (1) dynamic quantization, a form of non-linear optimization that is precise for both large and small magnitude values, and (2) a stable embedding layer to reduce gradient variance that comes from the highly non-uniform distribution of input tokens in language models. As a result, our 8-bit optimizers maintain 32-bit performance with a small fraction of the memory footprint on a range of tasks, including 1.5B parameter language modeling, GLUE finetuning, ImageNet classification, WMT'14 machine translation, MoCo v2 contrastive ImageNet pretraining+finetuning, and RoBERTa pretraining, without changes to the original optimizer hyperparameters. We open-source our 8-bit optimizers as a drop-in replacement that only requires a two-line code change.

  • 4 authors
·
Oct 6, 2021

On Expressivity and Trainability of Quadratic Networks

Inspired by the diversity of biological neurons, quadratic artificial neurons can play an important role in deep learning models. The type of quadratic neurons of our interest replaces the inner-product operation in the conventional neuron with a quadratic function. Despite promising results so far achieved by networks of quadratic neurons, there are important issues not well addressed. Theoretically, the superior expressivity of a quadratic network over either a conventional network or a conventional network via quadratic activation is not fully elucidated, which makes the use of quadratic networks not well grounded. Practically, although a quadratic network can be trained via generic backpropagation, it can be subject to a higher risk of collapse than the conventional counterpart. To address these issues, we first apply the spline theory and a measure from algebraic geometry to give two theorems that demonstrate better model expressivity of a quadratic network than the conventional counterpart with or without quadratic activation. Then, we propose an effective training strategy referred to as ReLinear to stabilize the training process of a quadratic network, thereby unleashing the full potential in its associated machine learning tasks. Comprehensive experiments on popular datasets are performed to support our findings and confirm the performance of quadratic deep learning. We have shared our code in https://github.com/FengleiFan/ReLinear.

  • 5 authors
·
Oct 12, 2021

MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering

We introduce MLE-Dojo, a Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents in iterative machine learning engineering (MLE) workflows. Unlike existing benchmarks that primarily rely on static datasets or single-attempt evaluations, MLE-Dojo provides an interactive environment enabling agents to iteratively experiment, debug, and refine solutions through structured feedback loops. Built upon 200+ real-world Kaggle challenges, MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios such as data processing, architecture search, hyperparameter tuning, and code debugging. Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning, facilitating iterative experimentation, realistic data sampling, and real-time outcome verification. Extensive evaluations of eight frontier LLMs reveal that while current models achieve meaningful iterative improvements, they still exhibit significant limitations in autonomously generating long-horizon solutions and efficiently resolving complex errors. Furthermore, MLE-Dojo's flexible and extensible architecture seamlessly integrates diverse data sources, tools, and evaluation protocols, uniquely enabling model-based agent tuning and promoting interoperability, scalability, and reproducibility. We open-source our framework and benchmarks to foster community-driven innovation towards next-generation MLE agents.

  • 11 authors
·
May 12 2

MachineLearningLM: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML

Large language models (LLMs) possess broad world knowledge and strong general-purpose reasoning ability, yet they struggle to learn from many in-context examples on standard machine learning (ML) tasks, that is, to leverage many-shot demonstrations purely via in-context learning (ICL) without gradient descent. We introduce MachineLearningLM, a portable continued-pretraining framework that equips a general-purpose LLM with robust in-context ML capability while preserving its general knowledge and reasoning for broader chat workflows. Our pretraining procedure synthesizes ML tasks from millions of structural causal models (SCMs), spanning shot counts up to 1,024. We begin with a random-forest teacher, distilling tree-based decision strategies into the LLM to strengthen robustness in numerical modeling. All tasks are serialized with a token-efficient prompt, enabling 3x to 6x more examples per context window and delivering up to 50x amortized throughput via batch inference. Despite a modest setup (Qwen-2.5-7B-Instruct with LoRA rank 8), MachineLearningLM outperforms strong LLM baselines (e.g., GPT-5-mini) by an average of about 15% on out-of-distribution tabular classification across finance, physics, biology, and healthcare domains. It exhibits a striking many-shot scaling law: accuracy increases monotonically as in-context demonstrations grow from 8 to 1,024. Without any task-specific training, it attains random-forest-level accuracy across hundreds of shots. General chat capabilities, including knowledge and reasoning, are preserved: it achieves 75.4% on MMLU.

  • 5 authors
·
Sep 8 8

What Did I Learn? Operational Competence Assessment for AI-Based Trajectory Planners

Automated driving functions increasingly rely on machine learning for tasks like perception and trajectory planning, requiring large, relevant datasets. The performance of these algorithms depends on how closely the training data matches the task. To ensure reliable functioning, it is crucial to know what is included in the dataset to assess the trained model's operational risk. We aim to enhance the safe use of machine learning in automated driving by developing a method to recognize situations that an automated vehicle has not been sufficiently trained on. This method also improves explainability by describing the dataset at a human-understandable level. We propose modeling driving data as knowledge graphs, representing driving scenes with entities and their relationships. These graphs are queried for specific sub-scene configurations to check their occurrence in the dataset. We estimate a vehicle's competence in a driving scene by considering the coverage and complexity of sub-scene configurations in the training set. Higher complexity scenes require greater coverage for high competence. We apply this method to the NuPlan dataset, modeling it with knowledge graphs and analyzing the coverage of specific driving scenes. This approach helps monitor the competence of machine learning models trained on the dataset, which is essential for trustworthy AI to be deployed in automated driving.

  • 4 authors
·
Oct 1

MLGym: A New Framework and Benchmark for Advancing AI Research Agents

We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing LLM agents on AI research tasks. This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents. MLGym-bench consists of 13 diverse and open-ended AI research tasks from diverse domains such as computer vision, natural language processing, reinforcement learning, and game theory. Solving these tasks requires real-world AI research skills such as generating new ideas and hypotheses, creating and processing data, implementing ML methods, training models, running experiments, analyzing the results, and iterating through this process to improve on a given task. We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro. Our MLGym framework makes it easy to add new tasks, integrate and evaluate models or agents, generate synthetic data at scale, as well as develop new learning algorithms for training agents on AI research tasks. We find that current frontier models can improve on the given baselines, usually by finding better hyperparameters, but do not generate novel hypotheses, algorithms, architectures, or substantial improvements. We open-source our framework and benchmark to facilitate future research in advancing the AI research capabilities of LLM agents.

SC2EGSet: StarCraft II Esport Replay and Game-state Dataset

As a relatively new form of sport, esports offers unparalleled data availability. Despite the vast amounts of data that are generated by game engines, it can be challenging to extract them and verify their integrity for the purposes of practical and scientific use. Our work aims to open esports to a broader scientific community by supplying raw and pre-processed files from StarCraft II esports tournaments. These files can be used in statistical and machine learning modeling tasks and related to various laboratory-based measurements (e.g., behavioral tests, brain imaging). We have gathered publicly available game-engine generated "replays" of tournament matches and performed data extraction and cleanup using a low-level application programming interface (API) parser library. Additionally, we open-sourced and published all the custom tools that were developed in the process of creating our dataset. These tools include PyTorch and PyTorch Lightning API abstractions to load and model the data. Our dataset contains replays from major and premiere StarCraft II tournaments since 2016. To prepare the dataset, we processed 55 tournament "replaypacks" that contained 17930 files with game-state information. Based on initial investigation of available StarCraft II datasets, we observed that our dataset is the largest publicly available source of StarCraft II esports data upon its publication. Analysis of the extracted data holds promise for further Artificial Intelligence (AI), Machine Learning (ML), psychological, Human-Computer Interaction (HCI), and sports-related studies in a variety of supervised and self-supervised tasks.

  • 8 authors
·
Jul 7, 2022

Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?

Kolmogorov-Arnold networks (KANs) are a remarkable innovation consisting of learnable activation functions with the potential to capture more complex relationships from data. Although KANs are useful in finding symbolic representations and continual learning of one-dimensional functions, their effectiveness in diverse machine learning (ML) tasks, such as vision, remains questionable. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep network architectures, including advanced architectures such as vision Transformers (ViTs). In this paper, we are the first to design a general learnable Kolmogorov-Arnold Attention (KArAt) for vanilla ViTs that can operate on any choice of basis. However, the computing and memory costs of training them motivated us to propose a more modular version, and we designed particular learnable attention, called Fourier-KArAt. Fourier-KArAt and its variants either outperform their ViT counterparts or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K datasets. We dissect these architectures' performance and generalization capacity by analyzing their loss landscapes, weight distributions, optimizer path, attention visualization, and spectral behavior, and contrast them with vanilla ViTs. The goal of this paper is not to produce parameter- and compute-efficient attention, but to encourage the community to explore KANs in conjunction with more advanced architectures that require a careful understanding of learnable activations. Our open-source code and implementation details are available on: https://subhajitmaity.me/KArAt

  • 4 authors
·
Mar 13 3

SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Progress toward the United Nations Sustainable Development Goals (SDGs) has been hindered by a lack of data on key environmental and socioeconomic indicators, which historically have come from ground surveys with sparse temporal and spatial coverage. Recent advances in machine learning have made it possible to utilize abundant, frequently-updated, and globally available data, such as from satellites or social media, to provide insights into progress toward SDGs. Despite promising early results, approaches to using such data for SDG measurement thus far have largely evaluated on different datasets or used inconsistent evaluation metrics, making it hard to understand whether performance is improving and where additional research would be most fruitful. Furthermore, processing satellite and ground survey data requires domain knowledge that many in the machine learning community lack. In this paper, we introduce SustainBench, a collection of 15 benchmark tasks across 7 SDGs, including tasks related to economic development, agriculture, health, education, water and sanitation, climate action, and life on land. Datasets for 11 of the 15 tasks are released publicly for the first time. Our goals for SustainBench are to (1) lower the barriers to entry for the machine learning community to contribute to measuring and achieving the SDGs; (2) provide standard benchmarks for evaluating machine learning models on tasks across a variety of SDGs; and (3) encourage the development of novel machine learning methods where improved model performance facilitates progress towards the SDGs.

  • 10 authors
·
Nov 8, 2021

Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for Autonomous Real-World Reinforcement Learning

The pre-train and fine-tune paradigm in machine learning has had dramatic success in a wide range of domains because the use of existing data or pre-trained models on the internet enables quick and easy learning of new tasks. We aim to enable this paradigm in robotic reinforcement learning, allowing a robot to learn a new task with little human effort by leveraging data and models from the Internet. However, reinforcement learning often requires significant human effort in the form of manual reward specification or environment resets, even if the policy is pre-trained. We introduce RoboFuME, a reset-free fine-tuning system that pre-trains a multi-task manipulation policy from diverse datasets of prior experiences and self-improves online to learn a target task with minimal human intervention. Our insights are to utilize calibrated offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy in the presence of distribution shifts and leverage pre-trained vision language models (VLMs) to build a robust reward classifier for autonomously providing reward signals during the online fine-tuning process. In a diverse set of five real robot manipulation tasks, we show that our method can incorporate data from an existing robot dataset collected at a different institution and improve on a target task within as little as 3 hours of autonomous real-world experience. We also demonstrate in simulation experiments that our method outperforms prior works that use different RL algorithms or different approaches for predicting rewards. Project website: https://robofume.github.io

  • 6 authors
·
Oct 23, 2023

Exploring Automated Code Evaluation Systems and Resources for Code Analysis: A Comprehensive Survey

The automated code evaluation system (AES) is mainly designed to reliably assess user-submitted code. Due to their extensive range of applications and the accumulation of valuable resources, AESs are becoming increasingly popular. Research on the application of AES and their real-world resource exploration for diverse coding tasks is still lacking. In this study, we conducted a comprehensive survey on AESs and their resources. This survey explores the application areas of AESs, available resources, and resource utilization for coding tasks. AESs are categorized into programming contests, programming learning and education, recruitment, online compilers, and additional modules, depending on their application. We explore the available datasets and other resources of these systems for research, analysis, and coding tasks. Moreover, we provide an overview of machine learning-driven coding tasks, such as bug detection, code review, comprehension, refactoring, search, representation, and repair. These tasks are performed using real-life datasets. In addition, we briefly discuss the Aizu Online Judge platform as a real example of an AES from the perspectives of system design (hardware and software), operation (competition and education), and research. This is due to the scalability of the AOJ platform (programming education, competitions, and practice), open internal features (hardware and software), attention from the research community, open source data (e.g., solution codes and submission documents), and transparency. We also analyze the overall performance of this system and the perceived challenges over the years.

  • 4 authors
·
Jul 8, 2023

On the Provable Advantage of Unsupervised Pretraining

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

  • 4 authors
·
Mar 2, 2023

Machine Learning with Multitype Protected Attributes: Intersectional Fairness through Regularisation

Ensuring equitable treatment (fairness) across protected attributes (such as gender or ethnicity) is a critical issue in machine learning. Most existing literature focuses on binary classification, but achieving fairness in regression tasks-such as insurance pricing or hiring score assessments-is equally important. Moreover, anti-discrimination laws also apply to continuous attributes, such as age, for which many existing methods are not applicable. In practice, multiple protected attributes can exist simultaneously; however, methods targeting fairness across several attributes often overlook so-called "fairness gerrymandering", thereby ignoring disparities among intersectional subgroups (e.g., African-American women or Hispanic men). In this paper, we propose a distance covariance regularisation framework that mitigates the association between model predictions and protected attributes, in line with the fairness definition of demographic parity, and that captures both linear and nonlinear dependencies. To enhance applicability in the presence of multiple protected attributes, we extend our framework by incorporating two multivariate dependence measures based on distance covariance: the previously proposed joint distance covariance (JdCov) and our novel concatenated distance covariance (CCdCov), which effectively address fairness gerrymandering in both regression and classification tasks involving protected attributes of various types. We discuss and illustrate how to calibrate regularisation strength, including a method based on Jensen-Shannon divergence, which quantifies dissimilarities in prediction distributions across groups. We apply our framework to the COMPAS recidivism dataset and a large motor insurance claims dataset.

  • 5 authors
·
Sep 9

Machine Learning Force Fields with Data Cost Aware Training

Machine learning force fields (MLFF) have been proposed to accelerate molecular dynamics (MD) simulation, which finds widespread applications in chemistry and biomedical research. Even for the most data-efficient MLFFs, reaching chemical accuracy can require hundreds of frames of force and energy labels generated by expensive quantum mechanical algorithms, which may scale as O(n^3) to O(n^7), with n proportional to the number of basis functions. To address this issue, we propose a multi-stage computational framework -- ASTEROID, which lowers the data cost of MLFFs by leveraging a combination of cheap inaccurate data and expensive accurate data. The motivation behind ASTEROID is that inaccurate data, though incurring large bias, can help capture the sophisticated structures of the underlying force field. Therefore, we first train a MLFF model on a large amount of inaccurate training data, employing a bias-aware loss function to prevent the model from overfitting tahe potential bias of this data. We then fine-tune the obtained model using a small amount of accurate training data, which preserves the knowledge learned from the inaccurate training data while significantly improving the model's accuracy. Moreover, we propose a variant of ASTEROID based on score matching for the setting where the inaccurate training data are unlabeled. Extensive experiments on MD datasets and downstream tasks validate the efficacy of ASTEROID. Our code and data are available at https://github.com/abukharin3/asteroid.

  • 7 authors
·
Jun 5, 2023