- End-to-end Lyrics Alignment for Polyphonic Music Using an Audio-to-Character Recognition Model Time-aligned lyrics can enrich the music listening experience by enabling karaoke, text-based song retrieval and intra-song navigation, and other applications. Compared to text-to-speech alignment, lyrics alignment remains highly challenging, despite many attempts to combine numerous sub-modules including vocal separation and detection in an effort to break down the problem. Furthermore, training required fine-grained annotations to be available in some form. Here, we present a novel system based on a modified Wave-U-Net architecture, which predicts character probabilities directly from raw audio using learnt multi-scale representations of the various signal components. There are no sub-modules whose interdependencies need to be optimized. Our training procedure is designed to work with weak, line-level annotations available in the real world. With a mean alignment error of 0.35s on a standard dataset our system outperforms the state-of-the-art by an order of magnitude. 3 authors · Feb 18, 2019
- AirCast: Improving Air Pollution Forecasting Through Multi-Variable Data Alignment Air pollution remains a leading global health risk, exacerbated by rapid industrialization and urbanization, contributing significantly to morbidity and mortality rates. In this paper, we introduce AirCast, a novel multi-variable air pollution forecasting model, by combining weather and air quality variables. AirCast employs a multi-task head architecture that simultaneously forecasts atmospheric conditions and pollutant concentrations, improving its understanding of how weather patterns affect air quality. Predicting extreme pollution events is challenging due to their rare occurrence in historic data, resulting in a heavy-tailed distribution of pollution levels. To address this, we propose a novel Frequency-weighted Mean Absolute Error (fMAE) loss, adapted from the class-balanced loss for regression tasks. Informed from domain knowledge, we investigate the selection of key variables known to influence pollution levels. Additionally, we align existing weather and chemical datasets across spatial and temporal dimensions. AirCast's integrated approach, combining multi-task learning, frequency weighted loss and domain informed variable selection, enables more accurate pollution forecasts. Our source code and models are made public here (https://github.com/vishalned/AirCast.git) 8 authors · Feb 25, 2025
1 MAGE: Multimodal Alignment and Generation Enhancement via Bridging Visual and Semantic Spaces In the latest advancements in multimodal learning, effectively addressing the spatial and semantic losses of visual data after encoding remains a critical challenge. This is because the performance of large multimodal models is positively correlated with the coupling between visual encoders and large language models. Existing approaches often face issues such as vector gaps or semantic disparities, resulting in information loss during the propagation process. To address these issues, we propose MAGE (Multimodal Alignment and Generation Enhancement), a novel framework that bridges the semantic spaces of vision and text through an innovative alignment mechanism. By introducing the Intelligent Alignment Network (IAN), MAGE achieves dimensional and semantic alignment. To reduce the gap between synonymous heterogeneous data, we employ a training strategy that combines cross-entropy and mean squared error, significantly enhancing the alignment effect. Moreover, to enhance MAGE's "Any-to-Any" capability, we developed a fine-tuning dataset for multimodal tool-calling instructions to expand the model's output capability boundaries. Finally, our proposed multimodal large model architecture, MAGE, achieved significantly better performance compared to similar works across various evaluation benchmarks, including MME, MMBench, and SEED. Complete code and appendix are available at: https://github.com/GTCOM-NLP/MAGE. 6 authors · Jul 29, 2025
- NeuFA: Neural Network Based End-to-End Forced Alignment with Bidirectional Attention Mechanism Although deep learning and end-to-end models have been widely used and shown superiority in automatic speech recognition (ASR) and text-to-speech (TTS) synthesis, state-of-the-art forced alignment (FA) models are still based on hidden Markov model (HMM). HMM has limited view of contextual information and is developed with long pipelines, leading to error accumulation and unsatisfactory performance. Inspired by the capability of attention mechanism in capturing long term contextual information and learning alignments in ASR and TTS, we propose a neural network based end-to-end forced aligner called NeuFA, in which a novel bidirectional attention mechanism plays an essential role. NeuFA integrates the alignment learning of both ASR and TTS tasks in a unified framework by learning bidirectional alignment information from a shared attention matrix in the proposed bidirectional attention mechanism. Alignments are extracted from the learnt attention weights and optimized by the ASR, TTS and FA tasks in a multi-task learning manner. Experimental results demonstrate the effectiveness of our proposed model, with mean absolute error on test set drops from 25.8 ms to 23.7 ms at word level, and from 17.0 ms to 15.7 ms at phoneme level compared with state-of-the-art HMM based model. 7 authors · Mar 31, 2022
- XM-ALIGN: Unified Cross-Modal Embedding Alignment for Face-Voice Association This paper introduces our solution, XM-ALIGN (Unified Cross-Modal Embedding Alignment Framework), proposed for the FAME challenge at ICASSP 2026. Our framework combines explicit and implicit alignment mechanisms, significantly improving cross-modal verification performance in both "heard" and "unheard" languages. By extracting feature embeddings from both face and voice encoders and jointly optimizing them using a shared classifier, we employ mean squared error (MSE) as the embedding alignment loss to ensure tight alignment between modalities. Additionally, data augmentation strategies are applied during model training to enhance generalization. Experimental results show that our approach demonstrates superior performance on the MAV-Celeb dataset. The code will be released at https://github.com/PunkMale/XM-ALIGN. 4 authors · Dec 7, 2025
- ViDAS: Vision-based Danger Assessment and Scoring We present a novel dataset aimed at advancing danger analysis and assessment by addressing the challenge of quantifying danger in video content and identifying how human-like a Large Language Model (LLM) evaluator is for the same. This is achieved by compiling a collection of 100 YouTube videos featuring various events. Each video is annotated by human participants who provided danger ratings on a scale from 0 (no danger to humans) to 10 (life-threatening), with precise timestamps indicating moments of heightened danger. Additionally, we leverage LLMs to independently assess the danger levels in these videos using video summaries. We introduce Mean Squared Error (MSE) scores for multimodal meta-evaluation of the alignment between human and LLM danger assessments. Our dataset not only contributes a new resource for danger assessment in video content but also demonstrates the potential of LLMs in achieving human-like evaluations. 7 authors · Oct 1, 2024