new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 10

Evaluation of OpenAI o1: Opportunities and Challenges of AGI

This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.

  • 78 authors
·
Sep 27, 2024

Unlock Predictable Scaling from Emergent Abilities

The scientific scale-up of large language models (LLMs) necessitates a comprehensive understanding of their scaling properties. However, the existing literature on the scaling properties only yields an incomplete answer: optimization loss decreases predictably as the model size increases, in line with established scaling law; yet no scaling law for task has been established and the task performances are far from predictable during scaling. Task performances typically show minor gains on small models until they improve dramatically once models exceed a size threshold, exemplifying the ``emergent abilities''. In this study, we discover that small models, although they exhibit minor performance, demonstrate critical and consistent task performance improvements that are not captured by conventional evaluation strategies due to insufficient measurement resolution. To measure such improvements, we introduce PassUntil, an evaluation strategy through massive sampling in the decoding phase. We conduct quantitative investigations into the scaling law of task performance. Firstly, a strict task scaling law is identified, enhancing the predictability of task performances. Remarkably, we are able to predict the performance of the 2.4B model on code generation with merely 0.05\% deviation before training starts. Secondly, underpinned by PassUntil, we observe concrete evidence of emergent abilities and ascertain that they are not in conflict with the continuity of performance improvement. Their semblance to break-through is that their scaling curve cannot be fitted by standard scaling law function. We then introduce a mathematical definition for the emergent abilities. Through the definition, we refute a prevalent ``multi-step reasoning hypothesis'' regarding the genesis of emergent abilities and propose a new hypothesis with a satisfying fit to the observed scaling curve.

  • 12 authors
·
Oct 4, 2023

R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization

Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility. Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation. In this paper, we propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization. RD-Agent(Q) decomposes the quant process into two iterative stages: a Research stage that dynamically sets goal-aligned prompts, formulates hypotheses based on domain priors, and maps them to concrete tasks, and a Development stage that employs a code-generation agent, Co-STEER, to implement task-specific code, which is then executed in real-market backtests. The two stages are connected through a feedback stage that thoroughly evaluates experimental outcomes and informs subsequent iterations, with a multi-armed bandit scheduler for adaptive direction selection. Empirically, RD-Agent(Q) achieves up to 2X higher annualized returns than classical factor libraries using 70% fewer factors, and outperforms state-of-the-art deep time-series models on real markets. Its joint factor-model optimization delivers a strong balance between predictive accuracy and strategy robustness. Our code is available at: https://github.com/microsoft/RD-Agent.

  • 7 authors
·
May 21

Quantitative Risk Management in Volatile Markets with an Expectile-Based Framework for the FTSE Index

This research presents a framework for quantitative risk management in volatile markets, specifically focusing on expectile-based methodologies applied to the FTSE 100 index. Traditional risk measures such as Value-at-Risk (VaR) have demonstrated significant limitations during periods of market stress, as evidenced during the 2008 financial crisis and subsequent volatile periods. This study develops an advanced expectile-based framework that addresses the shortcomings of conventional quantile-based approaches by providing greater sensitivity to tail losses and improved stability in extreme market conditions. The research employs a dataset spanning two decades of FTSE 100 returns, incorporating periods of high volatility, market crashes, and recovery phases. Our methodology introduces novel mathematical formulations for expectile regression models, enhanced threshold determination techniques using time series analysis, and robust backtesting procedures. The empirical results demonstrate that expectile-based Value-at-Risk (EVaR) consistently outperforms traditional VaR measures across various confidence levels and market conditions. The framework exhibits superior performance during volatile periods, with reduced model risk and enhanced predictive accuracy. Furthermore, the study establishes practical implementation guidelines for financial institutions and provides evidence-based recommendations for regulatory compliance and portfolio management. The findings contribute significantly to the literature on financial risk management and offer practical tools for practitioners dealing with volatile market environments.

  • 1 authors
·
Jul 16 1

AlphaEval: A Comprehensive and Efficient Evaluation Framework for Formula Alpha Mining

Formula alpha mining, which generates predictive signals from financial data, is critical for quantitative investment. Although various algorithmic approaches-such as genetic programming, reinforcement learning, and large language models-have significantly expanded the capacity for alpha discovery, systematic evaluation remains a key challenge. Existing evaluation metrics predominantly include backtesting and correlation-based measures. Backtesting is computationally intensive, inherently sequential, and sensitive to specific strategy parameters. Correlation-based metrics, though efficient, assess only predictive ability and overlook other crucial properties such as temporal stability, robustness, diversity, and interpretability. Additionally, the closed-source nature of most existing alpha mining models hinders reproducibility and slows progress in this field. To address these issues, we propose AlphaEval, a unified, parallelizable, and backtest-free evaluation framework for automated alpha mining models. AlphaEval assesses the overall quality of generated alphas along five complementary dimensions: predictive power, stability, robustness to market perturbations, financial logic, and diversity. Extensive experiments across representative alpha mining algorithms demonstrate that AlphaEval achieves evaluation consistency comparable to comprehensive backtesting, while providing more comprehensive insights and higher efficiency. Furthermore, AlphaEval effectively identifies superior alphas compared to traditional single-metric screening approaches. All implementations and evaluation tools are open-sourced to promote reproducibility and community engagement.

  • 9 authors
·
Aug 10

Deep Reinforcement Learning for Quantitative Trading

Artificial Intelligence (AI) and Machine Learning (ML) are transforming the domain of Quantitative Trading (QT) through the deployment of advanced algorithms capable of sifting through extensive financial datasets to pinpoint lucrative investment openings. AI-driven models, particularly those employing ML techniques such as deep learning and reinforcement learning, have shown great prowess in predicting market trends and executing trades at a speed and accuracy that far surpass human capabilities. Its capacity to automate critical tasks, such as discerning market conditions and executing trading strategies, has been pivotal. However, persistent challenges exist in current QT methods, especially in effectively handling noisy and high-frequency financial data. Striking a balance between exploration and exploitation poses another challenge for AI-driven trading agents. To surmount these hurdles, our proposed solution, QTNet, introduces an adaptive trading model that autonomously formulates QT strategies through an intelligent trading agent. Incorporating deep reinforcement learning (DRL) with imitative learning methodologies, we bolster the proficiency of our model. To tackle the challenges posed by volatile financial datasets, we conceptualize the QT mechanism within the framework of a Partially Observable Markov Decision Process (POMDP). Moreover, by embedding imitative learning, the model can capitalize on traditional trading tactics, nurturing a balanced synergy between discovery and utilization. For a more realistic simulation, our trading agent undergoes training using minute-frequency data sourced from the live financial market. Experimental findings underscore the model's proficiency in extracting robust market features and its adaptability to diverse market conditions.

  • 5 authors
·
Dec 25, 2023

Generating Synergistic Formulaic Alpha Collections via Reinforcement Learning

In the field of quantitative trading, it is common practice to transform raw historical stock data into indicative signals for the market trend. Such signals are called alpha factors. Alphas in formula forms are more interpretable and thus favored by practitioners concerned with risk. In practice, a set of formulaic alphas is often used together for better modeling precision, so we need to find synergistic formulaic alpha sets that work well together. However, most traditional alpha generators mine alphas one by one separately, overlooking the fact that the alphas would be combined later. In this paper, we propose a new alpha-mining framework that prioritizes mining a synergistic set of alphas, i.e., it directly uses the performance of the downstream combination model to optimize the alpha generator. Our framework also leverages the strong exploratory capabilities of reinforcement learning~(RL) to better explore the vast search space of formulaic alphas. The contribution to the combination models' performance is assigned to be the return used in the RL process, driving the alpha generator to find better alphas that improve upon the current set. Experimental evaluations on real-world stock market data demonstrate both the effectiveness and the efficiency of our framework for stock trend forecasting. The investment simulation results show that our framework is able to achieve higher returns compared to previous approaches.

  • 7 authors
·
May 25, 2023

A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market

Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.

  • 3 authors
·
Dec 24, 2024

Biases in Expected Goals Models Confound Finishing Ability

Expected Goals (xG) has emerged as a popular tool for evaluating finishing skill in soccer analytics. It involves comparing a player's cumulative xG with their actual goal output, where consistent overperformance indicates strong finishing ability. However, the assessment of finishing skill in soccer using xG remains contentious due to players' difficulty in consistently outperforming their cumulative xG. In this paper, we aim to address the limitations and nuances surrounding the evaluation of finishing skill using xG statistics. Specifically, we explore three hypotheses: (1) the deviation between actual and expected goals is an inadequate metric due to the high variance of shot outcomes and limited sample sizes, (2) the inclusion of all shots in cumulative xG calculation may be inappropriate, and (3) xG models contain biases arising from interdependencies in the data that affect skill measurement. We found that sustained overperformance of cumulative xG requires both high shot volumes and exceptional finishing, including all shot types can obscure the finishing ability of proficient strikers, and that there is a persistent bias that makes the actual and expected goals closer for excellent finishers than it really is. Overall, our analysis indicates that we need more nuanced quantitative approaches for investigating a player's finishing ability, which we achieved using a technique from AI fairness to learn an xG model that is calibrated for multiple subgroups of players. As a concrete use case, we show that (1) the standard biased xG model underestimates Messi's GAX by 17% and (2) Messi's GAX is 27% higher than the typical elite high-shot-volume attacker, indicating that Messi is even a more exceptional finisher than people commonly believed.

  • 2 authors
·
Jan 18, 2024

Do LLM Agents Have Regret? A Case Study in Online Learning and Games

Large language models (LLMs) have been increasingly employed for (interactive) decision-making, via the development of LLM-based autonomous agents. Despite their emerging successes, the performance of LLM agents in decision-making has not been fully investigated through quantitative metrics, especially in the multi-agent setting when they interact with each other, a typical scenario in real-world LLM-agent applications. To better understand the limits of LLM agents in these interactive environments, we propose to study their interactions in benchmark decision-making settings in online learning and game theory, through the performance metric of regret. We first empirically study the {no-regret} behaviors of LLMs in canonical (non-stationary) online learning problems, as well as the emergence of equilibria when LLM agents interact through playing repeated games. We then provide some theoretical insights into the no-regret behaviors of LLM agents, under certain assumptions on the supervised pre-training and the rationality model of human decision-makers who generate the data. Notably, we also identify (simple) cases where advanced LLMs such as GPT-4 fail to be no-regret. To promote the no-regret behaviors, we propose a novel unsupervised training loss of regret-loss, which, in contrast to the supervised pre-training loss, does not require the labels of (optimal) actions. We then establish the statistical guarantee of generalization bound for regret-loss minimization, followed by the optimization guarantee that minimizing such a loss may automatically lead to known no-regret learning algorithms. Our further experiments demonstrate the effectiveness of our regret-loss, especially in addressing the above ``regrettable'' cases.

  • 4 authors
·
Mar 25, 2024

Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies

This paper presents a dynamic cryptocurrency portfolio optimization strategy that integrates technical indicators and sentiment analysis to enhance investment decision-making. The proposed method employs the 14-day Relative Strength Index (RSI) and 14-day Simple Moving Average (SMA) to capture market momentum, while sentiment scores are extracted from news articles using the VADER (Valence Aware Dictionary and sEntiment Reasoner) model, with compound scores quantifying overall market tone. The large language model Google Gemini is used to further verify the sentiment scores predicted by VADER and give investment decisions. These technical indicator and sentiment signals are incorporated into the expected return estimates before applying mean-variance optimization with constraints on asset weights. The strategy is evaluated through a rolling-window backtest over cryptocurrency market data, with Bitcoin (BTC) and an equal-weighted portfolio of selected cryptocurrencies serving as benchmarks. Experimental results show that the proposed approach achieves a cumulative return of 38.72, substantially exceeding Bitcoin's 8.85 and the equal-weighted portfolio's 21.65 over the same period, and delivers a higher Sharpe ratio (1.1093 vs. 0.8853 and 1.0194, respectively). However, the strategy exhibits a larger maximum drawdown (-18.52%) compared to Bitcoin (-4.48%) and the equal-weighted portfolio (-11.02%), indicating higher short-term downside risk. These results highlight the potential of combining sentiment and technical signals to improve cryptocurrency portfolio performance, while also emphasizing the need to address risk exposure in volatile markets.

  • 1 authors
·
Aug 22

Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)

The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [1]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data.

  • 3 authors
·
Nov 17, 2023

QuantAgent: Price-Driven Multi-Agent LLMs for High-Frequency Trading

Recent advances in Large Language Models (LLMs) have demonstrated impressive capabilities in financial reasoning and market understanding. Multi-agent LLM frameworks such as TradingAgent and FINMEM augment these models to long-horizon investment tasks, leveraging fundamental and sentiment-based inputs for strategic decision-making. However, such systems are ill-suited for the high-speed, precision-critical demands of High-Frequency Trading (HFT). HFT requires rapid, risk-aware decisions based on structured, short-horizon signals, including technical indicators, chart patterns, and trend-based features, distinct from the long-term semantic reasoning typical of traditional financial LLM applications. To this end, we introduce QuantAgent, the first multi-agent LLM framework explicitly designed for high-frequency algorithmic trading. The system decomposes trading into four specialized agents, Indicator, Pattern, Trend, and Risk, each equipped with domain-specific tools and structured reasoning capabilities to capture distinct aspects of market dynamics over short temporal windows. In zero-shot evaluations across ten financial instruments, including Bitcoin and Nasdaq futures, QuantAgent demonstrates superior performance in both predictive accuracy and cumulative return over 4-hour trading intervals, outperforming strong neural and rule-based baselines. Our findings suggest that combining structured financial priors with language-native reasoning unlocks new potential for traceable, real-time decision systems in high-frequency financial markets.

  • 5 authors
·
Sep 12 3

Advancing Investment Frontiers: Industry-grade Deep Reinforcement Learning for Portfolio Optimization

This research paper delves into the application of Deep Reinforcement Learning (DRL) in asset-class agnostic portfolio optimization, integrating industry-grade methodologies with quantitative finance. At the heart of this integration is our robust framework that not only merges advanced DRL algorithms with modern computational techniques but also emphasizes stringent statistical analysis, software engineering and regulatory compliance. To the best of our knowledge, this is the first study integrating financial Reinforcement Learning with sim-to-real methodologies from robotics and mathematical physics, thus enriching our frameworks and arguments with this unique perspective. Our research culminates with the introduction of AlphaOptimizerNet, a proprietary Reinforcement Learning agent (and corresponding library). Developed from a synthesis of state-of-the-art (SOTA) literature and our unique interdisciplinary methodology, AlphaOptimizerNet demonstrates encouraging risk-return optimization across various asset classes with realistic constraints. These preliminary results underscore the practical efficacy of our frameworks. As the finance sector increasingly gravitates towards advanced algorithmic solutions, our study bridges theoretical advancements with real-world applicability, offering a template for ensuring safety and robust standards in this technologically driven future.

  • 2 authors
·
Feb 27, 2024

A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits

This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization. While recent literature has established Deep Hedging as a data-driven alternative to traditional risk management strategies, the computational burden of training neural networks with first-order methods remains a significant impediment to practical implementation. The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization, specifically addressing the challenges of sequential financial data and curvature estimation in recurrent networks. Empirical validation using simulated paths from a calibrated Heston stochastic volatility model demonstrates that the K-FAC implementation achieves marked improvements in convergence dynamics and hedging efficacy. The methodology yields a 78.3% reduction in transaction costs (t = 56.88, p < 0.001) and a 34.4% decrease in profit and loss (P&L) variance compared to Adam optimization. Moreover, the K-FAC-enhanced model exhibits superior risk-adjusted performance with a Sharpe ratio of 0.0401, contrasting with -0.0025 for the baseline model. These results provide compelling evidence that second-order optimization methods can materially enhance the tractability of Deep Hedging implementations. The findings contribute to the growing literature on computational methods in quantitative finance while highlighting the potential for advanced optimization techniques to bridge the gap between theoretical frameworks and practical applications in financial markets.

  • 1 authors
·
Nov 22, 2024

Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates

Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.

  • 3 authors
·
Nov 30, 2022

Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms

This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.

  • 1 authors
·
Jun 5, 2024

Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices

This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data.

  • 3 authors
·
Sep 27, 2023

Flexible Model Aggregation for Quantile Regression

Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.

  • 5 authors
·
Feb 26, 2021

MM-DREX: Multimodal-Driven Dynamic Routing of LLM Experts for Financial Trading

The inherent non-stationarity of financial markets and the complexity of multi-modal information pose significant challenges to existing quantitative trading models. Traditional methods relying on fixed structures and unimodal data struggle to adapt to market regime shifts, while large language model (LLM)-driven solutions - despite their multi-modal comprehension - suffer from static strategies and homogeneous expert designs, lacking dynamic adjustment and fine-grained decision mechanisms. To address these limitations, we propose MM-DREX: a Multimodal-driven, Dynamically-Routed EXpert framework based on large language models. MM-DREX explicitly decouples market state perception from strategy execution to enable adaptive sequential decision-making in non-stationary environments. Specifically, it (1) introduces a vision-language model (VLM)-powered dynamic router that jointly analyzes candlestick chart patterns and long-term temporal features to allocate real-time expert weights; (2) designs four heterogeneous trading experts (trend, reversal, breakout, positioning) generating specialized fine-grained sub-strategies; and (3) proposes an SFT-RL hybrid training paradigm to synergistically optimize the router's market classification capability and experts' risk-adjusted decision-making. Extensive experiments on multi-modal datasets spanning stocks, futures, and cryptocurrencies demonstrate that MM-DREX significantly outperforms 15 baselines (including state-of-the-art financial LLMs and deep reinforcement learning models) across key metrics: total return, Sharpe ratio, and maximum drawdown, validating its robustness and generalization. Additionally, an interpretability module traces routing logic and expert behavior in real time, providing an audit trail for strategy transparency.

  • 9 authors
·
Sep 5

Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis

We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.

  • 2 authors
·
Feb 20

Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach

Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a 'Hold' option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.

  • 10 authors
·
Aug 13, 2024

A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist

Financial trading is a crucial component of the markets, informed by a multimodal information landscape encompassing news, prices, and Kline charts, and encompasses diverse tasks such as quantitative trading and high-frequency trading with various assets. While advanced AI techniques like deep learning and reinforcement learning are extensively utilized in finance, their application in financial trading tasks often faces challenges due to inadequate handling of multimodal data and limited generalizability across various tasks. To address these challenges, we present FinAgent, a multimodal foundational agent with tool augmentation for financial trading. FinAgent's market intelligence module processes a diverse range of data-numerical, textual, and visual-to accurately analyze the financial market. Its unique dual-level reflection module not only enables rapid adaptation to market dynamics but also incorporates a diversified memory retrieval system, enhancing the agent's ability to learn from historical data and improve decision-making processes. The agent's emphasis on reasoning for actions fosters trust in its financial decisions. Moreover, FinAgent integrates established trading strategies and expert insights, ensuring that its trading approaches are both data-driven and rooted in sound financial principles. With comprehensive experiments on 6 financial datasets, including stocks and Crypto, FinAgent significantly outperforms 9 state-of-the-art baselines in terms of 6 financial metrics with over 36% average improvement on profit. Specifically, a 92.27% return (a 84.39% relative improvement) is achieved on one dataset. Notably, FinAgent is the first advanced multimodal foundation agent designed for financial trading tasks.

  • 13 authors
·
Feb 28, 2024

StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?

Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.

Technical Report: Full-Stack Fine-Tuning for the Q Programming Language

Even though large language models are becoming increasingly capable, it is still unreasonable to expect them to excel at tasks that are under-represented on the Internet. Leveraging LLMs for specialized applications, particularly in niche programming languages and private domains, remains challenging and largely unsolved. In this work, we address this gap by presenting a comprehensive, open-source approach for adapting LLMs to the Q programming language, a popular tool in quantitative finance that is much less present on the Internet compared to Python, C, Java, and other ``mainstream" languages and is therefore not a strong suit of general-purpose AI models. We introduce a new Leetcode style evaluation dataset for Q, benchmark major frontier models on the dataset, then do pretraining, supervised fine tuning, and reinforcement learning to train a suite of reasoning and non-reasoning models based on the Qwen-2.5 series, spanning five parameter sizes (1.5B, 3B, 7B, 14B, 32B). Our best model achieves a pass@1 accuracy of 59 percent on our Q benchmark, surpassing the best-performing frontier model, Claude Opus-4 by 29.5 percent. Additionally, all models, even our 1.5B model, outperform GPT-4.1 on this task. In addition to releasing models, code, and data, we provide a detailed blueprint for dataset construction, model pretraining, supervised fine-tuning, and reinforcement learning. Our methodology is broadly applicable, and we discuss how these techniques can be extended to other tasks, including those where evaluation may rely on soft or subjective signals.

Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning

Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.

  • 6 authors
·
Sep 14

Harnessing Deep Q-Learning for Enhanced Statistical Arbitrage in High-Frequency Trading: A Comprehensive Exploration

The realm of High-Frequency Trading (HFT) is characterized by rapid decision-making processes that capitalize on fleeting market inefficiencies. As the financial markets become increasingly competitive, there is a pressing need for innovative strategies that can adapt and evolve with changing market dynamics. Enter Reinforcement Learning (RL), a branch of machine learning where agents learn by interacting with their environment, making it an intriguing candidate for HFT applications. This paper dives deep into the integration of RL in statistical arbitrage strategies tailored for HFT scenarios. By leveraging the adaptive learning capabilities of RL, we explore its potential to unearth patterns and devise trading strategies that traditional methods might overlook. We delve into the intricate exploration-exploitation trade-offs inherent in RL and how they manifest in the volatile world of HFT. Furthermore, we confront the challenges of applying RL in non-stationary environments, typical of financial markets, and investigate methodologies to mitigate associated risks. Through extensive simulations and backtests, our research reveals that RL not only enhances the adaptability of trading strategies but also shows promise in improving profitability metrics and risk-adjusted returns. This paper, therefore, positions RL as a pivotal tool for the next generation of HFT-based statistical arbitrage, offering insights for both researchers and practitioners in the field.

  • 1 authors
·
Sep 13, 2023

PreBit -- A multimodal model with Twitter FinBERT embeddings for extreme price movement prediction of Bitcoin

Bitcoin, with its ever-growing popularity, has demonstrated extreme price volatility since its origin. This volatility, together with its decentralised nature, make Bitcoin highly subjective to speculative trading as compared to more traditional assets. In this paper, we propose a multimodal model for predicting extreme price fluctuations. This model takes as input a variety of correlated assets, technical indicators, as well as Twitter content. In an in-depth study, we explore whether social media discussions from the general public on Bitcoin have predictive power for extreme price movements. A dataset of 5,000 tweets per day containing the keyword `Bitcoin' was collected from 2015 to 2021. This dataset, called PreBit, is made available online. In our hybrid model, we use sentence-level FinBERT embeddings, pretrained on financial lexicons, so as to capture the full contents of the tweets and feed it to the model in an understandable way. By combining these embeddings with a Convolutional Neural Network, we built a predictive model for significant market movements. The final multimodal ensemble model includes this NLP model together with a model based on candlestick data, technical indicators and correlated asset prices. In an ablation study, we explore the contribution of the individual modalities. Finally, we propose and backtest a trading strategy based on the predictions of our models with varying prediction threshold and show that it can used to build a profitable trading strategy with a reduced risk over a `hold' or moving average strategy.

  • 2 authors
·
May 30, 2022

Navigating the Alpha Jungle: An LLM-Powered MCTS Framework for Formulaic Factor Mining

Alpha factor mining is pivotal in quantitative investment for identifying predictive signals from complex financial data. While traditional formulaic alpha mining relies on human expertise, contemporary automated methods, such as those based on genetic programming or reinforcement learning, often struggle with search inefficiency or yield alpha factors that are difficult to interpret. This paper introduces a novel framework that integrates Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS) to overcome these limitations. Our framework leverages the LLM's instruction-following and reasoning capability to iteratively generate and refine symbolic alpha formulas within an MCTS-driven exploration. A key innovation is the guidance of MCTS exploration by rich, quantitative feedback from financial backtesting of each candidate factor, enabling efficient navigation of the vast search space. Furthermore, a frequent subtree avoidance mechanism is introduced to enhance search diversity and prevent formulaic homogenization, further improving performance. Experimental results on real-world stock market data demonstrate that our LLM-based framework outperforms existing methods by mining alphas with superior predictive accuracy and trading performance. The resulting formulas are also more amenable to human interpretation, establishing a more effective and efficient paradigm for formulaic alpha mining.

  • 3 authors
·
May 16

NumHTML: Numeric-Oriented Hierarchical Transformer Model for Multi-task Financial Forecasting

Financial forecasting has been an important and active area of machine learning research because of the challenges it presents and the potential rewards that even minor improvements in prediction accuracy or forecasting may entail. Traditionally, financial forecasting has heavily relied on quantitative indicators and metrics derived from structured financial statements. Earnings conference call data, including text and audio, is an important source of unstructured data that has been used for various prediction tasks using deep earning and related approaches. However, current deep learning-based methods are limited in the way that they deal with numeric data; numbers are typically treated as plain-text tokens without taking advantage of their underlying numeric structure. This paper describes a numeric-oriented hierarchical transformer model to predict stock returns, and financial risk using multi-modal aligned earnings calls data by taking advantage of the different categories of numbers (monetary, temporal, percentages etc.) and their magnitude. We present the results of a comprehensive evaluation of NumHTML against several state-of-the-art baselines using a real-world publicly available dataset. The results indicate that NumHTML significantly outperforms the current state-of-the-art across a variety of evaluation metrics and that it has the potential to offer significant financial gains in a practical trading context.

  • 5 authors
·
Jan 5, 2022

TRADES: Generating Realistic Market Simulations with Diffusion Models

Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.

  • 3 authors
·
Jan 31

InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning

We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.

  • 3 authors
·
Sep 14, 2023

Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation

Off-Policy Evaluation (OPE) aims to assess the effectiveness of counterfactual policies using only offline logged data and is often used to identify the top-k promising policies for deployment in online A/B tests. Existing evaluation metrics for OPE estimators primarily focus on the "accuracy" of OPE or that of downstream policy selection, neglecting risk-return tradeoff in the subsequent online policy deployment. To address this issue, we draw inspiration from portfolio evaluation in finance and develop a new metric, called SharpeRatio@k, which measures the risk-return tradeoff of policy portfolios formed by an OPE estimator under varying online evaluation budgets (k). We validate our metric in two example scenarios, demonstrating its ability to effectively distinguish between low-risk and high-risk estimators and to accurately identify the most efficient one. Efficiency of an estimator is characterized by its capability to form the most advantageous policy portfolios, maximizing returns while minimizing risks during online deployment, a nuance that existing metrics typically overlook. To facilitate a quick, accurate, and consistent evaluation of OPE via SharpeRatio@k, we have also integrated this metric into an open-source software, SCOPE-RL (https://github.com/hakuhodo-technologies/scope-rl). Employing SharpeRatio@k and SCOPE-RL, we conduct comprehensive benchmarking experiments on various estimators and RL tasks, focusing on their risk-return tradeoff. These experiments offer several interesting directions and suggestions for future OPE research.

  • 6 authors
·
Nov 29, 2023

Investigating generalization capabilities of neural networks by means of loss landscapes and Hessian analysis

This paper studies generalization capabilities of neural networks (NNs) using new and improved PyTorch library Loss Landscape Analysis (LLA). LLA facilitates visualization and analysis of loss landscapes along with the properties of NN Hessian. Different approaches to NN loss landscape plotting are discussed with particular focus on normalization techniques showing that conventional methods cannot always ensure correct visualization when batch normalization layers are present in NN architecture. The use of Hessian axes is shown to be able to mitigate this effect, and methods for choosing Hessian axes are proposed. In addition, spectra of Hessian eigendecomposition are studied and it is shown that typical spectra exist for a wide range of NNs. This allows to propose quantitative criteria for Hessian analysis that can be applied to evaluate NN performance and assess its generalization capabilities. Generalization experiments are conducted using ImageNet-1K pre-trained models along with several models trained as part of this study. The experiment include training models on one dataset and testing on another one to maximize experiment similarity to model performance in the Wild. It is shown that when datasets change, the changes in criteria correlate with the changes in accuracy, making the proposed criteria a computationally efficient estimate of generalization ability, which is especially useful for extremely large datasets.

  • 1 authors
·
Dec 13, 2024

Toward quantitative fractography using convolutional neural networks

The science of fractography revolves around the correlation between topographic characteristics of the fracture surface and the mechanisms and external conditions leading to their creation. While being a topic of investigation for centuries, it has remained mostly qualitative to date. A quantitative analysis of fracture surfaces is of prime interest for both the scientific community and the industrial sector, bearing the potential for improved understanding on the mechanisms controlling the fracture process and at the same time assessing the reliability of computational models currently being used for material design. With new advances in the field of image analysis, and specifically with machine learning tools becoming more accessible and reliable, it is now feasible to automate the process of extracting meaningful information from fracture surface images. Here, we propose a method of identifying and quantifying the relative appearance of intergranular and transgranular fracture events from scanning electron microscope images. The newly proposed method is based on a convolutional neural network algorithm for semantic segmentation. The proposed method is extensively tested and evaluated against two ceramic material systems (Al_2O_3,MgAl_2O_4) and shows high prediction accuracy, despite being trained on only one material system (MgAl_2O_4). While here attention is focused on brittle fracture characteristics, the method can be easily extended to account for other fracture morphologies, such as dimples, fatigue striations, etc.

  • 3 authors
·
Aug 1, 2019

Relationship between pulmonary nodule malignancy and surrounding pleurae, airways and vessels: a quantitative study using the public LIDC-IDRI dataset

To investigate whether the pleurae, airways and vessels surrounding a nodule on non-contrast computed tomography (CT) can discriminate benign and malignant pulmonary nodules. The LIDC-IDRI dataset, one of the largest publicly available CT database, was exploited for study. A total of 1556 nodules from 694 patients were involved in statistical analysis, where nodules with average scorings <3 and >3 were respectively denoted as benign and malignant. Besides, 339 nodules from 113 patients with diagnosis ground-truth were independently evaluated. Computer algorithms were developed to segment pulmonary structures and quantify the distances to pleural surface, airways and vessels, as well as the counting number and normalized volume of airways and vessels near a nodule. Odds ratio (OR) and Chi-square (\chi^2) testing were performed to demonstrate the correlation between features of surrounding structures and nodule malignancy. A non-parametric receiver operating characteristic (ROC) analysis was conducted in logistic regression to evaluate discrimination ability of each structure. For benign and malignant groups, the average distances from nodules to pleural surface, airways and vessels are respectively (6.56, 5.19), (37.08, 26.43) and (1.42, 1.07) mm. The correlation between nodules and the counting number of airways and vessels that contact or project towards nodules are respectively (OR=22.96, \chi^2=105.04) and (OR=7.06, \chi^2=290.11). The correlation between nodules and the volume of airways and vessels are (OR=9.19, \chi^2=159.02) and (OR=2.29, \chi^2=55.89). The areas-under-curves (AUCs) for pleurae, airways and vessels are respectively 0.5202, 0.6943 and 0.6529. Our results show that malignant nodules are often surrounded by more pulmonary structures compared with benign ones, suggesting that features of these structures could be viewed as lung cancer biomarkers.

  • 8 authors
·
Jun 24, 2021

MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration

Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing, demonstrating exceptional capabilities in reasoning, tool usage, and memory. As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework that captures their abilities in reasoning, planning, collaboration, and more. This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize games such as Chameleon and Undercover, alongside game theory scenarios like Cost Sharing, Multi-player Prisoner's Dilemma, and Public Good, to create diverse testing environments. Our framework is fortified with the Probabilistic Graphical Modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. The benchmark evaluates seven multi-agent systems powered by different LLMs, quantitatively highlighting a significant capability gap over threefold between the strongest, GPT-4, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the inherent abilities of all selected models by 50% on average. Our codes are released here https://github.com/cathyxl/MAgIC.

  • 8 authors
·
Nov 14, 2023

Cross-Modality Investigation on WESAD Stress Classification

Deep learning's growing prevalence has driven its widespread use in healthcare, where AI and sensor advancements enhance diagnosis, treatment, and monitoring. In mobile health, AI-powered tools enable early diagnosis and continuous monitoring of conditions like stress. Wearable technologies and multimodal physiological data have made stress detection increasingly viable, but model efficacy depends on data quality, quantity, and modality. This study develops transformer models for stress detection using the WESAD dataset, training on electrocardiograms (ECG), electrodermal activity (EDA), electromyography (EMG), respiration rate (RESP), temperature (TEMP), and 3-axis accelerometer (ACC) signals. The results demonstrate the effectiveness of single-modality transformers in analyzing physiological signals, achieving state-of-the-art performance with accuracy, precision and recall values in the range of 99.73% to 99.95% for stress detection. Furthermore, this study explores cross-modal performance and also explains the same using 2D visualization of the learned embedding space and quantitative analysis based on data variance. Despite the large body of work on stress detection and monitoring, the robustness and generalization of these models across different modalities has not been explored. This research represents one of the initial efforts to interpret embedding spaces for stress detection, providing valuable information on cross-modal performance.

  • 2 authors
·
Feb 25

MIST: Mutual Information Via Supervised Training

We propose a fully data-driven approach to designing mutual information (MI) estimators. Since any MI estimator is a function of the observed sample from two random variables, we parameterize this function with a neural network (MIST) and train it end-to-end to predict MI values. Training is performed on a large meta-dataset of 625,000 synthetic joint distributions with known ground-truth MI. To handle variable sample sizes and dimensions, we employ a two-dimensional attention scheme ensuring permutation invariance across input samples. To quantify uncertainty, we optimize a quantile regression loss, enabling the estimator to approximate the sampling distribution of MI rather than return a single point estimate. This research program departs from prior work by taking a fully empirical route, trading universal theoretical guarantees for flexibility and efficiency. Empirically, the learned estimators largely outperform classical baselines across sample sizes and dimensions, including on joint distributions unseen during training. The resulting quantile-based intervals are well-calibrated and more reliable than bootstrap-based confidence intervals, while inference is orders of magnitude faster than existing neural baselines. Beyond immediate empirical gains, this framework yields trainable, fully differentiable estimators that can be embedded into larger learning pipelines. Moreover, exploiting MI's invariance to invertible transformations, meta-datasets can be adapted to arbitrary data modalities via normalizing flows, enabling flexible training for diverse target meta-distributions.

  • 5 authors
·
Nov 24 2

Feature Learning for Stock Price Prediction Shows a Significant Role of Analyst Rating

To reject the Efficient Market Hypothesis a set of 5 technical indicators and 23 fundamental indicators was identified to establish the possibility of generating excess returns on the stock market. Leveraging these data points and various classification machine learning models, trading data of the 505 equities on the US S&P500 over the past 20 years was analysed to develop a classifier effective for our cause. From any given day, we were able to predict the direction of change in price by 1% up to 10 days in the future. The predictions had an overall accuracy of 83.62% with a precision of 85% for buy signals and a recall of 100% for sell signals. Moreover, we grouped equities by their sector and repeated the experiment to see if grouping similar assets together positively effected the results but concluded that it showed no significant improvements in the performance rejecting the idea of sector-based analysis. Also, using feature ranking we could identify an even smaller set of 6 indicators while maintaining similar accuracies as that from the original 28 features and also uncovered the importance of buy, hold and sell analyst ratings as they came out to be the top contributors in the model. Finally, to evaluate the effectiveness of the classifier in real-life situations, it was backtested on FAANG equities using a modest trading strategy where it generated high returns of above 60% over the term of the testing dataset. In conclusion, our proposed methodology with the combination of purposefully picked features shows an improvement over the previous studies, and our model predicts the direction of 1% price changes on the 10th day with high confidence and with enough buffer to even build a robotic trading system.

  • 2 authors
·
Mar 12, 2021

Reasoning Paths with Reference Objects Elicit Quantitative Spatial Reasoning in Large Vision-Language Models

Despite recent advances demonstrating vision-language models' (VLMs) abilities to describe complex relationships in images using natural language, their capability to quantitatively reason about object sizes and distances remains underexplored. In this work, we introduce a manually annotated benchmark, Q-Spatial Bench, with 271 questions across five categories designed for quantitative spatial reasoning and systematically investigate the performance of state-of-the-art VLMs on this task. Our analysis reveals that reasoning about distances between objects is particularly challenging for SoTA VLMs; however, some VLMs significantly outperform others, with an over 40-point gap between the two best performing models. We also make the surprising observation that the success rate of the top-performing VLM increases by 19 points when a reasoning path using a reference object emerges naturally in the response. Inspired by this observation, we develop a zero-shot prompting technique, SpatialPrompt, that encourages VLMs to answer quantitative spatial questions using reference objects as visual cues. By instructing VLMs to use reference objects in their reasoning paths via SpatialPrompt, Gemini 1.5 Pro, Gemini 1.5 Flash, and GPT-4V improve their success rates by over 40, 20, and 30 points, respectively. We emphasize that these significant improvements are obtained without needing more data, model architectural modifications, or fine-tuning.

  • 4 authors
·
Sep 15, 2024

Stock Performance Evaluation for Portfolio Design from Different Sectors of the Indian Stock Market

The stock market offers a platform where people buy and sell shares of publicly listed companies. Generally, stock prices are quite volatile; hence predicting them is a daunting task. There is still much research going to develop more accuracy in stock price prediction. Portfolio construction refers to the allocation of different sector stocks optimally to achieve a maximum return by taking a minimum risk. A good portfolio can help investors earn maximum profit by taking a minimum risk. Beginning with Dow Jones Theory a lot of advancement has happened in the area of building efficient portfolios. In this project, we have tried to predict the future value of a few stocks from six important sectors of the Indian economy and also built a portfolio. As part of the project, our team has conducted a study of the performance of various Time series, machine learning, and deep learning models in stock price prediction on selected stocks from the chosen six important sectors of the economy. As part of building an efficient portfolio, we have studied multiple portfolio optimization theories beginning with the Modern Portfolio theory. We have built a minimum variance portfolio and optimal risk portfolio for all the six chosen sectors by using the daily stock prices over the past five years as training data and have also conducted back testing to check the performance of the portfolio. We look forward to continuing our study in the area of stock price prediction and asset allocation and consider this project as the first stepping stone.

  • 7 authors
·
Jul 1, 2022

A standardized Project Gutenberg corpus for statistical analysis of natural language and quantitative linguistics

The use of Project Gutenberg (PG) as a text corpus has been extremely popular in statistical analysis of language for more than 25 years. However, in contrast to other major linguistic datasets of similar importance, no consensual full version of PG exists to date. In fact, most PG studies so far either consider only a small number of manually selected books, leading to potential biased subsets, or employ vastly different pre-processing strategies (often specified in insufficient details), raising concerns regarding the reproducibility of published results. In order to address these shortcomings, here we present the Standardized Project Gutenberg Corpus (SPGC), an open science approach to a curated version of the complete PG data containing more than 50,000 books and more than 3 times 10^9 word-tokens. Using different sources of annotated metadata, we not only provide a broad characterization of the content of PG, but also show different examples highlighting the potential of SPGC for investigating language variability across time, subjects, and authors. We publish our methodology in detail, the code to download and process the data, as well as the obtained corpus itself on 3 different levels of granularity (raw text, timeseries of word tokens, and counts of words). In this way, we provide a reproducible, pre-processed, full-size version of Project Gutenberg as a new scientific resource for corpus linguistics, natural language processing, and information retrieval.

  • 2 authors
·
Dec 19, 2018

Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting

In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.

  • 1 authors
·
Mar 12, 2023

LiveTradeBench: Seeking Real-World Alpha with Large Language Models

Large language models (LLMs) achieve strong performance across benchmarks--from knowledge quizzes and math reasoning to web-agent tasks--but these tests occur in static settings, lacking real dynamics and uncertainty. Consequently, they evaluate isolated reasoning or problem-solving rather than decision-making under uncertainty. To address this, we introduce LiveTradeBench, a live trading environment for evaluating LLM agents in realistic and evolving markets. LiveTradeBench follows three design principles: (i) Live data streaming of market prices and news, eliminating dependence on offline backtesting and preventing information leakage while capturing real-time uncertainty; (ii) a portfolio-management abstraction that extends control from single-asset actions to multi-asset allocation, integrating risk management and cross-asset reasoning; and (iii) multi-market evaluation across structurally distinct environments--U.S. stocks and Polymarket prediction markets--differing in volatility, liquidity, and information flow. At each step, an agent observes prices, news, and its portfolio, then outputs percentage allocations that balance risk and return. Using LiveTradeBench, we run 50-day live evaluations of 21 LLMs across families. Results show that (1) high LMArena scores do not imply superior trading outcomes; (2) models display distinct portfolio styles reflecting risk appetite and reasoning dynamics; and (3) some LLMs effectively leverage live signals to adapt decisions. These findings expose a gap between static evaluation and real-world competence, motivating benchmarks that test sequential decision making and consistency under live uncertainty.

Universal features of price formation in financial markets: perspectives from Deep Learning

Using a large-scale Deep Learning approach applied to a high-frequency database containing billions of electronic market quotes and transactions for US equities, we uncover nonparametric evidence for the existence of a universal and stationary price formation mechanism relating the dynamics of supply and demand for a stock, as revealed through the order book, to subsequent variations in its market price. We assess the model by testing its out-of-sample predictions for the direction of price moves given the history of price and order flow, across a wide range of stocks and time periods. The universal price formation model is shown to exhibit a remarkably stable out-of-sample prediction accuracy across time, for a wide range of stocks from different sectors. Interestingly, these results also hold for stocks which are not part of the training sample, showing that the relations captured by the model are universal and not asset-specific. The universal model --- trained on data from all stocks --- outperforms, in terms of out-of-sample prediction accuracy, asset-specific linear and nonlinear models trained on time series of any given stock, showing that the universal nature of price formation weighs in favour of pooling together financial data from various stocks, rather than designing asset- or sector-specific models as commonly done. Standard data normalizations based on volatility, price level or average spread, or partitioning the training data into sectors or categories such as large/small tick stocks, do not improve training results. On the other hand, inclusion of price and order flow history over many past observations is shown to improve forecasting performance, showing evidence of path-dependence in price dynamics.

  • 2 authors
·
Mar 19, 2018

RETuning: Upgrading Inference-Time Scaling for Stock Movement Prediction with Large Language Models

Recently, large language models (LLMs) have demonstrated outstanding reasoning capabilities on mathematical and coding tasks. However, their application to financial tasks-especially the most fundamental task of stock movement prediction-remains underexplored. We study a three-class classification problem (up, hold, down) and, by analyzing existing reasoning responses, observe that: (1) LLMs follow analysts' opinions rather than exhibit a systematic, independent analytical logic (CoTs). (2) LLMs list summaries from different sources without weighing adversarial evidence, yet such counterevidence is crucial for reliable prediction. It shows that the model does not make good use of its reasoning ability to complete the task. To address this, we propose Reflective Evidence Tuning (RETuning), a cold-start method prior to reinforcement learning, to enhance prediction ability. While generating CoT, RETuning encourages dynamically constructing an analytical framework from diverse information sources, organizing and scoring evidence for price up or down based on that framework-rather than on contextual viewpoints-and finally reflecting to derive the prediction. This approach maximally aligns the model with its learned analytical framework, ensuring independent logical reasoning and reducing undue influence from context. We also build a large-scale dataset spanning all of 2024 for 5,123 A-share stocks, with long contexts (32K tokens) and over 200K samples. In addition to price and news, it incorporates analysts' opinions, quantitative reports, fundamental data, macroeconomic indicators, and similar stocks. Experiments show that RETuning successfully unlocks the model's reasoning ability in the financial domain. Inference-time scaling still works even after 6 months or on out-of-distribution stocks, since the models gain valuable insights about stock movement prediction.

  • 10 authors
·
Oct 24

Empirical Study of Market Impact Conditional on Order-Flow Imbalance

In this research, we have empirically investigated the key drivers affecting liquidity in equity markets. We illustrated how theoretical models, such as Kyle's model, of agents' interplay in the financial markets, are aligned with the phenomena observed in publicly available trades and quotes data. Specifically, we confirmed that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance. We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow. Our findings suggest that machine learning models can be used in estimation of financial variables; and predictive accuracy of such learning algorithms can surpass the performance of traditional statistical approaches. Understanding the determinants of price impact is crucial for several reasons. From a theoretical stance, modelling the impact provides a statistical measure of liquidity. Practitioners adopt impact models as a pre-trade tool to estimate expected transaction costs and optimize the execution of their strategies. This further serves as a post-trade valuation benchmark as suboptimal execution can significantly deteriorate a portfolio performance. More broadly, the price impact reflects the balance of liquidity across markets. This is of central importance to regulators as it provides an all-encompassing explanation of the correlation between market design and systemic risk, enabling regulators to design more stable and efficient markets.

  • 1 authors
·
Apr 17, 2020

ContestTrade: A Multi-Agent Trading System Based on Internal Contest Mechanism

In financial trading, large language model (LLM)-based agents demonstrate significant potential. However, the high sensitivity to market noise undermines the performance of LLM-based trading systems. To address this limitation, we propose a novel multi-agent system featuring an internal competitive mechanism inspired by modern corporate management structures. The system consists of two specialized teams: (1) Data Team - responsible for processing and condensing massive market data into diversified text factors, ensuring they fit the model's constrained context. (2) Research Team - tasked with making parallelized multipath trading decisions based on deep research methods. The core innovation lies in implementing a real-time evaluation and ranking mechanism within each team, driven by authentic market feedback. Each agent's performance undergoes continuous scoring and ranking, with only outputs from top-performing agents being adopted. The design enables the system to adaptively adjust to dynamic environment, enhances robustness against market noise and ultimately delivers superior trading performance. Experimental results demonstrate that our proposed system significantly outperforms prevailing multi-agent systems and traditional quantitative investment methods across diverse evaluation metrics. ContestTrade is open-sourced on GitHub at https://github.com/FinStep-AI/ContestTrade.

  • 9 authors
·
Aug 1

MME-Finance: A Multimodal Finance Benchmark for Expert-level Understanding and Reasoning

In recent years, multimodal benchmarks for general domains have guided the rapid development of multimodal models on general tasks. However, the financial field has its peculiarities. It features unique graphical images (e.g., candlestick charts, technical indicator charts) and possesses a wealth of specialized financial knowledge (e.g., futures, turnover rate). Therefore, benchmarks from general fields often fail to measure the performance of multimodal models in the financial domain, and thus cannot effectively guide the rapid development of large financial models. To promote the development of large financial multimodal models, we propose MME-Finance, an bilingual open-ended and practical usage-oriented Visual Question Answering (VQA) benchmark. The characteristics of our benchmark are finance and expertise, which include constructing charts that reflect the actual usage needs of users (e.g., computer screenshots and mobile photography), creating questions according to the preferences in financial domain inquiries, and annotating questions by experts with 10+ years of experience in the financial industry. Additionally, we have developed a custom-designed financial evaluation system in which visual information is first introduced in the multi-modal evaluation process. Extensive experimental evaluations of 19 mainstream MLLMs are conducted to test their perception, reasoning, and cognition capabilities. The results indicate that models performing well on general benchmarks cannot do well on MME-Finance; for instance, the top-performing open-source and closed-source models obtain 65.69 (Qwen2VL-72B) and 63.18 (GPT-4o), respectively. Their performance is particularly poor in categories most relevant to finance, such as candlestick charts and technical indicator charts. In addition, we propose a Chinese version, which helps compare performance of MLLMs under a Chinese context.

  • 12 authors
·
Nov 5, 2024

MacroHFT: Memory Augmented Context-aware Reinforcement Learning On High Frequency Trading

High-frequency trading (HFT) that executes algorithmic trading in short time scales, has recently occupied the majority of cryptocurrency market. Besides traditional quantitative trading methods, reinforcement learning (RL) has become another appealing approach for HFT due to its terrific ability of handling high-dimensional financial data and solving sophisticated sequential decision-making problems, e.g., hierarchical reinforcement learning (HRL) has shown its promising performance on second-level HFT by training a router to select only one sub-agent from the agent pool to execute the current transaction. However, existing RL methods for HFT still have some defects: 1) standard RL-based trading agents suffer from the overfitting issue, preventing them from making effective policy adjustments based on financial context; 2) due to the rapid changes in market conditions, investment decisions made by an individual agent are usually one-sided and highly biased, which might lead to significant loss in extreme markets. To tackle these problems, we propose a novel Memory Augmented Context-aware Reinforcement learning method On HFT, a.k.a. MacroHFT, which consists of two training phases: 1) we first train multiple types of sub-agents with the market data decomposed according to various financial indicators, specifically market trend and volatility, where each agent owns a conditional adapter to adjust its trading policy according to market conditions; 2) then we train a hyper-agent to mix the decisions from these sub-agents and output a consistently profitable meta-policy to handle rapid market fluctuations, equipped with a memory mechanism to enhance the capability of decision-making. Extensive experiments on various cryptocurrency markets demonstrate that MacroHFT can achieve state-of-the-art performance on minute-level trading tasks.

  • 6 authors
·
Jun 20, 2024

FNSPID: A Comprehensive Financial News Dataset in Time Series

Financial market predictions utilize historical data to anticipate future stock prices and market trends. Traditionally, these predictions have focused on the statistical analysis of quantitative factors, such as stock prices, trading volumes, inflation rates, and changes in industrial production. Recent advancements in large language models motivate the integrated financial analysis of both sentiment data, particularly market news, and numerical factors. Nonetheless, this methodology frequently encounters constraints due to the paucity of extensive datasets that amalgamate both quantitative and qualitative sentiment analyses. To address this challenge, we introduce a large-scale financial dataset, namely, Financial News and Stock Price Integration Dataset (FNSPID). It comprises 29.7 million stock prices and 15.7 million time-aligned financial news records for 4,775 S&P500 companies, covering the period from 1999 to 2023, sourced from 4 stock market news websites. We demonstrate that FNSPID excels existing stock market datasets in scale and diversity while uniquely incorporating sentiment information. Through financial analysis experiments on FNSPID, we propose: (1) the dataset's size and quality significantly boost market prediction accuracy; (2) adding sentiment scores modestly enhances performance on the transformer-based model; (3) a reproducible procedure that can update the dataset. Completed work, code, documentation, and examples are available at github.com/Zdong104/FNSPID. FNSPID offers unprecedented opportunities for the financial research community to advance predictive modeling and analysis.

  • 3 authors
·
Feb 8, 2024

Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks

As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.

  • 4 authors
·
Nov 22, 2023

Regression Discontinuity Design with Distribution-Valued Outcomes

This article introduces Regression Discontinuity Design (RDD) with Distribution-Valued Outcomes (R3D), extending the standard RDD framework to settings where the outcome is a distribution rather than a scalar. Such settings arise when treatment is assigned at a higher level of aggregation than the outcome-for example, when a subsidy is allocated based on a firm-level revenue cutoff while the outcome of interest is the distribution of employee wages within the firm. Since standard RDD methods cannot accommodate such two-level randomness, I propose a novel approach based on random distributions. The target estimand is a "local average quantile treatment effect", which averages across random quantiles. To estimate this target, I introduce two related approaches: one that extends local polynomial regression to random quantiles and another based on local Fr\'echet regression, a form of functional regression. For both estimators, I establish asymptotic normality and develop uniform, debiased confidence bands together with a data-driven bandwidth selection procedure. Simulations validate these theoretical properties and show existing methods to be biased and inconsistent in this setting. I then apply the proposed methods to study the effects of gubernatorial party control on within-state income distributions in the US, using a close-election design. The results suggest a classic equality-efficiency tradeoff under Democratic governorship, driven by reductions in income at the top of the distribution.

  • 1 authors
·
Apr 4