2 Dedelayed: Deleting remote inference delay via on-device correction Remote inference allows lightweight devices to leverage powerful cloud models. However, communication network latency makes predictions stale and unsuitable for real-time tasks. To address this, we introduce Dedelayed, a delay-corrective method that mitigates arbitrary remote inference delays, allowing the local device to produce low-latency outputs in real time. Our method employs a lightweight local model that processes the current frame and fuses in features that a heavyweight remote model computes from past frames. On video from the BDD100K driving dataset, Dedelayed improves semantic segmentation accuracy over the stronger of the local-only and remote-only baselines across all realistic communication network delays beyond 33 ms. Without incurring additional delay, it improves accuracy by 6.4 mIoU compared to fully local inference and 9.8 mIoU compared to remote inference, for a round-trip delay of 100 ms. The advantage grows under longer delays and higher-motion scenes, as delay-mitigated split inference sustains accuracy more effectively, providing clear advantages for real-time tasks that must remain aligned with the current world state. 5 authors · Oct 15, 2025 2
- ReinWiFi: Application-Layer QoS Optimization of WiFi Networks with Reinforcement Learning The enhanced distributed channel access (EDCA) mechanism is used in current wireless fidelity (WiFi) networks to support priority requirements of heterogeneous applications. However, the EDCA mechanism can not adapt to particular quality-of-service (QoS) objective, network topology, and interference level. In this paper, a novel reinforcement-learning-based scheduling framework is proposed and implemented to optimize the application-layer quality-of-service (QoS) of a WiFi network with commercial adapters and unknown interference. Particularly, application-layer tasks of file delivery and delay-sensitive communication are jointly scheduled by adjusting the contention window sizes and application-layer throughput limitation, such that the throughput of the former and the round trip time of the latter can be optimized. Due to the unknown interference and vendor-dependent implementation of the WiFi adapters, the relation between the scheduling policy and the system QoS is unknown. Hence, a reinforcement learning method is proposed, in which a novel Q-network is trained to map from the historical scheduling parameters and QoS observations to the current scheduling action. It is demonstrated on a testbed that the proposed framework can achieve a significantly better performance than the EDCA mechanism. 4 authors · May 6, 2024
- Flight Delay Prediction via Cross-Modality Adaptation of Large Language Models and Aircraft Trajectory Representation Flight delay prediction has become a key focus in air traffic management, as delays highlight inefficiencies that impact overall network performance. This paper presents a lightweight large language model-based multimodal flight delay prediction, formulated from the perspective of air traffic controllers monitoring aircraft delay after entering the terminal area. The approach integrates trajectory representations with textual aeronautical information, including flight information, weather reports, and aerodrome notices, by adapting trajectory data into the language modality to capture airspace conditions. The experiments show that the model consistently achieves sub-minute prediction error by effectively leveraging contextual information related to the sources of delay, fulfilling the operational standard for minute-level precision. The framework demonstrates that linguistic understanding, when combined with cross-modality adaptation of trajectory data, enhances delay prediction. Moreover, the approach shows practicality and potential scalability for real-world operations, supporting real-time updates that refine predictions upon receiving new operational information. 3 authors · Oct 24, 2025