new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 13

Transformer-Based Models Are Not Yet Perfect At Learning to Emulate Structural Recursion

This paper investigates the ability of transformer-based models to learn structural recursion from examples. Recursion is a universal concept in both natural and formal languages. Structural recursion is central to the programming language and formal mathematics tasks where symbolic tools currently excel beyond neural models, such as inferring semantic relations between datatypes and emulating program behavior. We introduce a general framework that nicely connects the abstract concepts of structural recursion in the programming language domain to concrete sequence modeling problems and learned models' behavior. The framework includes a representation that captures the general syntax of structural recursion, coupled with two different frameworks for understanding their semantics -- one that is more natural from a programming languages perspective and one that helps bridge that perspective with a mechanistic understanding of the underlying transformer architecture. With our framework as a powerful conceptual tool, we identify different issues under various set-ups. The models trained to emulate recursive computations cannot fully capture the recursion yet instead fit short-cut algorithms and thus cannot solve certain edge cases that are under-represented in the training distribution. In addition, it is difficult for state-of-the-art large language models (LLMs) to mine recursive rules from in-context demonstrations. Meanwhile, these LLMs fail in interesting ways when emulating reduction (step-wise computation) of the recursive function.

  • 6 authors
·
Jan 23, 2024 2

Invisible Attributes, Visible Biases: Exploring Demographic Shortcuts in MRI-based Alzheimer's Disease Classification

Magnetic resonance imaging (MRI) is the gold standard for brain imaging. Deep learning (DL) algorithms have been proposed to aid in the diagnosis of diseases such as Alzheimer's disease (AD) from MRI scans. However, DL algorithms can suffer from shortcut learning, in which spurious features, not directly related to the output label, are used for prediction. When these features are related to protected attributes, they can lead to performance bias against underrepresented protected groups, such as those defined by race and sex. In this work, we explore the potential for shortcut learning and demographic bias in DL based AD diagnosis from MRI. We first investigate if DL algorithms can identify race or sex from 3D brain MRI scans to establish the presence or otherwise of race and sex based distributional shifts. Next, we investigate whether training set imbalance by race or sex can cause a drop in model performance, indicating shortcut learning and bias. Finally, we conduct a quantitative and qualitative analysis of feature attributions in different brain regions for both the protected attribute and AD classification tasks. Through these experiments, and using multiple datasets and DL models (ResNet and SwinTransformer), we demonstrate the existence of both race and sex based shortcut learning and bias in DL based AD classification. Our work lays the foundation for fairer DL diagnostic tools in brain MRI. The code is provided at https://github.com/acharaakshit/ShortMR

  • 4 authors
·
Sep 11, 2025

Solving Spatial Supersensing Without Spatial Supersensing

Cambrian-S aims to take the first steps towards improving video world models with spatial supersensing by introducing (i) two benchmarks, VSI-Super-Recall (VSR) and VSI-Super-Counting (VSC), and (ii) bespoke predictive sensing inference strategies tailored to each benchmark. In this work, we conduct a critical analysis of Cambrian-S across both these fronts. First, we introduce a simple baseline, NoSense, which discards almost all temporal structure and uses only a bag-of-words SigLIP model, yet near-perfectly solves VSR, achieving 95% accuracy even on 4-hour videos. This shows benchmarks like VSR can be nearly solved without spatial cognition, world modeling or spatial supersensing. Second, we hypothesize that the tailored inference methods proposed by Cambrian-S likely exploit shortcut heuristics in the benchmark. We illustrate this with a simple sanity check on the VSC benchmark, called VSC-Repeat: We concatenate each video with itself 1-5 times, which does not change the number of unique objects. However, this simple perturbation entirely collapses the mean relative accuracy of Cambrian-S from 42% to 0%. A system that performs spatial supersensing and integrates information across experiences should recognize views of the same scene and keep object-count predictions unchanged; instead, Cambrian-S inference algorithm relies largely on a shortcut in the VSC benchmark that rooms are never revisited. Taken together, our findings suggest that (i) current VSI-Super benchmarks do not yet reliably measure spatial supersensing, and (ii) predictive-sensing inference recipes used by Cambrian-S improve performance by inadvertently exploiting shortcuts rather than from robust spatial supersensing. We include the response from the Cambrian-S authors (in Appendix A) to provide a balanced perspective alongside our claims. We release our code at: https://github.com/bethgelab/supersanity

  • 6 authors
·
Nov 20, 2025