Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeNoCode-bench: A Benchmark for Evaluating Natural Language-Driven Feature Addition
Natural language-driven no-code development allows users to specify software functionality using natural language (NL) instead of editing source code, promising increased productivity and democratized development. Large language models (LLMs) show potential in enabling this paradigm. In this context, software documentation acts as an NL specification for functionality. This work introduces NoCode-bench, a benchmark designed to evaluate LLMs on real-world NL-driven feature addition tasks, consisting of 634 tasks across 10 projects and 114k code changes. Each task pairs documentation updates with corresponding code implementations, validated by developer-written test cases. A subset of 114 high-quality, human-verified instances, NoCode-bench Verified, ensures reliable evaluation. Our experiments reveal that, despite high token usage, the best LLMs achieve a task success rate of only 28.07%, highlighting challenges in cross-file editing, codebase understanding, and tool calling. These findings indicate that LLMs are not yet ready for fully NL-driven no-code development. NoCode-bench lays the foundation for future advances in this area.
Few-shot Adaptation Works with UnpredicTable Data
Prior work on language models (LMs) shows that training on a large number of diverse tasks improves few-shot learning (FSL) performance on new tasks. We take this to the extreme, automatically extracting 413,299 tasks from internet tables - orders of magnitude more than the next-largest public datasets. Finetuning on the resulting dataset leads to improved FSL performance on Natural Language Processing (NLP) tasks, but not proportionally to dataset scale. In fact, we find that narrow subsets of our dataset sometimes outperform more diverse datasets. For example, finetuning on software documentation from support.google.com raises FSL performance by a mean of +7.5% on 52 downstream tasks, which beats training on 40 human-curated NLP datasets (+6.7%). Finetuning on various narrow datasets leads to similar broad improvements across test tasks, suggesting that the gains are not from domain adaptation but adapting to FSL in general. We do not observe clear patterns between the datasets that lead to FSL gains, leaving open questions about why certain data helps with FSL.
UltraCUA: A Foundation Model for Computer Use Agents with Hybrid Action
Multimodal agents for computer use rely exclusively on primitive actions (click, type, scroll) that require accurate visual grounding and lengthy execution chains, leading to cascading failures and performance bottlenecks. While other agents leverage rich programmatic interfaces (APIs, MCP servers, tools), computer-use agents (CUAs) remain isolated from these capabilities. We present UltraCUA, a foundation model that bridges this gap through hybrid action -- seamlessly integrating GUI primitives with high-level programmatic tool calls. To achieve this, our approach comprises four key components: (1) an automated pipeline that scales programmatic tools from software documentation, open-source repositories, and code generation; (2) a synthetic data engine producing over 17,000 verifiable tasks spanning real-world computer-use scenarios; (3) a large-scale high-quality hybrid action trajectory collection with both low-level GUI actions and high-level programmatic tool calls; and (4) a two-stage training pipeline combining supervised fine-tuning with online reinforcement learning, enabling strategic alternation between low-level and high-level actions. Experiments with our 7B and 32B models demonstrate substantial improvements over state-of-the-art agents. On OSWorld, UltraCUA models achieve an average 22% relative improvement over base models, while being 11% faster in terms of steps. Out-of-domain evaluation on WindowsAgentArena shows our model reaches 21.7% success rate, outperforming baselines trained on Windows data. The hybrid action mechanism proves critical, reducing error propagation while maintaining execution efficiency.
Octopus: On-device language model for function calling of software APIs
In the rapidly evolving domain of artificial intelligence, Large Language Models (LLMs) play a crucial role due to their advanced text processing and generation abilities. This study introduces a new strategy aimed at harnessing on-device LLMs in invoking software APIs. We meticulously compile a dataset derived from software API documentation and apply fine-tuning to LLMs with capacities of 2B, 3B and 7B parameters, specifically to enhance their proficiency in software API interactions. Our approach concentrates on refining the models' grasp of API structures and syntax, significantly enhancing the accuracy of API function calls. Additionally, we propose conditional masking techniques to ensure outputs in the desired formats and reduce error rates while maintaining inference speeds. We also propose a novel benchmark designed to evaluate the effectiveness of LLMs in API interactions, establishing a foundation for subsequent research. Octopus, the fine-tuned model, is proved to have better performance than GPT-4 for the software APIs calling. This research aims to advance automated software development and API integration, representing substantial progress in aligning LLM capabilities with the demands of practical software engineering applications.
Impact of Large Language Models on Generating Software Specifications
Software specifications are essential for ensuring the reliability of software systems. Existing specification extraction approaches, however, suffer from limited generalizability and require manual efforts. The recent emergence of Large Language Models (LLMs), which have been successfully applied to numerous software engineering tasks, offers a promising avenue for automating this process. In this paper, we conduct the first empirical study to evaluate the capabilities of LLMs for generating software specifications from software comments or documentation. We evaluate LLMs' performance with Few Shot Learning (FSL), enabling LLMs to generalize from a small number of examples, as well as different prompt construction strategies, and compare the performance of LLMs with traditional approaches. Additionally, we conduct a comparative diagnosis of the failure cases from both LLMs and traditional methods, identifying their unique strengths and weaknesses. Lastly, we conduct extensive experiments on 15 state of the art LLMs, evaluating their performance and cost effectiveness for generating software specifications. Our results show that with FSL, LLMs outperform traditional methods (by 5.6%), and more sophisticated prompt construction strategies can further enlarge this performance gap (up to 5.1 to 10.0%). Yet, LLMs suffer from their unique challenges, such as ineffective prompts and the lack of domain knowledge, which together account for 53 to 60% of LLM unique failures. The strong performance of open source models (e.g., StarCoder) makes closed source models (e.g., GPT 3 Davinci) less desirable due to size and cost. Our study offers valuable insights for future research to improve specification generation.
Neural MMO 2.0: A Massively Multi-task Addition to Massively Multi-agent Learning
Neural MMO 2.0 is a massively multi-agent environment for reinforcement learning research. The key feature of this new version is a flexible task system that allows users to define a broad range of objectives and reward signals. We challenge researchers to train agents capable of generalizing to tasks, maps, and opponents never seen during training. Neural MMO features procedurally generated maps with 128 agents in the standard setting and support for up to. Version 2.0 is a complete rewrite of its predecessor with three-fold improved performance and compatibility with CleanRL. We release the platform as free and open-source software with comprehensive documentation available at neuralmmo.github.io and an active community Discord. To spark initial research on this new platform, we are concurrently running a competition at NeurIPS 2023.
CoDocBench: A Dataset for Code-Documentation Alignment in Software Maintenance
One of the central tasks in software maintenance is being able to understand and develop code changes. Thus, given a natural language description of the desired new operation of a function, an agent (human or AI) might be asked to generate the set of edits to that function to implement the desired new operation; likewise, given a set of edits to a function, an agent might be asked to generate a changed description, of that function's new workings. Thus, there is an incentive to train a neural model for change-related tasks. Motivated by this, we offer a new, "natural", large dataset of coupled changes to code and documentation mined from actual high-quality GitHub projects, where each sample represents a single commit where the code and the associated docstring were changed together. We present the methodology for gathering the dataset, and some sample, challenging (but realistic) tasks where our dataset provides opportunities for both learning and evaluation. We find that current models (specifically Llama-3.1 405B, Mixtral 8times22B) do find these maintenance-related tasks challenging.
CodeWiki: Evaluating AI's Ability to Generate Holistic Documentation for Large-Scale Codebases
Given a large and evolving codebase, the ability to automatically generate holistic, architecture-aware documentation that captures not only individual functions but also cross-file, cross-module, and system-level interactions remains an open challenge. Comprehensive documentation is essential for long-term software maintenance and collaboration, yet current automated approaches still fail to model the rich semantic dependencies and architectural structures that define real-world software systems. We present CodeWiki, a unified framework for automated repository-level documentation across seven programming languages. CodeWiki introduces three key innovations: (i) hierarchical decomposition that preserves architectural context across multiple levels of granularity, (ii) recursive multi-agent processing with dynamic task delegation for scalable generation, and (iii) multi-modal synthesis that integrates textual descriptions with visual artifacts such as architecture diagrams and data-flow representations. To enable rigorous evaluation, we introduce CodeWikiBench, a comprehensive benchmark featuring multi-dimensional rubrics and LLM-based assessment protocols. Experimental results show that CodeWiki achieves a 68.79\% quality score with proprietary models, outperforming the closed-source DeepWiki baseline (64.06\%) by 4.73\%, with particularly strong improvements on high-level scripting languages (+10.47\%). We open-source CodeWiki to foster future research and community adoption.
DocTer: Documentation Guided Fuzzing for Testing Deep Learning API Functions
Input constraints are useful for many software development tasks. For example, input constraints of a function enable the generation of valid inputs, i.e., inputs that follow these constraints, to test the function deeper. API functions of deep learning (DL) libraries have DL specific input constraints, which are described informally in the free form API documentation. Existing constraint extraction techniques are ineffective for extracting DL specific input constraints. To fill this gap, we design and implement a new technique, DocTer, to analyze API documentation to extract DL specific input constraints for DL API functions. DocTer features a novel algorithm that automatically constructs rules to extract API parameter constraints from syntactic patterns in the form of dependency parse trees of API descriptions. These rules are then applied to a large volume of API documents in popular DL libraries to extract their input parameter constraints. To demonstrate the effectiveness of the extracted constraints, DocTer uses the constraints to enable the automatic generation of valid and invalid inputs to test DL API functions. Our evaluation on three popular DL libraries (TensorFlow, PyTorch, and MXNet) shows that the precision of DocTer in extracting input constraints is 85.4%. DocTer detects 94 bugs from 174 API functions, including one previously unknown security vulnerability that is now documented in the CVE database, while a baseline technique without input constraints detects only 59 bugs. Most (63) of the 94 bugs are previously unknown, 54 of which have been fixed or confirmed by developers after we report them. In addition, DocTer detects 43 inconsistencies in documents, 39 of which are fixed or confirmed.
DocAgent: A Multi-Agent System for Automated Code Documentation Generation
High-quality code documentation is crucial for software development especially in the era of AI. However, generating it automatically using Large Language Models (LLMs) remains challenging, as existing approaches often produce incomplete, unhelpful, or factually incorrect outputs. We introduce DocAgent, a novel multi-agent collaborative system using topological code processing for incremental context building. Specialized agents (Reader, Searcher, Writer, Verifier, Orchestrator) then collaboratively generate documentation. We also propose a multi-faceted evaluation framework assessing Completeness, Helpfulness, and Truthfulness. Comprehensive experiments show DocAgent significantly outperforms baselines consistently. Our ablation study confirms the vital role of the topological processing order. DocAgent offers a robust approach for reliable code documentation generation in complex and proprietary repositories.
Leveraging LLMs for Legacy Code Modernization: Challenges and Opportunities for LLM-Generated Documentation
Legacy software systems, written in outdated languages like MUMPS and mainframe assembly, pose challenges in efficiency, maintenance, staffing, and security. While LLMs offer promise for modernizing these systems, their ability to understand legacy languages is largely unknown. This paper investigates the utilization of LLMs to generate documentation for legacy code using two datasets: an electronic health records (EHR) system in MUMPS and open-source applications in IBM mainframe Assembly Language Code (ALC). We propose a prompting strategy for generating line-wise code comments and a rubric to evaluate their completeness, readability, usefulness, and hallucination. Our study assesses the correlation between human evaluations and automated metrics, such as code complexity and reference-based metrics. We find that LLM-generated comments for MUMPS and ALC are generally hallucination-free, complete, readable, and useful compared to ground-truth comments, though ALC poses challenges. However, no automated metrics strongly correlate with comment quality to predict or measure LLM performance. Our findings highlight the limitations of current automated measures and the need for better evaluation metrics for LLM-generated documentation in legacy systems.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
When LLMs Meet API Documentation: Can Retrieval Augmentation Aid Code Generation Just as It Helps Developers?
Retrieval-augmented generation (RAG) has increasingly shown its power in extending large language models' (LLMs') capability beyond their pre-trained knowledge. Existing works have shown that RAG can help with software development tasks such as code generation, code update, and test generation. Yet, the effectiveness of adapting LLMs to fast-evolving or less common API libraries using RAG remains unknown. To bridge this gap, we take an initial step to study this unexplored yet practical setting - when developers code with a less common library, they often refer to its API documentation; likewise, when LLMs are allowed to look up API documentation via RAG, to what extent can LLMs be advanced? To mimic such a setting, we select four less common open-source Python libraries with a total of 1017 eligible APIs. We study the factors that affect the effectiveness of using the documentation of less common API libraries as additional knowledge for retrieval and generation. Our intensive study yields interesting findings: (1) RAG helps improve LLMs' performance by 83%-220%. (2) Example code contributes the most to advance LLMs, instead of the descriptive texts and parameter lists in the API documentation. (3) LLMs could sometimes tolerate mild noises (typos in description or incorrect parameters) by referencing their pre-trained knowledge or document context. Finally, we suggest that developers pay more attention to the quality and diversity of the code examples in the API documentation. The study sheds light on future low-code software development workflows.
CodeClash: Benchmarking Goal-Oriented Software Engineering
Current benchmarks for coding evaluate language models (LMs) on concrete, well-specified tasks such as fixing specific bugs or writing targeted tests. However, human programmers do not spend all day incessantly addressing isolated tasks. Instead, real-world software development is grounded in the pursuit of high-level goals, like improving user retention or reducing costs. Evaluating whether LMs can also iteratively develop code to better accomplish open-ended objectives without any explicit guidance remains an open challenge. To address this, we introduce CodeClash, a benchmark where LMs compete in multi-round tournaments to build the best codebase for achieving a competitive objective. Each round proceeds in two phases: agents edit their code, then their codebases compete head-to-head in a code arena that determines winners based on objectives like score maximization, resource acquisition, or survival. Whether it's writing notes, scrutinizing documentation, analyzing competition logs, or creating test suites, models must decide for themselves how to improve their codebases both absolutely and against their opponents. We run 1680 tournaments (25,200 rounds total) to evaluate 8 LMs across 6 arenas. Our results reveal that while models exhibit diverse development styles, they share fundamental limitations in strategic reasoning. Models also struggle with long-term codebase maintenance, as repositories become progressively messy and redundant. These limitations are stark: top models lose every round against expert human programmers. We open-source CodeClash to advance the study of autonomous, goal-oriented code development.
RepoAgent: An LLM-Powered Open-Source Framework for Repository-level Code Documentation Generation
Generative models have demonstrated considerable potential in software engineering, particularly in tasks such as code generation and debugging. However, their utilization in the domain of code documentation generation remains underexplored. To this end, we introduce RepoAgent, a large language model powered open-source framework aimed at proactively generating, maintaining, and updating code documentation. Through both qualitative and quantitative evaluations, we have validated the effectiveness of our approach, showing that RepoAgent excels in generating high-quality repository-level documentation. The code and results are publicly accessible at https://github.com/OpenBMB/RepoAgent.
Software Entity Recognition with Noise-Robust Learning
Recognizing software entities such as library names from free-form text is essential to enable many software engineering (SE) technologies, such as traceability link recovery, automated documentation, and API recommendation. While many approaches have been proposed to address this problem, they suffer from small entity vocabularies or noisy training data, hindering their ability to recognize software entities mentioned in sophisticated narratives. To address this challenge, we leverage the Wikipedia taxonomy to develop a comprehensive entity lexicon with 79K unique software entities in 12 fine-grained types, as well as a large labeled dataset of over 1.7M sentences. Then, we propose self-regularization, a noise-robust learning approach, to the training of our software entity recognition (SER) model by accounting for many dropouts. Results show that models trained with self-regularization outperform both their vanilla counterparts and state-of-the-art approaches on our Wikipedia benchmark and two Stack Overflow benchmarks. We release our models, data, and code for future research.
RepoSummary: Feature-Oriented Summarization and Documentation Generation for Code Repositories
Repository summarization is a crucial research question in development and maintenance for software engineering. Existing repository summarization techniques primarily focus on summarizing code according to the directory tree, which is insufficient for tracing high-level features to the methods that collaboratively implement them. To address these limitations, we propose RepoSummary, a feature-oriented code repository summarization approach that simultaneously generates repository documentation automatically. Furthermore, it establishes more accurate traceability links from functional features to the corresponding code elements, enabling developers to rapidly locate relevant methods and files during code comprehension and maintenance. Comprehensive experiments against the state-of-the-art baseline (HGEN) demonstrate that RepoSummary achieves higher feature coverage and more accurate traceability. On average, it increases the rate of completely covered features in manual documentation from 61.2% to 71.1%, improves file-level traceability recall from 29.9% to 53.0%, and generates documentation that is more conceptually consistent, easier to understand, and better formatted than that produced by existing approaches.
Impact of LLMs on Team Collaboration in Software Development
Large Language Models (LLMs) are increasingly being integrated into software development processes, with the potential to transform team workflows and productivity. This paper investigates how LLMs affect team collaboration throughout the Software Development Life Cycle (SDLC). We reframe and update a prior study with recent developments as of 2025, incorporating new literature and case studies. We outline the problem of collaboration hurdles in SDLC and explore how LLMs can enhance productivity, communication, and decision-making in a team context. Through literature review, industry examples, a team survey, and two case studies, we assess the impact of LLM-assisted tools (such as code generation assistants and AI-powered project management agents) on collaborative software engineering practices. Our findings indicate that LLMs can significantly improve efficiency (by automating repetitive tasks and documentation), enhance communication clarity, and aid cross-functional collaboration, while also introducing new challenges like model limitations and privacy concerns. We discuss these benefits and challenges, present research questions guiding the investigation, evaluate threats to validity, and suggest future research directions including domain-specific model customization, improved integration into development tools, and robust strategies for ensuring trust and security.
The ML Supply Chain in the Era of Software 2.0: Lessons Learned from Hugging Face
The last decade has seen widespread adoption of Machine Learning (ML) components in software systems. This has occurred in nearly every domain, from natural language processing to computer vision. These ML components range from relatively simple neural networks to complex and resource-intensive large language models. However, despite this widespread adoption, little is known about the supply chain relationships that produce these models, which can have implications for compliance and security. In this work, we conduct an extensive analysis of 760,460 models and 175,000 datasets mined from the popular model-sharing site Hugging Face. First, we evaluate the current state of documentation in the Hugging Face supply chain, report real-world examples of shortcomings, and offer actionable suggestions for improvement. Next, we analyze the underlying structure of the extant supply chain. Finally, we explore the current licensing landscape against what was reported in prior work and discuss the unique challenges posed in this domain. Our results motivate multiple research avenues, including the need for better license management for ML models/datasets, better support for model documentation, and automated inconsistency checking and validation. We make our research infrastructure and dataset available to facilitate future research.
ProphetFuzz: Fully Automated Prediction and Fuzzing of High-Risk Option Combinations with Only Documentation via Large Language Model
Vulnerabilities related to option combinations pose a significant challenge in software security testing due to their vast search space. Previous research primarily addressed this challenge through mutation or filtering techniques, which inefficiently treated all option combinations as having equal potential for vulnerabilities, thus wasting considerable time on non-vulnerable targets and resulting in low testing efficiency. In this paper, we utilize carefully designed prompt engineering to drive the large language model (LLM) to predict high-risk option combinations (i.e., more likely to contain vulnerabilities) and perform fuzz testing automatically without human intervention. We developed a tool called ProphetFuzz and evaluated it on a dataset comprising 52 programs collected from three related studies. The entire experiment consumed 10.44 CPU years. ProphetFuzz successfully predicted 1748 high-risk option combinations at an average cost of only \$8.69 per program. Results show that after 72 hours of fuzzing, ProphetFuzz discovered 364 unique vulnerabilities associated with 12.30\% of the predicted high-risk option combinations, which was 32.85\% higher than that found by state-of-the-art in the same timeframe. Additionally, using ProphetFuzz, we conducted persistent fuzzing on the latest versions of these programs, uncovering 140 vulnerabilities, with 93 confirmed by developers and 21 awarded CVE numbers.
Automated categorization of pre-trained models for software engineering: A case study with a Hugging Face dataset
Software engineering (SE) activities have been revolutionized by the advent of pre-trained models (PTMs), defined as large machine learning (ML) models that can be fine-tuned to perform specific SE tasks. However, users with limited expertise may need help to select the appropriate model for their current task. To tackle the issue, the Hugging Face (HF) platform simplifies the use of PTMs by collecting, storing, and curating several models. Nevertheless, the platform currently lacks a comprehensive categorization of PTMs designed specifically for SE, i.e., the existing tags are more suited to generic ML categories. This paper introduces an approach to address this gap by enabling the automatic classification of PTMs for SE tasks. First, we utilize a public dump of HF to extract PTMs information, including model documentation and associated tags. Then, we employ a semi-automated method to identify SE tasks and their corresponding PTMs from existing literature. The approach involves creating an initial mapping between HF tags and specific SE tasks, using a similarity-based strategy to identify PTMs with relevant tags. The evaluation shows that model cards are informative enough to classify PTMs considering the pipeline tag. Moreover, we provide a mapping between SE tasks and stored PTMs by relying on model names.
A Systematic Literature Review of Software Engineering Research on Jupyter Notebook
Context: Jupyter Notebook has emerged as a versatile tool that transforms how researchers, developers, and data scientists conduct and communicate their work. As the adoption of Jupyter notebooks continues to rise, so does the interest from the software engineering research community in improving the software engineering practices for Jupyter notebooks. Objective: The purpose of this study is to analyze trends, gaps, and methodologies used in software engineering research on Jupyter notebooks. Method: We selected 146 relevant publications from the DBLP Computer Science Bibliography up to the end of 2024, following established systematic literature review guidelines. We explored publication trends, categorized them based on software engineering topics, and reported findings based on those topics. Results: The most popular venues for publishing software engineering research on Jupyter notebooks are related to human-computer interaction instead of traditional software engineering venues. Researchers have addressed a wide range of software engineering topics on notebooks, such as code reuse, readability, and execution environment. Although reusability is one of the research topics for Jupyter notebooks, only 64 of the 146 studies can be reused based on their provided URLs. Additionally, most replication packages are not hosted on permanent repositories for long-term availability and adherence to open science principles. Conclusion: Solutions specific to notebooks for software engineering issues, including testing, refactoring, and documentation, are underexplored. Future research opportunities exist in automatic testing frameworks, refactoring clones between notebooks, and generating group documentation for coherent code cells.
Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming
The integration of Large Language Models (LLMs) into Development Environments (IDEs) has become a focal point in modern software development. LLMs such as OpenAI GPT-3.5/4 and Code Llama offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants. However, utilizing LLMs out of the box is unlikely to be optimal for any given scenario. Rather, each system requires the LLM to be honed to its set of heuristics to ensure the best performance. In this paper, we introduce the Copilot evaluation harness: a set of data and tools for evaluating LLM-guided IDE interactions, covering various programming scenarios and languages. We propose our metrics as a more robust and information-dense evaluation than previous state of the art evaluation systems. We design and compute both static and execution based success metrics for scenarios encompassing a wide range of developer tasks, including code generation from natural language (generate), documentation generation from code (doc), test case generation (test), bug-fixing (fix), and workspace understanding and query resolution (workspace). These success metrics are designed to evaluate the performance of LLMs within a given IDE and its respective parameter space. Our learnings from evaluating three common LLMs using these metrics can inform the development and validation of future scenarios in LLM guided IDEs.
Challenges and Barriers of Using Low Code Software for Machine Learning
As big data grows ubiquitous across many domains, more and more stakeholders seek to develop Machine Learning (ML) applications on their data. The success of an ML application usually depends on the close collaboration of ML experts and domain experts. However, the shortage of ML engineers remains a fundamental problem. Low-code Machine learning tools/platforms (aka, AutoML) aim to democratize ML development to domain experts by automating many repetitive tasks in the ML pipeline. This research presents an empirical study of around 14k posts (questions + accepted answers) from Stack Overflow (SO) that contained AutoML-related discussions. We examine how these topics are spread across the various Machine Learning Life Cycle (MLLC) phases and their popularity and difficulty. This study offers several interesting findings. First, we find 13 AutoML topics that we group into four categories. The MLOps topic category (43% questions) is the largest, followed by Model (28% questions), Data (27% questions), Documentation (2% questions). Second, Most questions are asked during Model training (29%) (i.e., implementation phase) and Data preparation (25%) MLLC phase. Third, AutoML practitioners find the MLOps topic category most challenging, especially topics related to model deployment & monitoring and Automated ML pipeline. These findings have implications for all three AutoML stakeholders: AutoML researchers, AutoML service vendors, and AutoML developers. Academia and Industry collaboration can improve different aspects of AutoML, such as better DevOps/deployment support and tutorial-based documentation.
EvoGraph: Hybrid Directed Graph Evolution toward Software 3.0
We introduce **EvoGraph**, a framework that enables software systems to evolve their own source code, build pipelines, documentation, and tickets. EvoGraph represents every artefact in a typed directed graph, applies learned mutation operators driven by specialized small language models (SLMs), and selects survivors with a multi-objective fitness. On three benchmarks, EvoGraph fixes 83% of known security vulnerabilities, translates COBOL to Java with 93% functional equivalence (test verified), and maintains documentation freshness within two minutes. Experiments show a 40% latency reduction and a sevenfold drop in feature lead time compared with strong baselines. We extend our approach to **evoGraph**, leveraging language-specific SLMs for modernizing .NET, Lisp, CGI, ColdFusion, legacy Python, and C codebases, achieving 82-96% semantic equivalence across languages while reducing computational costs by 90% compared to large language models. EvoGraph's design responds to empirical failure modes in legacy modernization, such as implicit contracts, performance preservation, and integration evolution. Our results suggest a practical path toward Software 3.0, where systems adapt continuously yet remain under measurable control.
Predicting Maintenance Cessation of Open Source Software Repositories with An Integrated Feature Framework
The maintenance risks of open source software (OSS) projects pose significant threats to the quality, security, and resilience of modern software supply chains. While prior research has proposed diverse approaches for predicting OSS maintenance risk -- leveraging signals ranging from surface features (e.g., stars, commits) to social network analyses and behavioral patterns -- existing methods often suffer from ambiguous operational definitions, limited interpretability, and datasets of insufficient scale or generalizability. In this work, we introduce ``maintenance cessation'', grounded in both explicit archival status and rigorous semantic analysis of project documentation. Building on this foundation, we curate a large-scale, longitudinal dataset of 115,466 GitHub repositories -- encompassing 57,733 confirmed cessation events -- complemented by comprehensive, timeline-based behavioral features. We propose an integrated, multi-perspective feature framework for predicting maintenance cessation, systematically combining user-centric features, maintainer-centric features and project evolution features. AFT survival analysis demonstrates a high C-index (0.846), substantially outperforming models relying only on surface features. Feature ablation and SHAP analysis further confirm the effectiveness and interpretability of our approach. Finally, we demonstrate real-world applicability by deploying a GBSA classifier in the openEuler ecosystem for proactive package risk screening. Our work establishes a scalable, interpretable foundation for maintenance-risk prediction, enabling reproducible risk management across large-scale open source ecosystems.
API2Com: On the Improvement of Automatically Generated Code Comments Using API Documentations
Code comments can help in program comprehension and are considered as important artifacts to help developers in software maintenance. However, the comments are mostly missing or are outdated, specially in complex software projects. As a result, several automatic comment generation models are developed as a solution. The recent models explore the integration of external knowledge resources such as Unified Modeling Language class diagrams to improve the generated comments. In this paper, we propose API2Com, a model that leverages the Application Programming Interface Documentations (API Docs) as a knowledge resource for comment generation. The API Docs include the description of the methods in more details and therefore, can provide better context in the generated comments. The API Docs are used along with the code snippets and Abstract Syntax Trees in our model. We apply the model on a large Java dataset of over 130,000 methods and evaluate it using both Transformer and RNN-base architectures. Interestingly, when API Docs are used, the performance increase is negligible. We therefore run different experiments to reason about the results. For methods that only contain one API, adding API Docs improves the results by 4% BLEU score on average (BLEU score is an automatic evaluation metric used in machine translation). However, as the number of APIs that are used in a method increases, the performance of the model in generating comments decreases due to long documentations used in the input. Our results confirm that the API Docs can be useful in generating better comments, but, new techniques are required to identify the most informative ones in a method rather than using all documentations simultaneously.
Patched RTC: evaluating LLMs for diverse software development tasks
This paper introduces Patched Round-Trip Correctness (Patched RTC), a novel evaluation technique for Large Language Models (LLMs) applied to diverse software development tasks, particularly focusing on "outer loop" activities such as bug fixing, code review, and documentation updates. Patched RTC extends the original Round-Trip Correctness method to work with any LLM and downstream task, offering a self-evaluating framework that measures consistency and robustness of model responses without human intervention. The study demonstrates a correlation between Patched RTC scores and task-specific accuracy metrics, presenting it as an alternative to the LLM-as-Judge paradigm for open-domain task evaluation. We implement Patched RTC in an open-source framework called patchwork, allowing for transparent evaluation during inference across various patchflows. Experiments comparing GPT-3.5 and GPT-4 models across different software development tasks reveal that Patched RTC effectively distinguishes model performance and task difficulty. The paper also explores the impact of consistency prompts on improving model accuracy, suggesting that Patched RTC can guide prompt refinement and model selection for complex software development workflows.
A Benchmark for Localizing Code and Non-Code Issues in Software Projects
Accurate project localization (e.g., files and functions) for issue resolution is a critical first step in software maintenance. However, existing benchmarks for issue localization, such as SWE-Bench and LocBench, are limited. They focus predominantly on pull-request issues and code locations, ignoring other evidence and non-code files such as commits, comments, configurations, and documentation. To address this gap, we introduce MULocBench, a comprehensive dataset of 1,100 issues from 46 popular GitHub Python projects. Comparing with existing benchmarks, MULocBench offers greater diversity in issue types, root causes, location scopes, and file types, providing a more realistic testbed for evaluation. Using this benchmark, we assess the performance of state-of-the-art localization methods and five LLM-based prompting strategies. Our results reveal significant limitations in current techniques: even at the file level, performance metrics (Acc@5, F1) remain below 40%. This underscores the challenge of generalizing to realistic, multi-faceted issue resolution. To enable future research on project localization for issue resolution, we publicly release MULocBench at https://huggingface.co/datasets/somethingone/MULocBench.
PeaTMOSS: A Dataset and Initial Analysis of Pre-Trained Models in Open-Source Software
The development and training of deep learning models have become increasingly costly and complex. Consequently, software engineers are adopting pre-trained models (PTMs) for their downstream applications. The dynamics of the PTM supply chain remain largely unexplored, signaling a clear need for structured datasets that document not only the metadata but also the subsequent applications of these models. Without such data, the MSR community cannot comprehensively understand the impact of PTM adoption and reuse. This paper presents the PeaTMOSS dataset, which comprises metadata for 281,638 PTMs and detailed snapshots for all PTMs with over 50 monthly downloads (14,296 PTMs), along with 28,575 open-source software repositories from GitHub that utilize these models. Additionally, the dataset includes 44,337 mappings from 15,129 downstream GitHub repositories to the 2,530 PTMs they use. To enhance the dataset's comprehensiveness, we developed prompts for a large language model to automatically extract model metadata, including the model's training datasets, parameters, and evaluation metrics. Our analysis of this dataset provides the first summary statistics for the PTM supply chain, showing the trend of PTM development and common shortcomings of PTM package documentation. Our example application reveals inconsistencies in software licenses across PTMs and their dependent projects. PeaTMOSS lays the foundation for future research, offering rich opportunities to investigate the PTM supply chain. We outline mining opportunities on PTMs, their downstream usage, and cross-cutting questions.
The Responsible Foundation Model Development Cheatsheet: A Review of Tools & Resources
Foundation model development attracts a rapidly expanding body of contributors, scientists, and applications. To help shape responsible development practices, we introduce the Foundation Model Development Cheatsheet: a growing collection of 250+ tools and resources spanning text, vision, and speech modalities. We draw on a large body of prior work to survey resources (e.g. software, documentation, frameworks, guides, and practical tools) that support informed data selection, processing, and understanding, precise and limitation-aware artifact documentation, efficient model training, advance awareness of the environmental impact from training, careful model evaluation of capabilities, risks, and claims, as well as responsible model release, licensing and deployment practices. We hope this curated collection of resources helps guide more responsible development. The process of curating this list, enabled us to review the AI development ecosystem, revealing what tools are critically missing, misused, or over-used in existing practices. We find that (i) tools for data sourcing, model evaluation, and monitoring are critically under-serving ethical and real-world needs, (ii) evaluations for model safety, capabilities, and environmental impact all lack reproducibility and transparency, (iii) text and particularly English-centric analyses continue to dominate over multilingual and multi-modal analyses, and (iv) evaluation of systems, rather than just models, is needed so that capabilities and impact are assessed in context.
Documenting Ethical Considerations in Open Source AI Models
Background: The development of AI-enabled software heavily depends on AI model documentation, such as model cards, due to different domain expertise between software engineers and model developers. From an ethical standpoint, AI model documentation conveys critical information on ethical considerations along with mitigation strategies for downstream developers to ensure the delivery of ethically compliant software. However, knowledge on such documentation practice remains scarce. Aims: The objective of our study is to investigate how developers document ethical aspects of open source AI models in practice, aiming at providing recommendations for future documentation endeavours. Method: We selected three sources of documentation on GitHub and Hugging Face, and developed a keyword set to identify ethics-related documents systematically. After filtering an initial set of 2,347 documents, we identified 265 relevant ones and performed thematic analysis to derive the themes of ethical considerations. Results: Six themes emerge, with the three largest ones being model behavioural risks, model use cases, and model risk mitigation. Conclusions: Our findings reveal that open source AI model documentation focuses on articulating ethical problem statements and use case restrictions. We further provide suggestions to various stakeholders for improving documentation practice regarding ethical considerations.
GPIoT: Tailoring Small Language Models for IoT Program Synthesis and Development
Code Large Language Models (LLMs) enhance software development efficiency by automatically generating code and documentation in response to user requirements. However, code LLMs cannot synthesize specialized programs when tasked with IoT applications that require domain knowledge. While Retrieval-Augmented Generation (RAG) offers a promising solution by fetching relevant domain knowledge, it necessitates powerful cloud LLMs (e.g., GPT-4) to process user requirements and retrieved contents, which raises significant privacy concerns. This approach also suffers from unstable networks and prohibitive LLM query costs. Moreover, it is challenging to ensure the correctness and relevance of the fetched contents. To address these issues, we propose GPIoT, a code generation system for IoT applications by fine-tuning locally deployable Small Language Models (SLMs) on IoT-specialized datasets. SLMs have smaller model sizes, allowing efficient local deployment and execution to mitigate privacy concerns and network uncertainty. Furthermore, by fine-tuning the SLMs with our IoT-specialized datasets, the SLMs' ability to synthesize IoT-related programs can be substantially improved. To evaluate GPIoT's capability in synthesizing programs for IoT applications, we develop a benchmark, IoTBench. Extensive experiments and user trials demonstrate the effectiveness of GPIoT in generating IoT-specialized code, outperforming state-of-the-art code LLMs with an average task accuracy increment of 64.7% and significant improvements in user satisfaction.
EnvX: Agentize Everything with Agentic AI
The widespread availability of open-source repositories has led to a vast collection of reusable software components, yet their utilization remains manual, error-prone, and disconnected. Developers must navigate documentation, understand APIs, and write integration code, creating significant barriers to efficient software reuse. To address this, we present EnvX, a framework that leverages Agentic AI to agentize GitHub repositories, transforming them into intelligent, autonomous agents capable of natural language interaction and inter-agent collaboration. Unlike existing approaches that treat repositories as static code resources, EnvX reimagines them as active agents through a three-phase process: (1) TODO-guided environment initialization, which sets up the necessary dependencies, data, and validation datasets; (2) human-aligned agentic automation, allowing repository-specific agents to autonomously perform real-world tasks; and (3) Agent-to-Agent (A2A) protocol, enabling multiple agents to collaborate. By combining large language model capabilities with structured tool integration, EnvX automates not just code generation, but the entire process of understanding, initializing, and operationalizing repository functionality. We evaluate EnvX on the GitTaskBench benchmark, using 18 repositories across domains such as image processing, speech recognition, document analysis, and video manipulation. Our results show that EnvX achieves a 74.07% execution completion rate and 51.85% task pass rate, outperforming existing frameworks. Case studies further demonstrate EnvX's ability to enable multi-repository collaboration via the A2A protocol. This work marks a shift from treating repositories as passive code resources to intelligent, interactive agents, fostering greater accessibility and collaboration within the open-source ecosystem.
CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges
Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. Real-world software development, however, often involves complex code repositories (named repo) with complex dependencies and extensive documentation. To fill this gap, our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation. We introduce CodeAgentBench, a manually curated benchmark for repo-level code generation. This benchmark comprises five high-quality Python projects, encompassing a total of 101 samples. We assess nine leading LLMs on repo-level tasks and observe a decline in their performance. To tackle this, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code symbol navigation, and code testing. We implement four agent strategies to optimize these tools' usage. Our experiments on CodeAgentBench show that CodeAgent enhances LLM performance significantly, with improvements ranging from 18.1\% to 250\%. Further tests on the HumanEval benchmark confirm CodeAgent's adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent's robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.
The Neural MMO Platform for Massively Multiagent Research
Neural MMO is a computationally accessible research platform that combines large agent populations, long time horizons, open-ended tasks, and modular game systems. Existing environments feature subsets of these properties, but Neural MMO is the first to combine them all. We present Neural MMO as free and open source software with active support, ongoing development, documentation, and additional training, logging, and visualization tools to help users adapt to this new setting. Initial baselines on the platform demonstrate that agents trained in large populations explore more and learn a progression of skills. We raise other more difficult problems such as many-team cooperation as open research questions which Neural MMO is well-suited to answer. Finally, we discuss current limitations of the platform, potential mitigations, and plans for continued development.
DocuMint: Docstring Generation for Python using Small Language Models
Effective communication, specifically through documentation, is the beating heart of collaboration among contributors in software development. Recent advancements in language models (LMs) have enabled the introduction of a new type of actor in that ecosystem: LM-powered assistants capable of code generation, optimization, and maintenance. Our study investigates the efficacy of small language models (SLMs) for generating high-quality docstrings by assessing accuracy, conciseness, and clarity, benchmarking performance quantitatively through mathematical formulas and qualitatively through human evaluation using Likert scale. Further, we introduce DocuMint, as a large-scale supervised fine-tuning dataset with 100,000 samples. In quantitative experiments, Llama 3 8B achieved the best performance across all metrics, with conciseness and clarity scores of 0.605 and 64.88, respectively. However, under human evaluation, CodeGemma 7B achieved the highest overall score with an average of 8.3 out of 10 across all metrics. Fine-tuning the CodeGemma 2B model using the DocuMint dataset led to significant improvements in performance across all metrics, with gains of up to 22.5% in conciseness. The fine-tuned model and the dataset can be found in HuggingFace and the code can be found in the repository.
What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims
Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.
LibVulnWatch: A Deep Assessment Agent System and Leaderboard for Uncovering Hidden Vulnerabilities in Open-Source AI Libraries
Open-source AI libraries are foundational to modern AI systems but pose significant, underexamined risks across security, licensing, maintenance, supply chain integrity, and regulatory compliance. We present LibVulnWatch, a graph-based agentic assessment framework that performs deep, source-grounded evaluations of these libraries. Built on LangGraph, the system coordinates a directed acyclic graph of specialized agents to extract, verify, and quantify risk using evidence from trusted sources such as repositories, documentation, and vulnerability databases. LibVulnWatch generates reproducible, governance-aligned scores across five critical domains, publishing them to a public leaderboard for longitudinal ecosystem monitoring. Applied to 20 widely used libraries, including ML frameworks, LLM inference engines, and agent orchestration tools, our system covers up to 88% of OpenSSF Scorecard checks while uncovering up to 19 additional risks per library. These include critical Remote Code Execution (RCE) vulnerabilities, absent Software Bills of Materials (SBOMs), licensing constraints, undocumented telemetry, and widespread gaps in regulatory documentation and auditability. By translating high-level governance principles into practical, verifiable metrics, LibVulnWatch advances technical AI governance with a scalable, transparent mechanism for continuous supply chain risk assessment and informed library selection.
Database Systems Course: Service Learning Project
This paper describes a service learning project used in an upper-level and graduate-level database systems course. Students complete a small database project for a real client. The final product must match the client specification and needs, and include the database design and the final working database system with embedded user documentation. The solution must be implemented in a way to make it as easy to use as possible for the client. Students are expected to conduct professional meetings with their clients to understand the project, analyze the project's requirements, as well as design and implement the solution to the project. Students must have each milestone approved before starting the next phase of the project. The student learning objectives of a database system semester project are to: analyze a client's information system problem and determine the requirements for the solution; design a suitable database solution to the problem; use software design and development tools to design and develop a solution to the problem; communicate and interact with a client on a professional level; prepare effective documentation for both non-technical and technical software users; and interact ethically with all persons involved with a project. The broader impact objectives of a database system semester project are to: provide needed database solutions for organizations and businesses in the local area; provide a resume and portfolio-building opportunity for the students; provide a measure for assessing how well the program meets it mission; provide a mechanism for implementing service-based learning; provide a mechanism for outreach to local-area organizations and businesses; and provide a starting-point for undergraduate research projects.
