File size: 18,602 Bytes
189d8e6
 
 
f865105
dc88c51
e46b406
3316662
dc5b38a
22489be
dc5b38a
 
 
5bc92c5
cdd567e
dc88c51
4c94d57
 
 
 
 
 
 
 
 
4c3f05f
5bc92c5
 
dc5b38a
 
 
f865105
4c3f05f
f71f633
f865105
dc5b38a
 
 
 
 
 
 
 
 
4c3f05f
978fbbf
5bc92c5
 
22489be
4c3f05f
22489be
dc5b38a
 
 
 
 
 
 
 
 
 
 
 
 
 
3316662
dc5b38a
22489be
 
 
 
 
1fac1a0
22489be
 
 
 
 
1fac1a0
22489be
1fac1a0
d898d4b
5bc92c5
4c3f05f
a75a22d
5bc92c5
a75a22d
d898d4b
62a239a
a75a22d
0b3fcac
f86dcfb
5bc92c5
a75a22d
8af65bd
5bc92c5
d898d4b
b4f488c
b39fef1
541dc83
cf6f850
b4f488c
 
3be5e3f
 
 
 
 
 
cf6f850
3be5e3f
 
b39fef1
 
62a239a
 
 
a75a22d
f86dcfb
0c38efd
 
f86dcfb
0c38efd
 
5bc92c5
cdd567e
 
 
 
 
4c3f05f
4c94d57
6470c20
 
 
 
 
 
 
 
22489be
c8c7d5c
 
 
 
 
 
 
22489be
 
4c3f05f
2bbd27c
 
 
 
89721e0
2bbd27c
 
abe8f37
 
 
 
 
 
0ec63d2
c4a225e
 
 
 
 
 
 
 
 
cdd567e
2bbd27c
 
4a86d87
 
 
dfa9dfa
 
05fc98b
cdd567e
4a86d87
c4a225e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a86d87
 
1deba1e
cdd567e
4a86d87
 
 
22489be
cdd567e
36f9277
8af65bd
 
4a86d87
 
c8c7d5c
2bbd27c
 
 
 
1deba1e
 
 
 
62a239a
1deba1e
 
 
2bbd27c
1deba1e
 
 
 
 
 
 
 
 
 
0574d68
1deba1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bbd27c
 
 
1deba1e
 
 
 
 
 
 
 
2bbd27c
cdd567e
2bbd27c
 
 
1deba1e
 
 
 
 
 
 
 
cdd567e
2bbd27c
1deba1e
 
 
 
 
 
 
 
22489be
1deba1e
 
2bbd27c
 
 
 
1deba1e
2bbd27c
 
cdd567e
2bbd27c
22489be
 
2bbd27c
cdd567e
2bbd27c
1deba1e
 
2bbd27c
 
cdd567e
2bbd27c
1deba1e
 
2bbd27c
 
cdd567e
2bbd27c
1deba1e
2bbd27c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3314fbe
 
 
 
 
 
 
2bbd27c
b916f75
2bbd27c
 
c48b8d8
da3944a
2bbd27c
3314fbe
2bbd27c
 
8b45370
 
6d15447
8b45370
2bbd27c
 
 
 
 
 
 
 
6d15447
2bbd27c
 
 
 
 
 
 
 
 
 
 
 
 
 
8b45370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b916f75
8b45370
 
c48b8d8
da3944a
8b45370
3314fbe
8b45370
 
f865105
5bc92c5
0c38efd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"

import gradio as gr
import torch
import spaces
import torchaudio
import uuid
import time
from datetime import timedelta
from lhotse import Recording
from lhotse.dataset import DynamicCutSampler
from nemo.collections.speechlm2 import SALM
from pathlib import Path 

# Set synthwave theme
theme = gr.themes.Ocean(
    primary_hue="indigo",
    secondary_hue="fuchsia",
    neutral_hue="slate",
).set(
    button_large_radius='*radius_sm'
)

# Set device to use cuda if available and sample rate to 16000 for Nvidia NeMo
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
SAMPLE_RATE = 16000
MAX_AUDIO_MINUTES = 120
CHUNK_SECONDS = 40.0
BATCH_SIZE = 192

# Load the model from Hugging Face Hub using Nvidia SALM
model = SALM.from_pretrained("nvidia/canary-qwen-2.5b").bfloat16().eval().to(device)

def as_batches(audio_filepath, utt_id):
    rec = Recording.from_file(audio_filepath, recording_id=utt_id)
    if rec.duration / 60.0 > MAX_AUDIO_MINUTES:
        raise gr.Error(f"Audio file is too long. Maximum duration is {MAX_AUDIO_MINUTES} minutes.")
    cut = rec.resample(SAMPLE_RATE).to_cut()
    if cut.num_channels > 1:
        cut = cut.to_mono(mono_downmix=True)
    return DynamicCutSampler(cut.cut_into_windows(CHUNK_SECONDS), max_cuts=BATCH_SIZE)

# Define the audio transcription function and use ZeroGPU
@spaces.GPU
def transcribe_audio(audio_filepath):
    if audio_filepath is None:
        return "Please upload an audio file", "", [], ""

    start_time = time.time()
    utt_id = uuid.uuid4()
    pred_text = []
    for batch in as_batches(audio_filepath, str(utt_id)):
        audio, audio_lens = batch.load_audio(collate=True)
        with torch.inference_mode():
            output_ids = model.generate(
                prompts=[[{"role": "user", "content": f"Transcribe the following using accurate punctuation and capitalization: {model.audio_locator_tag}"}]] * len(batch),
                audios=torch.as_tensor(audio).to(device, non_blocking=True),
                audio_lens=torch.as_tensor(audio_lens).to(device, non_blocking=True),
                max_new_tokens=256,
            )
        texts = [model.tokenizer.ids_to_text(oids) for oids in output_ids.cpu()]
        for t in texts:
            pred_text.append(t)
    
    transcript = ' '.join(pred_text)
    end_time = time.time()
    
    # Calculate statistics
    transcription_time = round(end_time - start_time, 2)
    word_count = len(transcript.split())
    words_per_second = round(word_count / transcription_time, 2) if transcription_time > 0 else 0
    
    # Get filename
    filename = Path(audio_filepath).name
    
    # Create label with stats
    label_text = f"File: {filename} | Words: {word_count} | Time: {transcription_time}s | WPS: {words_per_second}"
    
    return transcript, transcript, gr.update(label=label_text)


@spaces.GPU
def transcript_qa(transcript, question):
    if not transcript:
        return "Please transcribe audio first before asking questions.", ""
    
    if not question or question.strip() == "":
        return "", ""
    
    with torch.inference_mode(), model.llm.disable_adapter():
        output_ids = model.generate(
            prompts=[[{"role": "user", "content": f"{question}\n\nTranscript: {transcript}"}]],
            max_new_tokens=1024,
        )
    
    ans = model.tokenizer.ids_to_text(output_ids[0].cpu())
    ans = ans.split("<|im_start|>assistant")[-1]
    
    thinking = ""
    if "<think>" in ans:
        if "</think>" in ans:
            parts = ans.split("<think>")
            # Get text before <think> tag if any
            before_think = parts[0] if len(parts) > 1 else ""
            # Get content between <think> and </think>
            think_content = parts[1] if len(parts) > 1 else parts[0]
            thinking, after_think = think_content.split("</think>")
            thinking = thinking.strip()
            # Combine text before and after thinking
            ans = before_think + after_think
    ans = ans.strip()
    
    if not ans:
        ans = "I couldn't generate a response. Please try rephrasing your question."
    
    return ans, thinking

def disable_transcribe():
    return gr.update(interactive=False)

def enable_transcribe():
    return gr.update(interactive=True)

# Load external CSS and HTML
def load_template(filename):
    template_path = Path(__file__).parent / "templates" / filename
    return template_path.read_text() if template_path.exists() else ""

# Build the Gradio interface
with gr.Blocks(theme=theme) as demo:
    # Simple banner image - responsive and clean
    gr.HTML("""
    <div style="width: 100%; margin-bottom: 20px;">
        <img src="https://huggingface.co/spaces/ACloudCenter/canary-qwen-transcriber-2.5b/resolve/main/public/banner.png" 
             style="width: 100%; height: auto; border-radius: 15px; box-shadow: 0 10px 40px rgba(0,0,0,0.2);"
             alt="Canary-Qwen Transcriber Banner">
    </div>
    """)
    gr.Markdown("## Upload an Audio File, Choose an Example File, or Record Yourself Then Ask Questions About the Transcript.")
    gr.Markdown('''NVIDIA NeMo Canary-Qwen-2.5B is an English speech recognition model that achieves state-of-the art 
                performance on multiple English speech benchmarks. With 2.5 billion parameters and running at 418 RTFx, 
                Canary-Qwen-2.5B supports automatic speech-to-text recognition (ASR) in English with punctuation and capitalization 
                (PnC). The model works in two modes: as a transcription tool (ASR mode) and as an LLM (LLM mode). In ASR mode, the 
                model is only capable of transcribing the speech into text, but does not retain any LLM-specific skills such as reasoning. 
                In LLM mode, the model retains all of the original LLM capabilities, which can be used to post-process the transcript, e.g. 
                summarize it or answer questions about it. In LLM mode, the model does not "understand" the raw audio anymore - only 
                its transcript. This model is ready for commercial use. All example audio was generated using Microsoft VibeVoice, found in my other space
                - [Conference Generator VibeVoice](https://huggingface.co/spaces/ACloudCenter/Conference-Generator-VibeVoice)''')

    with gr.Tabs():
        with gr.Tab("Transcribe"):
            # State variables
            transcript_state = gr.State("")

            # Example questions
            example_questions = [
        ["Can you summarize this meeting?"],
        ["Please provide bullet points of the key items."],
        ["What is the TL;DR of this meeting?"],
        ["What was the main take-away?"],
        ["What was the main topic?"],
    ]
            
            # Define file paths as variables
            ai_ted = "public/audio_files/ai_tedtalk.wav"
            financial = "public/audio_files/financial_meeting.wav"
            military = "public/audio_files/military_meeting.wav"
            oil = "public/audio_files/oil_meeting.wav"
            political = "public/audio_files/political_speech.wav"
            telehealth = "public/audio_files/telehealth_meeting.wav"
            game_dev = "public/audio_files/game_create_meeting.wav"
            product = "public/audio_files/product_meeting.wav"
    
            # Audio Input and Transcript
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Audio Input")
                    audio_input = gr.Audio(
                sources=["microphone", "upload"], 
                type="filepath", 
                label="Record/Upload Audio (MP3, WAV, M4A, etc.)",
                show_download_button=True
                    )
                    gr.Examples(
                        examples=[
                            [ai_ted],
                            [financial],
                            [military],
                            [oil],
                            [political],
                            [telehealth],
                            [game_dev],
                            [product]
                        ],
                        inputs=audio_input,
                        label="Example Audio Files",
                        example_labels=["AI TED Talk", "Financial Meeting", "Military Meeting", "Oil & Gas Meeting", 
                                        "Political Speech", "Telehealth Meeting", "Game Dev Meeting", "Product Meeting"]
                    )
                    transcribe_btn = gr.Button("Transcribe Audio", variant="primary", size="lg")
                    clear_audio_btn = gr.Button("Clear Audio")

                with gr.Column(scale=1):
                    gr.Markdown("### Transcript")
                    transcript_output = gr.Textbox(
                label="Waiting for transcription...", 
                lines=12,
                placeholder="Transcript will appear here after clicking 'Transcribe Audio'...",
                max_lines=12,
                autoscroll=True
                    )
                    clear_transcript_btn = gr.Button("Clear Transcript")

            # Spacing
            gr.Markdown("---")
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("### Interactive Q&A")
                    gr.Markdown("#### About Context-Aware Q&A")
                    gr.Markdown("""The model retains the full transcript context, allowing you to ask follow-up questions 
                        naturally without re-stating information. It understands references like 'they', 'it', or 'that topic'.""")
                    gr.Markdown("#### Example Questions")
                    # Examples will be added after msg is defined
                    example_container = gr.Column()
                
                with gr.Column(scale=3):
                    # Add thinking display above chat
                    with gr.Accordion("🧠 Model Thinking", open=False):
                        thinking_box = gr.Textbox(
                            label="",
                            placeholder="The model's reasoning will appear here when available...",
                            lines=6,
                            max_lines=10,
                            interactive=False
                        )

                    chatbot = gr.Chatbot(
                        label="Response",
                        type="messages",
                        height=400,
                        show_copy_button=True,
                        autoscroll=True
                    )
                    with gr.Row():
                        msg = gr.Textbox(
                            placeholder="Ask a question about the transcript...", 
                            label="Your Question",
                            lines=1
                        )
                        submit_chat_btn = gr.Button("Send", variant="primary", scale=1)
                    clear_chat_btn = gr.Button("Clear Chat", size="sm")
                    
            # Event handlers
            def submit_question(question, transcript):
                if not question or question.strip() == "":
                    yield "", [], ""
                answer, thinking = transcript_qa(transcript, question)
                # Just show the current Q&A, no history
                messages = [
                    {"role": "user", "content": question},
                    {"role": "assistant", "content": answer}
                ]
                yield "", messages, thinking

            
            # Add examples inside the left column container
            with example_container:
                gr.Examples(
                    examples=example_questions,
                    inputs=msg,
                    outputs=[msg, chatbot, thinking_box],
                    fn=lambda q: submit_question(q, transcript_state.value),
                    cache_examples=False,
                    label=""
                )

            transcribe_btn.click(
                fn=disable_transcribe,
                outputs=[transcribe_btn]
            ).then(
                fn=lambda: ([], ""),
                outputs=[chatbot, thinking_box]
            ).then(
                fn=transcribe_audio,
                inputs=[audio_input],
                outputs=[transcript_output, transcript_state, transcript_output]  # Third output updates the label
            ).then(
                fn=enable_transcribe,
                outputs=[transcribe_btn]
            )
            
            clear_audio_btn.click(
                fn=lambda: None,
                outputs=[audio_input]
            )

            clear_transcript_btn.click(
                fn=lambda: ("", "", gr.update(label="Waiting for transcription...")),
                outputs=[transcript_output, transcript_state, transcript_output]
            )

            msg.submit(
                fn=submit_question,
                inputs=[msg, transcript_state],
                outputs=[msg, chatbot, thinking_box]
            )

            submit_chat_btn.click(
                fn=submit_question,
                inputs=[msg, transcript_state],
                outputs=[msg, chatbot, thinking_box]
            )

            clear_chat_btn.click(
                fn=lambda: ([], ""),
                outputs=[chatbot, thinking_box]
            )
        
        with gr.Tab("Architecture"):
            gr.Markdown("### Model Performance")
            
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("""
                    #### Industry-Leading Performance
                    
                    Canary ranks at the top of the HuggingFace Open ASR Leaderboard with an average word error rate (WER) of **6.67%**. It outperforms all other open-source models by a wide margin.
                    
                    #### Training Data
                    
                    Canary is trained on a combination of public and in-house data:
                    - **85K hours** of transcribed speech for speech recognition
                    - NVIDIA NeMo text translation models used to generate translations of the original transcripts in all supported languages
                    
                    Despite using an order of magnitude less data, Canary outperforms the similarly sized Whisper-large-v3 and SeamlessM4T-Medium-v1 models on both transcription and translation tasks.
                    """)
                    
                    gr.Markdown("### Benchmark Results")
                    gr.Markdown("""
                    #### Word Error Rate (WER) on MCV 16.1 Test Sets
                    On the MCV 16.1 test sets for English, Spanish, French, and German, Canary achieved a WER of **5.77** (lower is better).
                    """)

                
                with gr.Column(scale=3):
                    gr.HTML("""
                    <div style="text-align: center; padding: 20px;">
                        <img src="https://huggingface.co/spaces/ACloudCenter/canary-qwen-transcriber-2.5b/resolve/main/public/nvidia-speech.png" 
                             style="width: 100%; height: auto; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"
                             alt="NVIDIA Canary Architecture">
                        <p style="margin-top: 10px; color: #666; font-size: 14px;">NVIDIA ASR</p>
                    </div>
                    """)

            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown("""
                    | Model | Average WER |
                    |-------|-------------|
                    | **Canary** | **5.77** |
                    | SeamlessM4T-v2 | 6.41 |
                    | Whisper-large-v3 | 8.05 |
                    | SeamlessM4T-v1 | 9.48 |
                    """)
                
                with gr.Column(scale=3):
                    gr.Markdown("""
                    #### Translation BLEU Scores
                    
                    **From English** (ES, FR, DE on FLEURS & MExpresso):
                    - Canary: **30.57** BLEU
                    
                    **To English** (ES, FR, DE on FLEURS & CoVoST):
                    - Canary: **34.25** BLEU
                    
                    *(Higher BLEU scores indicate better translation quality)*
                    """)
            
            gr.Markdown("---")
            
            with gr.Row():
                with gr.Column():
                    gr.Markdown("""
                    ### Canary Architecture Details
                    
                    Canary is an encoder-decoder model built on NVIDIA innovations:
                    
                    - **Encoder**: Fast-Conformer - an efficient Conformer architecture optimized for ~3x savings on compute and ~4x savings on memory
                    - **Processing**: Audio is processed as log-mel spectrogram features
                    - **Decoder**: Transformer decoder generates output text tokens auto-regressively
                    - **Control**: Special tokens control whether Canary performs transcription or translation
                    - **Tokenizer**: Concatenated tokenizer offers explicit control of output token space
                    
                    #### Licensing
                    
                    - **Model weights**: CC BY-NC 4.0 license (research-friendly, non-commercial)
                    - **Training code**: Apache 2.0 license (available from NeMo)
                    
                    For more information about accessing Canary locally and building on top of it, see the [NVIDIA/NeMo GitHub repository](https://github.com/NVIDIA/NeMo).
                    """)
                    
                with gr.Column(scale=3):
                    gr.HTML("""
                    <div style="text-align: center; padding: 20px;">
                        <img src="https://huggingface.co/spaces/ACloudCenter/canary-qwen-transcriber-2.5b/resolve/main/public/chart1.png" 
                             style="width: 100%; height: auto; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"
                             alt="NVIDIA Canary Architecture">
                        <p style="margin-top: 10px; color: #666; font-size: 14px;">ASR Models RTFx vs Accuracy Benchmarks</p>
                    </div>
                    """)

demo.queue()
demo.launch()