Spaces:
Runtime error
Runtime error
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +84 -30
src/streamlit_app.py
CHANGED
|
@@ -688,36 +688,90 @@ if st.session_state.show_results:
|
|
| 688 |
else:
|
| 689 |
unique_categories = list(FIXED_CATEGORY_MAPPING.keys())
|
| 690 |
# --- Section 2a: Detailed Tables by Category/Label ---
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
|
| 704 |
-
|
| 705 |
-
|
| 706 |
-
|
| 707 |
-
|
| 708 |
-
|
| 709 |
-
|
| 710 |
-
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 721 |
# --- INSERTED GLOSSARY HERE ---
|
| 722 |
with st.expander("See Glossary of tags"):
|
| 723 |
st.write('''- **text**: ['entity extracted from your text data']- **label**: ['label (tag) assigned to a given extracted entity (custom or fixed)']- **category**: ['the grouping category (e.g., "Locations" or "User Defined Entities")']- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']- **start**: ['index of the start of the corresponding entity']- **end**: ['index of the end of the corresponding entity']''')
|
|
|
|
| 688 |
else:
|
| 689 |
unique_categories = list(FIXED_CATEGORY_MAPPING.keys())
|
| 690 |
# --- Section 2a: Detailed Tables by Category/Label ---
|
| 691 |
+
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
|
| 695 |
+
# --- Function to Apply Conditional Coloring to Scores ---
|
| 696 |
+
def color_score_gradient(df):
|
| 697 |
+
"""
|
| 698 |
+
Applies a color gradient to the 'score' column using Pandas Styler.
|
| 699 |
+
High scores (closer to 1.0) will be darker/more saturated.
|
| 700 |
+
"""
|
| 701 |
+
# Use 'YlGnBu' (Yellow-Green-Blue) gradient.
|
| 702 |
+
# We apply the gradient only to the 'score' column subset.
|
| 703 |
+
return df.style.background_gradient(
|
| 704 |
+
cmap='YlGnBu',
|
| 705 |
+
subset=['score']
|
| 706 |
+
).format(
|
| 707 |
+
{'score': '{:.4f}'} # Re-apply the four decimal place format
|
| 708 |
+
)
|
| 709 |
+
|
| 710 |
+
# --- Your Main Tab Detail Logic ---
|
| 711 |
+
|
| 712 |
+
# Note: This code assumes 'df', 'st.session_state.is_custom_mode', and 'unique_categories'
|
| 713 |
+
# are already defined earlier in your Streamlit application.
|
| 714 |
+
|
| 715 |
+
tab_category_details:
|
| 716 |
+
st.markdown("#### Detailed Entities Table (Grouped by Category)")
|
| 717 |
+
|
| 718 |
+
if st.session_state.is_custom_mode:
|
| 719 |
+
# In custom mode, group by the actual label since the category is just "User Defined Entities"
|
| 720 |
+
tabs_list = df['label'].unique().tolist()
|
| 721 |
+
tabs_category = st.tabs(tabs_list)
|
| 722 |
+
|
| 723 |
+
for label, tab in zip(tabs_list, tabs_category):
|
| 724 |
+
# Prepare the DataFrame for the current label
|
| 725 |
+
df_label = df[df['label'] == label][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False)
|
| 726 |
+
|
| 727 |
+
# Apply the coloring function
|
| 728 |
+
styled_df_label = color_score_gradient(df_label)
|
| 729 |
+
|
| 730 |
+
with tab:
|
| 731 |
+
st.markdown(f"##### {label.capitalize()} Entities ({len(df_label)} total)")
|
| 732 |
+
st.dataframe(
|
| 733 |
+
# Pass the STYLED DataFrame object to Streamlit
|
| 734 |
+
styled_df_label,
|
| 735 |
+
use_container_width=True,
|
| 736 |
+
# NOTE: st.column_config for 'score' is removed because Pandas Styler handles formatting and coloring
|
| 737 |
+
)
|
| 738 |
+
else:
|
| 739 |
+
# In fixed mode, group by the category defined in FIXED_CATEGORY_MAPPING
|
| 740 |
+
tabs_category = st.tabs(unique_categories)
|
| 741 |
+
|
| 742 |
+
for category, tab in zip(unique_categories, tabs_category):
|
| 743 |
+
# Prepare the DataFrame for the current category
|
| 744 |
+
df_category = df[df['category'] == category][['text', 'label', 'score', 'start', 'end']].sort_values(by='score', ascending=False)
|
| 745 |
+
|
| 746 |
+
# Apply the coloring function
|
| 747 |
+
styled_df_category = color_score_gradient(df_category)
|
| 748 |
+
|
| 749 |
+
with tab:
|
| 750 |
+
st.markdown(f"##### {category} Entities ({len(df_category)} total)")
|
| 751 |
+
if not df_category.empty:
|
| 752 |
+
st.dataframe(
|
| 753 |
+
# Pass the STYLED DataFrame object to Streamlit
|
| 754 |
+
styled_df_category,
|
| 755 |
+
use_container_width=True,
|
| 756 |
+
# NOTE: st.column_config for 'score' is removed
|
| 757 |
+
)
|
| 758 |
+
else:
|
| 759 |
+
st.info(f"No entities of category **{category}** were found in the text.")
|
| 760 |
+
|
| 761 |
+
|
| 762 |
+
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
|
| 774 |
+
|
| 775 |
# --- INSERTED GLOSSARY HERE ---
|
| 776 |
with st.expander("See Glossary of tags"):
|
| 777 |
st.write('''- **text**: ['entity extracted from your text data']- **label**: ['label (tag) assigned to a given extracted entity (custom or fixed)']- **category**: ['the grouping category (e.g., "Locations" or "User Defined Entities")']- **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']- **start**: ['index of the start of the corresponding entity']- **end**: ['index of the end of the corresponding entity']''')
|