File size: 18,273 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
#!/usr/bin/python
#-*- coding: utf-8 -*-
"""
Fully Convolutional SyncNet Instance for Inference

This module provides inference capabilities for the FCN-SyncNet model,
including variable-length input processing and temporal sync prediction.

Key improvements over original:
1. Processes entire sequences at once (no fixed windows)
2. Returns frame-by-frame sync predictions
3. Better temporal smoothing
4. Confidence estimation per frame

Author: Enhanced version
Date: 2025-11-22
"""

import torch
import torch.nn.functional as F
import numpy as np
import time, os, math, glob, subprocess
import cv2
import python_speech_features

from scipy import signal
from scipy.io import wavfile
from SyncNetModel_FCN import SyncNetFCN, SyncNetFCN_WithAttention
from shutil import rmtree


class SyncNetInstance_FCN(torch.nn.Module):
    """
    SyncNet instance for fully convolutional inference.
    Supports variable-length inputs and dense temporal predictions.
    """
    
    def __init__(self, model_type='fcn', embedding_dim=512, max_offset=15, use_attention=False):
        super(SyncNetInstance_FCN, self).__init__()
        
        self.embedding_dim = embedding_dim
        self.max_offset = max_offset
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Initialize model
        if use_attention:
            self.model = SyncNetFCN_WithAttention(
                embedding_dim=embedding_dim,
                max_offset=max_offset
            ).to(self.device)
        else:
            self.model = SyncNetFCN(
                embedding_dim=embedding_dim,
                max_offset=max_offset
            ).to(self.device)
    
    def loadParameters(self, path):
        """Load model parameters from checkpoint."""
        loaded_state = torch.load(path, map_location=self.device)
        
        # Handle different checkpoint formats
        if isinstance(loaded_state, dict):
            if 'model_state_dict' in loaded_state:
                state_dict = loaded_state['model_state_dict']
            elif 'state_dict' in loaded_state:
                state_dict = loaded_state['state_dict']
            else:
                state_dict = loaded_state
        else:
            state_dict = loaded_state.state_dict()
        
        # Load with strict=False to allow partial loading
        try:
            self.model.load_state_dict(state_dict, strict=True)
            print(f"Model loaded from {path}")
        except:
            print(f"Warning: Could not load all parameters from {path}")
            self.model.load_state_dict(state_dict, strict=False)
    
    def preprocess_audio(self, audio_path, target_length=None):
        """
        Load and preprocess audio file.
        
        Args:
            audio_path: Path to audio WAV file
            target_length: Optional target length in frames
            
        Returns:
            mfcc_tensor: [1, 1, 13, T] - MFCC features
            sample_rate: Audio sample rate
        """
        # Load audio
        sample_rate, audio = wavfile.read(audio_path)
        
        # Compute MFCC
        mfcc = python_speech_features.mfcc(audio, sample_rate)
        mfcc = mfcc.T  # [13, T]
        
        # Truncate or pad to target length
        if target_length is not None:
            if mfcc.shape[1] > target_length:
                mfcc = mfcc[:, :target_length]
            elif mfcc.shape[1] < target_length:
                pad_width = target_length - mfcc.shape[1]
                mfcc = np.pad(mfcc, ((0, 0), (0, pad_width)), mode='edge')
        
        # Add batch and channel dimensions
        mfcc = np.expand_dims(mfcc, axis=0)  # [1, 13, T]
        mfcc = np.expand_dims(mfcc, axis=0)  # [1, 1, 13, T]
        
        # Convert to tensor
        mfcc_tensor = torch.FloatTensor(mfcc)
        
        return mfcc_tensor, sample_rate
    
    def preprocess_video(self, video_path, target_length=None):
        """
        Load and preprocess video file.
        
        Args:
            video_path: Path to video file or directory of frames
            target_length: Optional target length in frames
            
        Returns:
            video_tensor: [1, 3, T, H, W] - video frames
        """
        # Load video frames
        if os.path.isdir(video_path):
            # Load from directory
            flist = sorted(glob.glob(os.path.join(video_path, '*.jpg')))
            images = [cv2.imread(f) for f in flist]
        else:
            # Load from video file
            cap = cv2.VideoCapture(video_path)
            images = []
            while True:
                ret, frame = cap.read()
                if not ret:
                    break
                images.append(frame)
            cap.release()
        
        if len(images) == 0:
            raise ValueError(f"No frames found in {video_path}")
        
        # Truncate or pad to target length
        if target_length is not None:
            if len(images) > target_length:
                images = images[:target_length]
            elif len(images) < target_length:
                # Pad by repeating last frame
                last_frame = images[-1]
                images.extend([last_frame] * (target_length - len(images)))
        
        # Stack and normalize
        im = np.stack(images, axis=0)  # [T, H, W, 3]
        im = im.astype(float) / 255.0  # Normalize to [0, 1]
        
        # Rearrange to [1, 3, T, H, W]
        im = np.transpose(im, (3, 0, 1, 2))  # [3, T, H, W]
        im = np.expand_dims(im, axis=0)  # [1, 3, T, H, W]
        
        # Convert to tensor
        video_tensor = torch.FloatTensor(im)
        
        return video_tensor
    
    def evaluate(self, opt, videofile):
        """
        Evaluate sync for a video file.
        Returns frame-by-frame sync predictions.
        
        Args:
            opt: Options object with configuration
            videofile: Path to video file
            
        Returns:
            offsets: [T] - predicted offset for each frame
            confidences: [T] - confidence for each frame
            sync_probs: [2K+1, T] - full probability distribution
        """
        self.model.eval()
        
        # Create temporary directory
        if os.path.exists(os.path.join(opt.tmp_dir, opt.reference)):
            rmtree(os.path.join(opt.tmp_dir, opt.reference))
        os.makedirs(os.path.join(opt.tmp_dir, opt.reference))
        
        # Extract frames and audio
        print("Extracting frames and audio...")
        frames_path = os.path.join(opt.tmp_dir, opt.reference)
        audio_path = os.path.join(opt.tmp_dir, opt.reference, 'audio.wav')
        
        # Extract frames
        command = (f"ffmpeg -y -i {videofile} -threads 1 -f image2 "
                  f"{os.path.join(frames_path, '%06d.jpg')}")
        subprocess.call(command, shell=True, stdout=subprocess.DEVNULL, 
                       stderr=subprocess.DEVNULL)
        
        # Extract audio
        command = (f"ffmpeg -y -i {videofile} -async 1 -ac 1 -vn "
                  f"-acodec pcm_s16le -ar 16000 {audio_path}")
        subprocess.call(command, shell=True, stdout=subprocess.DEVNULL,
                       stderr=subprocess.DEVNULL)
        
        # Preprocess audio and video
        print("Loading and preprocessing data...")
        audio_tensor, sample_rate = self.preprocess_audio(audio_path)
        video_tensor = self.preprocess_video(frames_path)
        
        # Check length consistency
        audio_duration = audio_tensor.shape[3] / 100.0  # MFCC is 100 fps
        video_duration = video_tensor.shape[2] / 25.0   # Video is 25 fps
        
        if abs(audio_duration - video_duration) > 0.1:
            print(f"WARNING: Audio ({audio_duration:.2f}s) and video "
                  f"({video_duration:.2f}s) lengths differ")
        
        # Align lengths (use shorter)
        min_length = min(
            video_tensor.shape[2],  # video frames
            audio_tensor.shape[3] // 4  # audio frames (4:1 ratio)
        )
        
        video_tensor = video_tensor[:, :, :min_length, :, :]
        audio_tensor = audio_tensor[:, :, :, :min_length*4]
        
        print(f"Processing {min_length} frames...")
        
        # Forward pass
        tS = time.time()
        with torch.no_grad():
            sync_probs, audio_feat, video_feat = self.model(
                audio_tensor.to(self.device),
                video_tensor.to(self.device)
            )
        
        print(f'Compute time: {time.time()-tS:.3f} sec')
        
        # Compute offsets and confidences
        offsets, confidences = self.model.compute_offset(sync_probs)
        
        # Convert to numpy
        offsets = offsets.cpu().numpy()[0]  # [T]
        confidences = confidences.cpu().numpy()[0]  # [T]
        sync_probs = sync_probs.cpu().numpy()[0]  # [2K+1, T]
        
        # Apply temporal smoothing to confidences
        confidences_smooth = signal.medfilt(confidences, kernel_size=9)
        
        # Compute overall statistics
        median_offset = np.median(offsets)
        mean_confidence = np.mean(confidences_smooth)
        
        # Find consensus offset (mode)
        offset_hist, offset_bins = np.histogram(offsets, bins=2*self.max_offset+1)
        consensus_offset = offset_bins[np.argmax(offset_hist)]
        
        # Print results
        np.set_printoptions(formatter={'float': '{: 0.3f}'.format})
        print('\nFrame-wise confidence (smoothed):')
        print(confidences_smooth)
        print(f'\nConsensus offset: \t{consensus_offset:.1f} frames')
        print(f'Median offset: \t\t{median_offset:.1f} frames')
        print(f'Mean confidence: \t{mean_confidence:.3f}')
        
        return offsets, confidences_smooth, sync_probs
    
    def evaluate_batch(self, opt, videofile, chunk_size=100, overlap=10):
        """
        Evaluate long videos in chunks with overlap for consistency.
        
        Args:
            opt: Options object
            videofile: Path to video file
            chunk_size: Number of frames per chunk
            overlap: Number of overlapping frames between chunks
            
        Returns:
            offsets: [T] - predicted offset for each frame
            confidences: [T] - confidence for each frame
        """
        self.model.eval()
        
        # Create temporary directory
        if os.path.exists(os.path.join(opt.tmp_dir, opt.reference)):
            rmtree(os.path.join(opt.tmp_dir, opt.reference))
        os.makedirs(os.path.join(opt.tmp_dir, opt.reference))
        
        # Extract frames and audio
        frames_path = os.path.join(opt.tmp_dir, opt.reference)
        audio_path = os.path.join(opt.tmp_dir, opt.reference, 'audio.wav')
        
        # Extract frames
        command = (f"ffmpeg -y -i {videofile} -threads 1 -f image2 "
                  f"{os.path.join(frames_path, '%06d.jpg')}")
        subprocess.call(command, shell=True, stdout=subprocess.DEVNULL, 
                       stderr=subprocess.DEVNULL)
        
        # Extract audio
        command = (f"ffmpeg -y -i {videofile} -async 1 -ac 1 -vn "
                  f"-acodec pcm_s16le -ar 16000 {audio_path}")
        subprocess.call(command, shell=True, stdout=subprocess.DEVNULL,
                       stderr=subprocess.DEVNULL)
        
        # Preprocess audio and video
        audio_tensor, sample_rate = self.preprocess_audio(audio_path)
        video_tensor = self.preprocess_video(frames_path)
        
        # Process in chunks
        all_offsets = []
        all_confidences = []
        
        stride = chunk_size - overlap
        num_chunks = (video_tensor.shape[2] - overlap) // stride + 1
        
        for chunk_idx in range(num_chunks):
            start_idx = chunk_idx * stride
            end_idx = min(start_idx + chunk_size, video_tensor.shape[2])
            
            # Extract chunk
            video_chunk = video_tensor[:, :, start_idx:end_idx, :, :]
            audio_chunk = audio_tensor[:, :, :, start_idx*4:end_idx*4]
            
            # Forward pass
            with torch.no_grad():
                sync_probs, _, _ = self.model(
                    audio_chunk.to(self.device),
                    video_chunk.to(self.device)
                )
            
            # Compute offsets
            offsets, confidences = self.model.compute_offset(sync_probs)
            
            # Handle overlap (average predictions)
            if chunk_idx > 0:
                # Average overlapping region
                overlap_frames = overlap
                all_offsets[-overlap_frames:] = (
                    all_offsets[-overlap_frames:] + 
                    offsets[:overlap_frames].cpu().numpy()[0]
                ) / 2
                all_confidences[-overlap_frames:] = (
                    all_confidences[-overlap_frames:] + 
                    confidences[:overlap_frames].cpu().numpy()[0]
                ) / 2
                
                # Append non-overlapping part
                all_offsets.extend(offsets[overlap_frames:].cpu().numpy()[0])
                all_confidences.extend(confidences[overlap_frames:].cpu().numpy()[0])
            else:
                all_offsets.extend(offsets.cpu().numpy()[0])
                all_confidences.extend(confidences.cpu().numpy()[0])
        
        offsets = np.array(all_offsets)
        confidences = np.array(all_confidences)
        
        return offsets, confidences
    
    def extract_features(self, opt, videofile, feature_type='both'):
        """
        Extract audio and/or video features for downstream tasks.
        
        Args:
            opt: Options object
            videofile: Path to video file
            feature_type: 'audio', 'video', or 'both'
            
        Returns:
            features: Dictionary with audio_features and/or video_features
        """
        self.model.eval()
        
        # Preprocess
        if feature_type in ['audio', 'both']:
            audio_path = os.path.join(opt.tmp_dir, opt.reference, 'audio.wav')
            audio_tensor, _ = self.preprocess_audio(audio_path)
        
        if feature_type in ['video', 'both']:
            frames_path = os.path.join(opt.tmp_dir, opt.reference)
            video_tensor = self.preprocess_video(frames_path)
        
        features = {}
        
        # Extract features
        with torch.no_grad():
            if feature_type in ['audio', 'both']:
                audio_features = self.model.forward_audio(audio_tensor.to(self.device))
                features['audio'] = audio_features.cpu().numpy()
            
            if feature_type in ['video', 'both']:
                video_features = self.model.forward_video(video_tensor.to(self.device))
                features['video'] = video_features.cpu().numpy()
        
        return features


# ==================== UTILITY FUNCTIONS ====================

def visualize_sync_predictions(offsets, confidences, save_path=None):
    """
    Visualize sync predictions over time.
    
    Args:
        offsets: [T] - predicted offsets
        confidences: [T] - confidence scores
        save_path: Optional path to save plot
    """
    try:
        import matplotlib.pyplot as plt
        
        fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8))
        
        # Plot offsets
        ax1.plot(offsets, linewidth=2)
        ax1.axhline(y=0, color='r', linestyle='--', alpha=0.5)
        ax1.set_xlabel('Frame')
        ax1.set_ylabel('Offset (frames)')
        ax1.set_title('Audio-Visual Sync Offset Over Time')
        ax1.grid(True, alpha=0.3)
        
        # Plot confidences
        ax2.plot(confidences, linewidth=2, color='green')
        ax2.set_xlabel('Frame')
        ax2.set_ylabel('Confidence')
        ax2.set_title('Sync Detection Confidence Over Time')
        ax2.grid(True, alpha=0.3)
        
        plt.tight_layout()
        
        if save_path:
            plt.savefig(save_path, dpi=150, bbox_inches='tight')
            print(f"Visualization saved to {save_path}")
        else:
            plt.show()
            
    except ImportError:
        print("matplotlib not installed. Skipping visualization.")


if __name__ == "__main__":
    import argparse
    
    # Parse arguments
    parser = argparse.ArgumentParser(description='FCN SyncNet Inference')
    parser.add_argument('--videofile', type=str, required=True,
                       help='Path to input video file')
    parser.add_argument('--model_path', type=str, default='data/syncnet_v2.model',
                       help='Path to model checkpoint')
    parser.add_argument('--tmp_dir', type=str, default='data/tmp',
                       help='Temporary directory for processing')
    parser.add_argument('--reference', type=str, default='test',
                       help='Reference name for this video')
    parser.add_argument('--use_attention', action='store_true',
                       help='Use attention-based model')
    parser.add_argument('--visualize', action='store_true',
                       help='Visualize results')
    parser.add_argument('--max_offset', type=int, default=15,
                       help='Maximum offset to consider (frames)')
    
    opt = parser.parse_args()
    
    # Create instance
    print("Initializing FCN SyncNet...")
    syncnet = SyncNetInstance_FCN(
        use_attention=opt.use_attention,
        max_offset=opt.max_offset
    )
    
    # Load model (if available)
    if os.path.exists(opt.model_path):
        print(f"Loading model from {opt.model_path}")
        try:
            syncnet.loadParameters(opt.model_path)
        except:
            print("Warning: Could not load pretrained weights. Using random initialization.")
    
    # Evaluate
    print(f"\nEvaluating video: {opt.videofile}")
    offsets, confidences, sync_probs = syncnet.evaluate(opt, opt.videofile)
    
    # Visualize
    if opt.visualize:
        viz_path = opt.videofile.replace('.mp4', '_sync_analysis.png')
        viz_path = viz_path.replace('.avi', '_sync_analysis.png')
        visualize_sync_predictions(offsets, confidences, save_path=viz_path)
    
    print("\nDone!")