Spaces:
Sleeping
Sleeping
File size: 26,192 Bytes
579f772 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 |
#!/usr/bin/python
#-*- coding: utf-8 -*-
"""
Fully Convolutional SyncNet (FCN-SyncNet) - CLASSIFICATION VERSION
Key difference from regression version:
- Output: Probability distribution over discrete offset classes
- Loss: CrossEntropyLoss instead of MSE
- Avoids regression-to-mean problem
Offset classes: -15 to +15 frames (31 classes total)
Class 0 = -15 frames, Class 15 = 0 frames, Class 30 = +15 frames
Author: Enhanced version based on original SyncNet
Date: 2025-12-04
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
import cv2
import os
import subprocess
from scipy.io import wavfile
import python_speech_features
class TemporalCorrelation(nn.Module):
"""
Compute correlation between audio and video features across time.
"""
def __init__(self, max_displacement=15):
super(TemporalCorrelation, self).__init__()
self.max_displacement = max_displacement
def forward(self, feat1, feat2):
"""
Args:
feat1: [B, C, T] - visual features
feat2: [B, C, T] - audio features
Returns:
correlation: [B, 2*max_displacement+1, T] - correlation map
"""
B, C, T = feat1.shape
max_disp = self.max_displacement
# Normalize features
feat1 = F.normalize(feat1, dim=1)
feat2 = F.normalize(feat2, dim=1)
# Pad feat2 for shifting
feat2_padded = F.pad(feat2, (max_disp, max_disp), mode='replicate')
corr_list = []
for offset in range(-max_disp, max_disp + 1):
shifted_feat2 = feat2_padded[:, :, offset+max_disp:offset+max_disp+T]
corr = (feat1 * shifted_feat2).sum(dim=1, keepdim=True)
corr_list.append(corr)
correlation = torch.cat(corr_list, dim=1)
return correlation
class ChannelAttention(nn.Module):
"""Squeeze-and-Excitation style channel attention."""
def __init__(self, channels, reduction=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Sequential(
nn.Linear(channels, channels // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, t = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1)
return x * y.expand_as(x)
class TemporalAttention(nn.Module):
"""Self-attention over temporal dimension."""
def __init__(self, channels):
super(TemporalAttention, self).__init__()
self.query_conv = nn.Conv1d(channels, channels // 8, 1)
self.key_conv = nn.Conv1d(channels, channels // 8, 1)
self.value_conv = nn.Conv1d(channels, channels, 1)
self.gamma = nn.Parameter(torch.zeros(1))
def forward(self, x):
B, C, T = x.size()
query = self.query_conv(x).permute(0, 2, 1)
key = self.key_conv(x)
value = self.value_conv(x)
attention = torch.bmm(query, key)
attention = F.softmax(attention, dim=-1)
out = torch.bmm(value, attention.permute(0, 2, 1))
out = self.gamma * out + x
return out
class FCN_AudioEncoder(nn.Module):
"""Fully convolutional audio encoder."""
def __init__(self, output_channels=512):
super(FCN_AudioEncoder, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=(3,3), stride=(1,1), padding=(1,1)),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 192, kernel_size=(3,3), stride=(1,1), padding=(1,1)),
nn.BatchNorm2d(192),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(3,3), stride=(1,2)),
nn.Conv2d(192, 384, kernel_size=(3,3), padding=(1,1)),
nn.BatchNorm2d(384),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=(3,3), padding=(1,1)),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=(3,3), padding=(1,1)),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=(3,3), stride=(2,2)),
nn.Conv2d(256, 512, kernel_size=(5,1), stride=(5,1), padding=(0,0)),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.channel_conv = nn.Sequential(
nn.Conv1d(512, 512, kernel_size=1),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Conv1d(512, output_channels, kernel_size=1),
nn.BatchNorm1d(output_channels),
)
self.channel_attn = ChannelAttention(output_channels)
def forward(self, x):
x = self.conv_layers(x)
B, C, F, T = x.size()
x = x.view(B, C * F, T)
x = self.channel_conv(x)
x = self.channel_attn(x)
return x
class FCN_VideoEncoder(nn.Module):
"""Fully convolutional video encoder."""
def __init__(self, output_channels=512):
super(FCN_VideoEncoder, self).__init__()
self.conv_layers = nn.Sequential(
nn.Conv3d(3, 96, kernel_size=(5,7,7), stride=(1,2,2), padding=(2,3,3)),
nn.BatchNorm3d(96),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)),
nn.Conv3d(96, 256, kernel_size=(3,5,5), stride=(1,2,2), padding=(1,2,2)),
nn.BatchNorm3d(256),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)),
nn.Conv3d(256, 256, kernel_size=(3,3,3), padding=(1,1,1)),
nn.BatchNorm3d(256),
nn.ReLU(inplace=True),
nn.Conv3d(256, 256, kernel_size=(3,3,3), padding=(1,1,1)),
nn.BatchNorm3d(256),
nn.ReLU(inplace=True),
nn.Conv3d(256, 256, kernel_size=(3,3,3), padding=(1,1,1)),
nn.BatchNorm3d(256),
nn.ReLU(inplace=True),
nn.MaxPool3d(kernel_size=(1,3,3), stride=(1,2,2), padding=(0,1,1)),
nn.Conv3d(256, 512, kernel_size=(3,3,3), stride=(1,1,1), padding=(1,1,1)),
nn.BatchNorm3d(512),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool3d((None, 1, 1))
)
self.channel_conv = nn.Sequential(
nn.Conv1d(512, 512, kernel_size=1),
nn.BatchNorm1d(512),
nn.ReLU(inplace=True),
nn.Conv1d(512, output_channels, kernel_size=1),
nn.BatchNorm1d(output_channels),
)
self.channel_attn = ChannelAttention(output_channels)
def forward(self, x):
x = self.conv_layers(x)
B, C, T, H, W = x.size()
x = x.view(B, C, T)
x = self.channel_conv(x)
x = self.channel_attn(x)
return x
class SyncNetFCN_Classification(nn.Module):
"""
Fully Convolutional SyncNet with CLASSIFICATION output.
Treats offset detection as a multi-class classification problem:
- num_classes = 2 * max_offset + 1 (e.g., 251 classes for max_offset=125)
- Class index = offset + max_offset (e.g., offset -5 β class 120)
- Uses CrossEntropyLoss for training
- Default: Β±125 frames = Β±5 seconds at 25fps
This avoids the regression-to-mean problem encountered with MSE loss.
Architecture:
1. Audio encoder: MFCC β temporal features
2. Video encoder: frames β temporal features
3. Correlation layer: compute audio-video similarity over time
4. Classifier: predict offset class probabilities
"""
def __init__(self, embedding_dim=512, max_offset=125, dropout=0.3):
super(SyncNetFCN_Classification, self).__init__()
self.embedding_dim = embedding_dim
self.max_offset = max_offset
self.num_classes = 2 * max_offset + 1 # -15 to +15 = 31 classes
# Encoders
self.audio_encoder = FCN_AudioEncoder(output_channels=embedding_dim)
self.video_encoder = FCN_VideoEncoder(output_channels=embedding_dim)
# Temporal correlation
self.correlation = TemporalCorrelation(max_displacement=max_offset)
# Classifier head (replaces regressor)
self.classifier = nn.Sequential(
nn.Conv1d(self.num_classes, 128, kernel_size=3, padding=1),
nn.BatchNorm1d(128),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Conv1d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm1d(64),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
# Output: class logits for each timestep
nn.Conv1d(64, self.num_classes, kernel_size=1),
)
# Global classifier (for single prediction from sequence)
self.global_classifier = nn.Sequential(
nn.AdaptiveAvgPool1d(1),
nn.Flatten(),
nn.Linear(self.num_classes, 128),
nn.ReLU(inplace=True),
nn.Dropout(dropout),
nn.Linear(128, self.num_classes),
)
def forward_audio(self, audio_mfcc):
"""Extract audio features."""
return self.audio_encoder(audio_mfcc)
def forward_video(self, video_frames):
"""Extract video features."""
return self.video_encoder(video_frames)
def forward(self, audio_mfcc, video_frames, return_temporal=False):
"""
Forward pass with audio-video offset classification.
Args:
audio_mfcc: [B, 1, F, T] - MFCC features
video_frames: [B, 3, T', H, W] - video frames
return_temporal: If True, also return per-timestep predictions
Returns:
class_logits: [B, num_classes] - global offset class logits
temporal_logits: [B, num_classes, T] - per-timestep logits (if return_temporal)
audio_features: [B, C, T_a] - audio embeddings
video_features: [B, C, T_v] - video embeddings
"""
# Extract features
if audio_mfcc.dim() == 3:
audio_mfcc = audio_mfcc.unsqueeze(1)
audio_features = self.audio_encoder(audio_mfcc)
video_features = self.video_encoder(video_frames)
# Align temporal dimensions
min_time = min(audio_features.size(2), video_features.size(2))
audio_features = audio_features[:, :, :min_time]
video_features = video_features[:, :, :min_time]
# Compute correlation
correlation = self.correlation(video_features, audio_features)
# Per-timestep classification
temporal_logits = self.classifier(correlation)
# Global classification (aggregate over time)
class_logits = self.global_classifier(temporal_logits)
if return_temporal:
return class_logits, temporal_logits, audio_features, video_features
return class_logits, audio_features, video_features
def predict_offset(self, class_logits):
"""
Convert class logits to offset prediction.
Args:
class_logits: [B, num_classes] - classification logits
Returns:
offsets: [B] - predicted offset in frames
confidences: [B] - prediction confidence (softmax probability)
"""
probs = F.softmax(class_logits, dim=1)
predicted_class = probs.argmax(dim=1)
offsets = predicted_class - self.max_offset # Convert class to offset
confidences = probs.max(dim=1).values
return offsets, confidences
def offset_to_class(self, offset):
"""Convert offset value to class index."""
return offset + self.max_offset
def class_to_offset(self, class_idx):
"""Convert class index to offset value."""
return class_idx - self.max_offset
class StreamSyncFCN_Classification(nn.Module):
"""
Streaming-capable FCN SyncNet with classification output.
Includes preprocessing, transfer learning, and inference utilities.
"""
def __init__(self, embedding_dim=512, max_offset=125,
window_size=25, stride=5, buffer_size=100,
pretrained_syncnet_path=None, auto_load_pretrained=True,
dropout=0.3):
super(StreamSyncFCN_Classification, self).__init__()
self.window_size = window_size
self.stride = stride
self.buffer_size = buffer_size
self.max_offset = max_offset
self.num_classes = 2 * max_offset + 1
# Initialize classification model
self.fcn_model = SyncNetFCN_Classification(
embedding_dim=embedding_dim,
max_offset=max_offset,
dropout=dropout
)
# Auto-load pretrained weights
if auto_load_pretrained and pretrained_syncnet_path:
self.load_pretrained_syncnet(pretrained_syncnet_path)
self.reset_buffers()
def reset_buffers(self):
"""Reset temporal buffers."""
self.logits_buffer = []
self.frame_count = 0
def load_pretrained_syncnet(self, syncnet_model_path, freeze_conv=True, verbose=True):
"""Load conv layers from original SyncNet."""
if verbose:
print(f"Loading pretrained SyncNet from: {syncnet_model_path}")
try:
pretrained = torch.load(syncnet_model_path, map_location='cpu')
if isinstance(pretrained, dict):
pretrained_dict = pretrained.get('model_state_dict', pretrained.get('state_dict', pretrained))
else:
pretrained_dict = pretrained.state_dict()
fcn_dict = self.fcn_model.state_dict()
loaded_count = 0
for key in list(pretrained_dict.keys()):
if key.startswith('netcnnaud.'):
idx = key.split('.')[1]
param = '.'.join(key.split('.')[2:])
new_key = f'audio_encoder.conv_layers.{idx}.{param}'
if new_key in fcn_dict and pretrained_dict[key].shape == fcn_dict[new_key].shape:
fcn_dict[new_key] = pretrained_dict[key]
loaded_count += 1
elif key.startswith('netcnnlip.'):
idx = key.split('.')[1]
param = '.'.join(key.split('.')[2:])
new_key = f'video_encoder.conv_layers.{idx}.{param}'
if new_key in fcn_dict and pretrained_dict[key].shape == fcn_dict[new_key].shape:
fcn_dict[new_key] = pretrained_dict[key]
loaded_count += 1
self.fcn_model.load_state_dict(fcn_dict, strict=False)
if verbose:
print(f"β Loaded {loaded_count} pretrained conv parameters")
if freeze_conv:
for name, param in self.fcn_model.named_parameters():
if 'conv_layers' in name:
param.requires_grad = False
if verbose:
print("β Froze pretrained conv layers")
except Exception as e:
if verbose:
print(f"β Could not load pretrained weights: {e}")
def load_fcn_checkpoint(self, checkpoint_path, verbose=True):
"""Load FCN classification checkpoint."""
checkpoint = torch.load(checkpoint_path, map_location='cpu')
if 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
# Try to load directly first
try:
self.fcn_model.load_state_dict(state_dict, strict=True)
if verbose:
print(f"β Loaded full checkpoint from {checkpoint_path}")
except:
# Load only matching keys
model_dict = self.fcn_model.state_dict()
pretrained_dict = {k: v for k, v in state_dict.items()
if k in model_dict and v.shape == model_dict[k].shape}
model_dict.update(pretrained_dict)
self.fcn_model.load_state_dict(model_dict, strict=False)
if verbose:
print(f"β Loaded {len(pretrained_dict)}/{len(state_dict)} parameters from {checkpoint_path}")
return checkpoint.get('epoch', None)
def unfreeze_all_layers(self, verbose=True):
"""Unfreeze all layers for fine-tuning."""
for param in self.fcn_model.parameters():
param.requires_grad = True
if verbose:
print("β Unfrozen all layers for fine-tuning")
def forward(self, audio_mfcc, video_frames, return_temporal=False):
"""Forward pass through FCN model."""
return self.fcn_model(audio_mfcc, video_frames, return_temporal)
def extract_audio_mfcc(self, video_path, temp_dir='temp'):
"""Extract audio and compute MFCC."""
os.makedirs(temp_dir, exist_ok=True)
audio_path = os.path.join(temp_dir, 'temp_audio.wav')
cmd = ['ffmpeg', '-y', '-i', video_path, '-ac', '1', '-ar', '16000',
'-vn', '-acodec', 'pcm_s16le', audio_path]
subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
sample_rate, audio = wavfile.read(audio_path)
mfcc = python_speech_features.mfcc(audio, sample_rate, numcep=13).T
mfcc_tensor = torch.FloatTensor(mfcc).unsqueeze(0).unsqueeze(0)
if os.path.exists(audio_path):
os.remove(audio_path)
return mfcc_tensor
def extract_video_frames(self, video_path, target_size=(112, 112)):
"""Extract video frames as tensor."""
cap = cv2.VideoCapture(video_path)
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, target_size)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame.astype(np.float32) / 255.0)
cap.release()
if not frames:
raise ValueError(f"No frames extracted from {video_path}")
frames_array = np.stack(frames, axis=0)
video_tensor = torch.FloatTensor(frames_array).permute(3, 0, 1, 2).unsqueeze(0)
return video_tensor
def detect_offset(self, video_path, temp_dir='temp', verbose=True):
"""
Detect AV offset using classification approach.
Args:
video_path: Path to video file
temp_dir: Temporary directory for audio extraction
verbose: Print progress information
Returns:
offset: Predicted offset in frames (positive = audio ahead)
confidence: Classification confidence (0-1)
class_probs: Full probability distribution over offset classes
"""
if verbose:
print(f"Processing: {video_path}")
# Extract features
mfcc = self.extract_audio_mfcc(video_path, temp_dir)
video = self.extract_video_frames(video_path)
if verbose:
print(f" Audio MFCC: {mfcc.shape}, Video: {video.shape}")
# Run inference
self.fcn_model.eval()
with torch.no_grad():
class_logits, _, _ = self.fcn_model(mfcc, video)
offset, confidence = self.fcn_model.predict_offset(class_logits)
class_probs = F.softmax(class_logits, dim=1)
offset = offset.item()
confidence = confidence.item()
if verbose:
print(f" Detected offset: {offset:+d} frames")
print(f" Confidence: {confidence:.4f}")
return offset, confidence, class_probs.squeeze(0).numpy()
def process_video_file(self, video_path, temp_dir='temp', verbose=True):
"""Alias for detect_offset for compatibility."""
offset, confidence, _ = self.detect_offset(video_path, temp_dir, verbose)
return offset, confidence
def create_classification_criterion(max_offset=125, label_smoothing=0.1):
"""
Create loss function for classification training.
Args:
max_offset: Maximum offset value
label_smoothing: Label smoothing factor (0 = no smoothing)
Returns:
criterion: CrossEntropyLoss with optional label smoothing
"""
return nn.CrossEntropyLoss(label_smoothing=label_smoothing)
def train_step_classification(model, audio, video, target_offset, criterion, optimizer, device):
"""
Single training step for classification model.
Args:
model: SyncNetFCN_Classification or StreamSyncFCN_Classification
audio: [B, 1, F, T] audio MFCC
video: [B, 3, T, H, W] video frames
target_offset: [B] target offset in frames (-max_offset to +max_offset)
criterion: CrossEntropyLoss
optimizer: Optimizer
device: torch device
Returns:
loss: Training loss value
accuracy: Classification accuracy
"""
model.train()
optimizer.zero_grad()
audio = audio.to(device)
video = video.to(device)
# Convert offset to class index
if hasattr(model, 'fcn_model'):
target_class = target_offset + model.fcn_model.max_offset
else:
target_class = target_offset + model.max_offset
target_class = target_class.long().to(device)
# Forward pass
if hasattr(model, 'fcn_model'):
class_logits, _, _ = model(audio, video)
else:
class_logits, _, _ = model(audio, video)
# Compute loss
loss = criterion(class_logits, target_class)
# Backward pass
loss.backward()
optimizer.step()
# Compute accuracy
predicted_class = class_logits.argmax(dim=1)
accuracy = (predicted_class == target_class).float().mean().item()
return loss.item(), accuracy
def validate_classification(model, dataloader, criterion, device, max_offset=125):
"""
Validate classification model.
Returns:
avg_loss: Average validation loss
accuracy: Classification accuracy
mean_error: Mean absolute error in frames
"""
model.eval()
total_loss = 0
correct = 0
total = 0
total_error = 0
with torch.no_grad():
for audio, video, target_offset in dataloader:
audio = audio.to(device)
video = video.to(device)
target_class = (target_offset + max_offset).long().to(device)
if hasattr(model, 'fcn_model'):
class_logits, _, _ = model(audio, video)
else:
class_logits, _, _ = model(audio, video)
loss = criterion(class_logits, target_class)
total_loss += loss.item() * audio.size(0)
predicted_class = class_logits.argmax(dim=1)
correct += (predicted_class == target_class).sum().item()
total += audio.size(0)
# Mean absolute error
predicted_offset = predicted_class - max_offset
target_offset_dev = target_class - max_offset
total_error += (predicted_offset - target_offset_dev).abs().sum().item()
return total_loss / total, correct / total, total_error / total
if __name__ == "__main__":
print("Testing SyncNetFCN_Classification...")
# Test model creation (use smaller offset for quick testing)
model = SyncNetFCN_Classification(embedding_dim=512, max_offset=125)
print(f"Number of classes: {model.num_classes}")
# Test forward pass
audio_input = torch.randn(2, 1, 13, 100)
video_input = torch.randn(2, 3, 25, 112, 112)
class_logits, audio_feat, video_feat = model(audio_input, video_input)
print(f"Class logits: {class_logits.shape}")
print(f"Audio features: {audio_feat.shape}")
print(f"Video features: {video_feat.shape}")
# Test prediction
offsets, confidences = model.predict_offset(class_logits)
print(f"Predicted offsets: {offsets}")
print(f"Confidences: {confidences}")
# Test with temporal output
class_logits, temporal_logits, _, _ = model(audio_input, video_input, return_temporal=True)
print(f"Temporal logits: {temporal_logits.shape}")
# Test training step
print("\nTesting training step...")
criterion = create_classification_criterion(max_offset=125, label_smoothing=0.1)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
target_offset = torch.tensor([3, -5]) # Example target offsets
loss, acc = train_step_classification(
model, audio_input, video_input, target_offset,
criterion, optimizer, 'cpu'
)
print(f"Training loss: {loss:.4f}, Accuracy: {acc:.2%}")
# Count parameters
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"\nTotal parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print("\nTesting StreamSyncFCN_Classification...")
stream_model = StreamSyncFCN_Classification(
embedding_dim=512, max_offset=125,
pretrained_syncnet_path=None, auto_load_pretrained=False
)
class_logits, _, _ = stream_model(audio_input, video_input)
print(f"Stream model class logits: {class_logits.shape}")
print("\nβ All tests passed!")
|