File size: 5,740 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
FCN-SyncNet CLI Tool - Audio-Video Sync Detection

Detects audio-video synchronization offset in video files using
a Fully Convolutional Neural Network with transfer learning.

Usage:
    python detect_sync.py video.mp4
    python detect_sync.py video.mp4 --verbose
    python detect_sync.py video.mp4 --output results.json

Author: R-V-Abhishek
"""

import argparse
import json
import os
import sys
import time

import torch


def load_model(checkpoint_path='checkpoints/syncnet_fcn_epoch2.pth', max_offset=15):
    """Load the FCN-SyncNet model with trained weights."""
    from SyncNetModel_FCN import StreamSyncFCN
    
    model = StreamSyncFCN(
        max_offset=max_offset,
        pretrained_syncnet_path=None,
        auto_load_pretrained=False
    )
    
    if os.path.exists(checkpoint_path):
        checkpoint = torch.load(checkpoint_path, map_location='cpu')
        # Load only encoder weights
        encoder_state = {k: v for k, v in checkpoint['model_state_dict'].items()
                        if 'audio_encoder' in k or 'video_encoder' in k}
        model.load_state_dict(encoder_state, strict=False)
        epoch = checkpoint.get('epoch', 'unknown')
        print(f"✓ Loaded model from {checkpoint_path} (epoch {epoch})")
    else:
        # Fall back to pretrained SyncNet
        print(f"! Checkpoint not found: {checkpoint_path}")
        print("  Loading pretrained SyncNet weights...")
        model = StreamSyncFCN(
            max_offset=max_offset,
            pretrained_syncnet_path='data/syncnet_v2.model',
            auto_load_pretrained=True
        )
    
    model.eval()
    return model


def detect_offset(model, video_path, verbose=False):
    """
    Detect AV offset in a video file.
    
    Returns:
        dict with offset, confidence, raw_offset, and processing time
    """
    start_time = time.time()
    
    offset, confidence, raw_offset = model.detect_offset_correlation(
        video_path,
        calibration_offset=3,
        calibration_scale=-0.5,
        calibration_baseline=-15,
        verbose=verbose
    )
    
    processing_time = time.time() - start_time
    
    return {
        'video': video_path,
        'offset_frames': int(offset),
        'offset_seconds': round(offset / 25.0, 3),  # Assuming 25 fps
        'confidence': round(float(confidence), 6),
        'raw_offset': int(raw_offset),
        'processing_time': round(processing_time, 2)
    }


def print_result(result, verbose=False):
    """Print detection result in a nice format."""
    print()
    print("=" * 50)
    print("  FCN-SyncNet Detection Result")
    print("=" * 50)
    print(f"  Video:      {os.path.basename(result['video'])}")
    print(f"  Offset:     {result['offset_frames']:+d} frames ({result['offset_seconds']:+.3f}s)")
    print(f"  Confidence: {result['confidence']:.6f}")
    print(f"  Time:       {result['processing_time']:.2f}s")
    print("=" * 50)
    
    # Interpretation
    offset = result['offset_frames']
    if abs(offset) <= 1:
        print("  ✓ Audio and video are IN SYNC")
    elif offset > 0:
        print(f"  ! Audio is {abs(offset)} frames BEHIND video")
        print(f"    (delay audio by {abs(result['offset_seconds']):.3f}s to fix)")
    else:
        print(f"  ! Audio is {abs(offset)} frames AHEAD of video")
        print(f"    (advance audio by {abs(result['offset_seconds']):.3f}s to fix)")
    print()


def main():
    parser = argparse.ArgumentParser(
        description='FCN-SyncNet: Detect audio-video sync offset',
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  python detect_sync.py video.mp4
  python detect_sync.py video.mp4 --verbose
  python detect_sync.py video.mp4 --output result.json
  python detect_sync.py video.mp4 --model checkpoints/custom.pth

Output:
  Positive offset = audio behind video (delay audio to fix)
  Negative offset = audio ahead of video (advance audio to fix)
        """
    )
    
    parser.add_argument('video', help='Path to video file (MP4, AVI, MOV, etc.)')
    parser.add_argument('--model', '-m', default='checkpoints/syncnet_fcn_epoch2.pth',
                       help='Path to model checkpoint (default: checkpoints/syncnet_fcn_epoch2.pth)')
    parser.add_argument('--output', '-o', help='Save result to JSON file')
    parser.add_argument('--verbose', '-v', action='store_true',
                       help='Show detailed processing info')
    parser.add_argument('--json', '-j', action='store_true',
                       help='Output only JSON (for scripting)')
    
    args = parser.parse_args()
    
    # Validate input
    if not os.path.exists(args.video):
        print(f"Error: Video file not found: {args.video}")
        sys.exit(1)
    
    # Load model
    if not args.json:
        print()
        print("FCN-SyncNet Audio-Video Sync Detector")
        print("-" * 40)
    
    try:
        model = load_model(args.model)
    except Exception as e:
        print(f"Error loading model: {e}")
        sys.exit(1)
    
    # Detect offset
    try:
        result = detect_offset(model, args.video, verbose=args.verbose)
    except Exception as e:
        print(f"Error processing video: {e}")
        sys.exit(1)
    
    # Output result
    if args.json:
        print(json.dumps(result, indent=2))
    else:
        print_result(result, verbose=args.verbose)
    
    # Save to file if requested
    if args.output:
        with open(args.output, 'w') as f:
            json.dump(result, indent=2, fp=f)
        if not args.json:
            print(f"Result saved to: {args.output}")
    
    return result['offset_frames']


if __name__ == '__main__':
    sys.exit(main())