File size: 5,916 Bytes
579f772
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Test FCN-SyncNet and Original SyncNet with multiple offset videos.

Creates test videos with known offsets and compares detection accuracy.
"""

import subprocess
import os
import sys

# Enable UTF-8 output on Windows
if sys.platform == 'win32':
    import io
    sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', errors='replace')
    sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8', errors='replace')


def create_offset_video(source_video, offset_frames, output_path):
    """
    Create a video with audio offset.
    
    Args:
        source_video: Path to source video
        offset_frames: Positive = audio delayed (behind), Negative = audio ahead
        output_path: Output video path
    """
    if os.path.exists(output_path):
        return True
        
    if offset_frames >= 0:
        # Delay audio - add silence at start
        delay_ms = offset_frames * 40  # 40ms per frame at 25fps
        cmd = [
            'ffmpeg', '-y', '-i', source_video,
            '-af', f'adelay={delay_ms}|{delay_ms}',
            '-c:v', 'copy', output_path
        ]
    else:
        # Advance audio - trim start of audio
        trim_sec = abs(offset_frames) * 0.04
        cmd = [
            'ffmpeg', '-y', '-i', source_video,
            '-af', f'atrim=start={trim_sec},asetpts=PTS-STARTPTS',
            '-c:v', 'copy', output_path
        ]
    
    result = subprocess.run(cmd, capture_output=True)
    return result.returncode == 0


def test_fcn_model(video_path, verbose=False):
    """Test with FCN-SyncNet model."""
    from SyncNetModel_FCN import StreamSyncFCN
    import torch
    
    model = StreamSyncFCN(
        max_offset=15,
        pretrained_syncnet_path=None,
        auto_load_pretrained=False
    )
    
    checkpoint = torch.load('checkpoints/syncnet_fcn_epoch2.pth', map_location='cpu')
    encoder_state = {k: v for k, v in checkpoint['model_state_dict'].items()
                    if 'audio_encoder' in k or 'video_encoder' in k}
    model.load_state_dict(encoder_state, strict=False)
    model.eval()
    
    offset, confidence, raw_offset = model.detect_offset_correlation(
        video_path,
        calibration_offset=3,
        calibration_scale=-0.5,
        calibration_baseline=-15,
        verbose=verbose
    )
    
    return int(round(offset)), confidence


def test_original_model(video_path, verbose=False):
    """Test with Original SyncNet model."""
    import argparse
    from SyncNetInstance import SyncNetInstance
    
    model = SyncNetInstance()
    model.loadParameters('data/syncnet_v2.model')
    
    opt = argparse.Namespace()
    opt.tmp_dir = 'data/work/pytmp'
    opt.reference = 'offset_test'
    opt.batch_size = 20
    opt.vshift = 15
    
    offset, confidence, dist = model.evaluate(opt, video_path)
    return int(offset), confidence


def main():
    print()
    print("=" * 75)
    print("  Multi-Offset Sync Detection Test")
    print("  Comparing FCN-SyncNet vs Original SyncNet")
    print("=" * 75)
    print()
    
    source_video = 'data/example.avi'
    
    # The source video has an inherent offset of +3 frames
    # So when we add offset X, the expected detection is (3 + X) for Original SyncNet
    base_offset = 3  # Known offset in example.avi
    
    # Test offsets to add
    test_offsets = [0, 5, 10, -5, -10]
    
    print("Creating test videos with various offsets...")
    print()
    
    results = []
    
    for added_offset in test_offsets:
        output_path = f'data/test_offset_{added_offset:+d}.avi'
        expected = base_offset + added_offset
        
        print(f"  Creating {output_path} (adding {added_offset:+d} frames)...")
        if not create_offset_video(source_video, added_offset, output_path):
            print(f"    Failed to create video!")
            continue
        
        print(f"    Testing FCN-SyncNet...")
        fcn_offset, fcn_conf = test_fcn_model(output_path)
        
        print(f"    Testing Original SyncNet...")
        orig_offset, orig_conf = test_original_model(output_path)
        
        results.append({
            'added': added_offset,
            'expected': expected,
            'fcn': fcn_offset,
            'original': orig_offset,
            'fcn_error': abs(fcn_offset - expected),
            'orig_error': abs(orig_offset - expected)
        })
        print()
    
    # Print results table
    print()
    print("=" * 75)
    print("  RESULTS")
    print("=" * 75)
    print()
    print(f"  {'Added':<8} {'Expected':<10} {'FCN':<10} {'Original':<10} {'FCN Err':<10} {'Orig Err':<10}")
    print("  " + "-" * 68)
    
    fcn_total_error = 0
    orig_total_error = 0
    
    for r in results:
        fcn_mark = "βœ“" if r['fcn_error'] <= 2 else "βœ—"
        orig_mark = "βœ“" if r['orig_error'] <= 2 else "βœ—"
        print(f"  {r['added']:+8d} {r['expected']:+10d} {r['fcn']:+10d} {r['original']:+10d} {r['fcn_error']:>6d} {fcn_mark:<3} {r['orig_error']:>6d} {orig_mark}")
        fcn_total_error += r['fcn_error']
        orig_total_error += r['orig_error']
    
    print("  " + "-" * 68)
    print(f"  {'TOTAL ERROR:':<28} {fcn_total_error:>10d}     {orig_total_error:>10d}")
    print()
    
    # Summary
    fcn_correct = sum(1 for r in results if r['fcn_error'] <= 2)
    orig_correct = sum(1 for r in results if r['orig_error'] <= 2)
    
    print(f"  FCN-SyncNet:      {fcn_correct}/{len(results)} correct (within 2 frames)")
    print(f"  Original SyncNet: {orig_correct}/{len(results)} correct (within 2 frames)")
    print()
    
    # Cleanup test videos
    print("Cleaning up test videos...")
    for added_offset in test_offsets:
        output_path = f'data/test_offset_{added_offset:+d}.avi'
        if os.path.exists(output_path):
            os.remove(output_path)
    print("Done!")


if __name__ == "__main__":
    main()